/usr/include/itpp/comm/llr.h is in libitpp-dev 4.3.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 | /*!
* \file
* \brief Class for numerically efficient log-likelihood algebra
* \author Erik G. Larsson and Martin Senst
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef LLR_H
#define LLR_H
#include <limits>
#include <itpp/base/vec.h>
#include <itpp/base/mat.h>
#include <itpp/base/specmat.h>
#include <itpp/base/matfunc.h>
#include <limits>
#include <itpp/itexports.h>
namespace itpp
{
/*! \relates LLR_calc_unit
The quantized log-likelihood ratio (QLLR) representation, scalar form. See \c LLR_calc_unit.
*/
typedef signed int QLLR;
/*! \relates LLR_calc_unit
The quantized log-likelihood ratio (QLLR) representation, vector form. See \c LLR_calc_unit.
*/
typedef Vec<QLLR> QLLRvec;
/*! \relates LLR_calc_unit
The quantized log-likelihood ratio (QLLR) representation, matrix form. See \c LLR_calc_unit.
*/
typedef Mat<QLLR> QLLRmat;
/*! \relates LLR_calc_unit
The largest possible QLLR value
*/
const QLLR QLLR_MAX = (std::numeric_limits<QLLR>::max() >> 4);
// added some margin to make sure the sum of two LLR is still permissible
/*!
\brief Log-likelihood algebra calculation unit.
This class contains functions for algebra with log-likelihood ratios
(LLRs). The class is mainly useful for modules that rely on certain
nonlinear operations on LLRs (e.g. boxplus for LDPC and turbo
decoding and Jacobian logarithm for soft demodulation). The routines
provided are numerically efficient and use only integer
arithmetics. Additionally, they allow for arbitrary quantization of
LLRs in order to study effects of limited precision (fixed point
number representations). As a consequence, computations are
approximate. With the standard settings, the numerical precision
should be sufficient (and practically equivalent to floating point
precision) for all practical applications. However, one can
construct cases where small numerical artifacts due to quantization
effects (e.g., soft demodulation with very high or very low SNR) can
be observed.
An LLR for an information bit b is defined according to \f[ L = \log
\frac{P(b=0)}{P(b=1)} \f] and it is in general a real number.
LLR values are represented via the special type, "quantized
LLR" (QLLR). The relation between the quantized representation
and the real (floating-point) LLR value is
\f[ \mbox{QLLR} = \mbox{round} \left(2^{\mbox{Dint1}}\cdot
\mbox{LLR}\right) \f]
The user parameter Dint1 determines the
granularity of the quantization, and it can be set arbitrarily.
The functions to_double() and to_qllr() can be used to perform
conversions between the two representations (QLLR to
floating-point, and vice versa).
The class provides functions for the computation of the Jacobian
logarithm and Hagenauer's "boxplus" operator. These functions are
based on a table-lookup. The resolution of the table is
determined by the parameters Dint2 and Dint3. See the class
constructor for more detail. When an object of LLR_calc_unit is
created, corresponding lookup-tables are also generated. The
resolution of these tables can be adjusted by providing parameters
to the constructor.
The variable table resolution allows one to study complexity
versus accuracy (i.e., how different table resolutions would
degrade performance) to some extent. Yet the main purpose of the
QLLR representation is to provide a tool for writing efficient
simulation code, rather than to provide for bit-level
(fixed-point) simulations. For bit-level simulations, a true fixed
point representation of LLRs would be preferred/required. With
the default setting of the table parameters, using the QLLR type
is practically as accurate (but much faster) as using "double" to
represent LLRs. Decoder implementations may then provide
functions using QLLR, fixed-point, or double (for compatibility
reasons) representations of LLR values.
Note: the QLLR type does not check that the correct quantization
level is used. I.e., in theory it would be possible to add two
QLLR types with different quantization (Dint) parameters. This is
intentionally implemented this way to achieve maximum runtime
efficiency.
*/
class ITPP_EXPORT LLR_calc_unit
{
public:
//! Constructor, using the default table resolution
LLR_calc_unit();
/*!
* \brief Constructor, using a specific table resolution.
*
* See init_llr_tables() for more details on the parameters.
*/
LLR_calc_unit(short int Dint1, short int Dint2, short int Dint3);
/*! \brief Set the quantization and table parameters
\param Dint1 Determines the relation between LLR represented as
real number and as integer. The relation is
\f[ \mbox{QLLR} = \mbox{round} \left(2^{\mbox{Dint1}}\cdot
\mbox{LLR}\right) \f]
\param Dint2 Number of entries in the table. If this is zero,
then logmap becomes logmax.
\param Dint3 Determines the table resolution. The spacing between each
entry is \f[ 2^{-(Dint1-Dint3)} \f]
The default parameter values are chosen to give a performance
practically indistinguishable from that of using floating point
calculations.
Example: (recommended settings with "exact" computation via high
resolution lookup table)
\code
LLR_calc_unit lcalc(12, 300, 7);
\endcode
Example: (recommended settings with logmax, i.e. no table lookup)
\code
LLR_calc_unit lcalc(12, 0, 7);
\endcode
*/
void init_llr_tables(short int Dint1 = 12, short int Dint2 = 300,
short int Dint3 = 7);
//! Convert a "real" LLR value to an LLR type
QLLR to_qllr(double l) const;
//! Convert a vector of "real" LLR values to an LLR type
QLLRvec to_qllr(const vec &l) const;
//! Convert a matrix of "real" LLR values to an LLR type
QLLRmat to_qllr(const mat &l) const;
//! Convert an LLR type to a "real" LLR
double to_double(QLLR l) const;
//! Convert a vector of LLR types to a "real" LLR
vec to_double(const QLLRvec &l) const;
//! Convert a matrix of LLR types to a "real" LLR
mat to_double(const QLLRmat &l) const;
/*!
* \brief Jacobian logarithm.
*
* This function computes \f[ \log(\exp(a)+\exp(b)) \f]
*/
inline QLLR jaclog(QLLR a, QLLR b) const;
// Note: a version of this function taking "double" values as input
// is deliberately omitted, because this is rather slow.
/*!
* \brief Hagenauer's "Boxplus" operator.
*
* This function computes:
* \f[ \mbox{sign}(a) * \mbox{sign}(b) * \mbox{min}(|a|,|b|)
* + f(|a+b|) - f(|a-b|) \f]
* where \f[ f(x) = \log(1+\exp(-x)) \f]
*/
QLLR Boxplus(QLLR a, QLLR b) const;
/*!
* \brief Logexp operator.
*
* This function computes \f[ f(x) = \log(1+\exp(-x)) \f]
*/
inline QLLR logexp(QLLR x) const;
//! Retrieve the table resolution values
ivec get_Dint();
//! Print some properties of the LLR calculation unit in plain text
friend ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const LLR_calc_unit &l);
private:
//! Compute the table for \f[ f(x) = \log(1+\exp(-x)) \f]
ivec construct_logexp_table();
//! The lookup tables for the decoder
ivec logexp_table;
//! Decoder (lookup-table) parameters
short int Dint1, Dint2, Dint3;
};
/*!
\relatesalso LLR_calc_unit
\brief Print some properties of the LLR calculation unit in plain text.
*/
ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const LLR_calc_unit &lcu);
// ----------------------------------------------------------------------
// implementation of some inline functions
// ----------------------------------------------------------------------
inline double LLR_calc_unit::to_double(QLLR l) const
{
return static_cast<double>(l) / (1 << Dint1);
}
inline QLLR LLR_calc_unit::to_qllr(double l) const
{
double QLLR_MAX_double = to_double(QLLR_MAX);
// Don't abort when overflow occurs, just saturate the QLLR
if (l > QLLR_MAX_double) {
it_info_debug("LLR_calc_unit::to_qllr(): LLR overflow");
return QLLR_MAX;
}
if (l < -QLLR_MAX_double) {
it_info_debug("LLR_calc_unit::to_qllr(): LLR overflow");
return -QLLR_MAX;
}
return static_cast<QLLR>(std::floor(0.5 + (1 << Dint1) * l));
}
inline QLLR LLR_calc_unit::logexp(QLLR x) const
{
it_assert_debug(x >= 0, "LLR_calc_unit::logexp(): Wrong LLR value");
int ind = x >> Dint3;
if (ind >= Dint2) // outside table
return 0;
it_assert_debug(ind >= 0, "LLR_calc_unit::logexp(): Internal error");
it_assert_debug(ind < Dint2, "LLR_calc_unit::logexp(): internal error");
// With interpolation
// int delta=x-(ind<<Dint3);
// return ((delta*logexp_table(ind+1) + ((1<<Dint3)-delta)*logexp_table(ind)) >> Dint3);
// Without interpolation
return logexp_table(ind);
}
inline QLLR LLR_calc_unit::jaclog(QLLR a, QLLR b) const
{
QLLR x, maxab;
if (a > b) {
maxab = a;
x = a - b;
}
else {
maxab = b;
x = b - a;
}
if (maxab >= QLLR_MAX)
return QLLR_MAX;
else
return (maxab + logexp(x));
}
}
#endif
|