/usr/include/itpp/comm/ldpc.h is in libitpp-dev 4.3.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 | /*!
* \file
* \brief Implementation of Low-Density Parity Check (LDPC) codes
* \author Erik G. Larsson, Mattias Andersson, Adam Piatyszek and Gorka Prieto
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef LDPC_H
#define LDPC_H
#include <iostream>
#include <itpp/base/gf2mat.h>
#include <itpp/base/random.h>
#include <itpp/base/sort.h>
#include <itpp/comm/llr.h>
#include <itpp/comm/channel_code.h>
#include <itpp/itexports.h>
namespace itpp
{
// ---------------------------------------------------------------------------
// LDPC_Parity
// ---------------------------------------------------------------------------
/*!
\brief LDPC parity check matrix generic class
This class provides a basic set of functions needed to represent a
parity check matrix, which defines an LDPC code. This class is
used as base class for a set of specific LDPC parity check matrix
classes, e.g. regular or irregular LDPC codes.
This class stores a parity check matrix as a sparse matrix. The
transpose of the matrix is also stored to enable efficient access
to its rows.
All parity check matrices can be loaded from (saved to) a file by
converting them from (to) a portable \c GF2mat_sparse_alist format.
However, typically one will want to create a \c LDPC_Code from the
parity check matrix (and optionally a generator) and save the
codec binary data instead.
Please refer to the tutorial \ref ldpc_gen_codes for some examples
of code generation.
\author Erik G. Larsson, Mattias Andersson and Adam Piatyszek
*/
class ITPP_EXPORT LDPC_Parity
{
friend class LDPC_Code;
public:
//! Default constructor
LDPC_Parity(): init_flag(false) {}
//! Constructor that gives an empty matrix of size ncheck x nvar
LDPC_Parity(int ncheck, int nvar);
/*!
\brief Load an LDPC parity check matrix from a file
\param filename file name
\param format file format
\note Currently, only "alist" format is supported (see
\c GF2mat_sparse_alist for its definition).
\sa \c load_alist() and \c save_alist()
*/
LDPC_Parity(const std::string& filename, const std::string& format);
//! Constructor, from a \c GF2mat_sparse_alist object
LDPC_Parity(const GF2mat_sparse_alist& alist);
//! Virtual destructor
virtual ~LDPC_Parity() {}
//! Initialize an empty matrix of size ncheck x nvar
void initialize(int ncheck, int nvar);
//! Get the parity check matrix, optionally its transposed form
GF2mat_sparse get_H(bool transpose = false) const {
return (transpose ? Ht : H);
}
//! Get a specific column from the matrix
Sparse_Vec<bin> get_col(int c) const { return H.get_col(c); }
//! Get a specific row from the matrix
Sparse_Vec<bin> get_row(int r) const { return Ht.get_col(r); }
//! Get the number of variable nodes (number of columns)
int get_nvar() const {
it_assert_debug(H.cols() == nvar,
"LDPC_Parity::get_nvar(): Internal error");
it_assert_debug(Ht.rows() == nvar,
"LDPC_Parity::get_nvar(): Internal error");
return nvar;
}
//! Get the number of check nodes (number of rows)
int get_ncheck() const {
it_assert_debug(H.rows() == ncheck,
"LDPC_Parity::get_ncheck(): Internal error");
it_assert_debug(Ht.cols() == ncheck,
"LDPC_Parity::get_ncheck(): Internal error");
return ncheck;
}
//! Set element (i,j) of the parity check matrix to value
void set(int i, int j, bin value);
//! Get element (i,j) of the parity check matrix
bin get(int i, int j) const {
it_assert_debug(H(i, j) == Ht(j, i), "LDPC_Parity::get(): Internal error");
return H(i, j);
}
//! Get element (i,j) of the parity check matrix
bin operator()(int i, int j) const {
it_assert_debug(H(i, j) == Ht(j, i),
"LDPC_Parity::operator(): Internal error");
return H(i, j);
}
//! Display some information about the matrix
virtual void display_stats() const;
//! Get the code rate
double get_rate() const {
return (1.0 - static_cast<double>(ncheck) / nvar);
}
//! Import matrix from \c GF2mat_sparse_alist format
void import_alist(const GF2mat_sparse_alist& H_alist);
//! Export matrix to \c GF2mat_sparse_alist format
GF2mat_sparse_alist export_alist() const;
//! Load matrix from \c alist_file text file in alist format
void load_alist(const std::string& alist_file);
//! Save matrix to \c alist_file text file in alist format
void save_alist(const std::string& alist_file) const;
protected:
//! Flag that indicates proper initialization
bool init_flag;
//! Maximum node degree class can handle
static const int Nmax = 200;
//! The parity check matrix
GF2mat_sparse H;
//! The transposed parity check matrix
GF2mat_sparse Ht;
//! Number of variable nodes
int nvar;
//! Number of check nodes
int ncheck;
//! Actual number of ones in each column
ivec sumX1;
//! Actual number of ones in each row
ivec sumX2;
/*!
\brief Check for cycles of length L
This function implements a recursive routine to find loops. The
function is mainly a tool for testing and debugging more sophisticated
functions for graph manipulation.
\param L length of cycles to look for
\return The function returns the number of cycles found of length L or
shorter. Cycles may be counted multiple times.
\note This function can be very slow for large matrices. It is mainly
intended as a debugging aid.
*/
int check_for_cycles(int L) const;
/*!
\brief Check for connectivity between nodes
This function examines whether the point (to_m, to_n) in the matrix
can be reached from the point (from_m, from_n) using at most L steps.
A recursive search is used.
The function can be used to search for cycles in the matrix. To
search for a cycle of length L, set from_m=to_m and from_n=to_n,
and godir=0.
\param from_m starting coordinate, row number
\param to_m goal coordinate, row number
\param from_n starting coordinate, column number
\param to_n goal coordinate, row number
\param g direction: 1=start going vertically, 2=start
going horizontally
\param L number of permitted steps
\return
- -1 or -3 : destination unreachable
- -2 : meaningless search (started in a "0" point),
- -4 : meaningless search
- >=0 : destination reached with certain number of steps left
\note This function can be very slow depending on the nature of
the matrix.
Note that smaller cycles may appear as longer cycles when using
this method. More specifically, suppose the method is run with a
given L and there are cycles in the neighborhood of
(from_m,from_n) of length L-2 or less, but which do not contain
(from_m,from_n). These shorter cycles may then also be reported
as a cycle of length L. For example, if one of the immediate
neighbors of (from_m,from_n) is part of a cycle of length 4 this
method will report that (from_m,from_n) is part of a cycle of
length 6, if run with L=6. However, if it is known that there
are no cycles of length L-2 or smaller, and
check_connectivity(from_m,from_n,from_m,from_n,0,L) returns a
non-negative value, then one will know with certainty that the
point (from_m,from_n) is part of a cycle of length L. (This
behavior is inherent to the simple recursive search used.)
*/
int check_connectivity(int from_m, int from_n, int to_m, int to_n,
int g, int L) const;
// inline int get_cmax() const { return (max(sumX1)); }
// inline int get_vmax() const { return (max(sumX2)); }
// ivec get_coldegree() const;
// ivec get_rowdegree() const;
};
// ----------------------------------------------------------------------
// LDPC_Parity_Unstructured
// ----------------------------------------------------------------------
/*!
\brief Pure abstract class for unstructured LDPC matrices
This class provides a common set of methods for unstructured LDPC
matrices. For unstructured codes the parity checks are distributed
at random rather than according to a specific pattern, and the
generation of a parity matrix can be viewed as drawing a random
sample from an ensemble of graphs (matrices) that are described by
a specific degree distribution.
This class is used as base for the \c LDPC_Parity_Irregular and \c
LDPC_Parity_Regular generator classes.
\author Erik G. Larsson, Mattias Andersson and Adam Piatyszek
*/
class ITPP_EXPORT LDPC_Parity_Unstructured : public LDPC_Parity
{
public:
//! Display some information about the matrix
virtual void display_stats() const = 0;
/*!
\brief Remove cycles (loops) from unstructured parity check matrix.
This function implements the cycle removal algorithm presented by
McGowan and Williamson at the IT workshop 2003. The maximum girth of
the graph that will be attempted is L. The algorithm is bound to
remove all loops of length L, insofar this is possible. I.e., it does
not terminate until it is impossible to remove more cycles by swapping
two edges.
\param L Target girth. For example, L=6 attempts to removes all
4-cycles.
\return The girth of the graph, i.e. the length of the shortest cycle.
For example, a return value of 6 means that there are no 4-cycles.
\note This algorithm can take a long time to run for large L or large
graphs.
*/
int cycle_removal_MGW(int L);
protected:
//! Generate a random parity check matrix
void generate_random_H(const ivec& C, const ivec& R, const ivec& cycopt);
/*! \brief Compute target number of columns (C) and rows (R) with
a specific number of ones.
\param var_deg vector of variable degree distributions, from an edge
perspective
\param chk_deg vector of check degree distributions, from an edge
perspective
\param Nvar number of variable nodes
\param C number of columns with a specific number of ones
\param R number of rows with a specific number of ones
The result is passed by reference and saved in C and R.
*/
void compute_CR(const vec& var_deg, const vec& chk_deg, const int Nvar,
ivec &C, ivec &R);
};
// ----------------------------------------------------------------------
// LDPC_Parity_Irregular
// ----------------------------------------------------------------------
/*!
\brief Irregular LDPC code generator class
\author Erik G. Larsson, Mattias Andersson and Adam Piatyszek
*/
class ITPP_EXPORT LDPC_Parity_Irregular : public LDPC_Parity_Unstructured
{
public:
//! Default constructor
LDPC_Parity_Irregular() {}
//! Constructor that invokes \c generate() method
LDPC_Parity_Irregular(int Nvar, const vec& var_deg, const vec& chk_deg,
const std::string& method = "rand",
const ivec& options = "200 6");
/*!
\brief Generate an irregular LDPC code
\param Nvar number of variable nodes
\param var_deg vector of variable degree distributions, from an edge
perspective
\param chk_deg vector of check degree distributions, from an edge
perspective
\param method currently the only provided method is "rand" (see below)
\param options Determines the level of matrix optimization.
The "rand" method generates a fully unstructured random
matrix. Some stochastic optimization is performed to avoid
cycles. This optimization is controlled via the parameter \c
options. In particular, the girth for the variable-node-degree-2
part of the graph can be controlled via the parameter
options(0). The girth for the rest of the nodes can be
controlled via the parameter options(1). The recommended value
for options is "200 6" for graphs of small size, and "100 4" for
large graphs. The value "0 0" means no optimization. Double
edges are always avoided.
\note The "rand" method for graph construction provided in this
function is not intended to provide the best possible error
performance, but it is a simple, basic, fast tool that can
easily be used to build relatively good irregular graphs. Better
results in terms of performance and error-floor can be achieved
by using other performance measures for the graph than cycle
length (for irregular codes, the so-called ACE measure for
example). Additionally, the "rand" method builds the graph edge
by edge, with no possibility of removing an edge once it has
been placed. Better results may be achieved by building the
graphs by placing pairs or n-tuples of edges at time, for
example, column by column.
\note Alternative (user-defined) methods for code generation can
be implemented by inheriting \c LDPC_Parity_Irregular.
*/
void generate(int Nvar, const vec& var_deg, const vec& chk_deg,
const std::string& method = "rand",
const ivec& options = "200 6");
//! Display some information about the matrix
void display_stats() const { LDPC_Parity::display_stats(); }
};
// ----------------------------------------------------------------------
// LDPC_Parity_Regular
// ----------------------------------------------------------------------
/*!
\brief Regular LDPC code generator class
\author Erik G. Larsson, Mattias Andersson and Adam Piatyszek
*/
class ITPP_EXPORT LDPC_Parity_Regular : public LDPC_Parity_Unstructured
{
public:
//! Default constructor
LDPC_Parity_Regular() {}
//! Constructor that invokes \c generate() method
LDPC_Parity_Regular(int Nvar, int k, int l,
const std::string& method = "rand",
const ivec& options = "200 6");
/*!
\brief Generate a (k,l) regular LDPC code
\param Nvar number of variable nodes
\param k number of ones per column
\param l number of ones per row
\param method See \c LDPC_Parity_Irregular::generate()
\param options See \c LDPC_Parity_Irregular::generate()
\note Alternative (user-defined) methods for code generation can
be implemented by inheriting \c LDPC_Parity_Regular.
\note In some cases it may be impossible to construct a
perfectly regular parity check matrix with the desired
(k,l,Nvar) parameters. The degree distribution will then be
automatically adjusted so that the matrix can be constructed and
in this event the resulting code will not be perfectly regular.
*/
void generate(int Nvar, int k, int l,
const std::string& method = "rand",
const ivec& options = "200 6");
//! Display some information about the matrix
void display_stats() const { LDPC_Parity::display_stats(); }
};
// ----------------------------------------------------------------------
// BLDPC_Parity
// ----------------------------------------------------------------------
/*!
\brief Block LDPC code parity-check matrix
\author Adam Piatyszek
Block LDPC Codes (B-LDPC) are a special class of Quasi-Cyclic LDPC Codes
(QC-LDPC). Linear encoding properties and memory efficiency are their
main advantages.
B-LDPC codes' parity-check matrix is constructed from so-called base
matrix by expansion of each single value with a zero matrix or
cyclic-shifted identity matrix of size Z x Z, where Z is an expansion
factor. Each non negative value of the base matrix represents the cyclic
shift value, e.g. 0 means that the identity matrix should not be
shifted; 6 means than the identity matrix should be circularly
right-shifted by (6 mod Z). Negative values (usually -1) represents zero
matrix of size Z x Z.
Please refer to [MYK05] for more details.
References:
[MYK05] S. Myung, K. Yang, J. Kim, "Quasi-Cyclic LDPC Codes for Fast
Encoding", IEEE Trans. on Inform. Theory, vol. 51, no. 8, August 2005
*/
class ITPP_EXPORT BLDPC_Parity : public LDPC_Parity
{
public:
//! Default constructor
BLDPC_Parity(): LDPC_Parity(), Z(0), H_b(), H_b_valid(false) {}
//! Construct BLDPC matrix from base matrix
BLDPC_Parity(const imat &base_matrix, int exp_factor);
//! Construct BLDPC matrix parsing base matrix from a text file
BLDPC_Parity(const std::string &filename, int exp_factor);
//! Create BLDPC matrix from base matrix by expansion
void expand_base(const imat &base_matrix, int exp_factor);
//! Get expansion factor
int get_exp_factor() const;
//! Get base matrix
imat get_base_matrix() const;
//! Verify initialisation
bool is_valid() const { return H_b_valid && init_flag; }
//! Set expansion factor
void set_exp_factor(int exp_factor);
//! Load base matrix from a text file
void load_base_matrix(const std::string &filename);
//! Save base matrix to a text file
void save_base_matrix(const std::string &filename) const;
private:
int Z; //!< Expansion factor
imat H_b; //!< Base matrix
bool H_b_valid; //!< Indicates that base matrix is valid
//! Calculate base matrix from parity matrix \c H and \c Z
void calculate_base_matrix();
};
// ----------------------------------------------------------------------
// LDPC_Generator
// ----------------------------------------------------------------------
/*!
\brief LDPC Generator pure virtual base class
This is an abstract base class for LDPC generators. It provides a
generic interface that is used by the \c LDPC_Code class. The \c
LDPC_Generator class can be inherited to create a new type of
generator. In addition to the default constructor, the following
three pure virtual methods need to be defined in a derived class:
\c encode(), \c save() and \c load().
See the \c LDPC_Generator_Systematic class for an example
implementation of a derived generator.
\author Adam Piatyszek
*/
class ITPP_EXPORT LDPC_Generator
{
friend class LDPC_Code;
public:
//! Default constructor
LDPC_Generator(const std::string& type_in = ""): init_flag(false),
type(new std::string(type_in)) {}
//! Virtual destructor
virtual ~LDPC_Generator() {delete type;}
//! Generator specific encode function
virtual void encode(const bvec &input, bvec &output) = 0;
//! Return generator type
std::string get_type() const { return *type; }
//! Mark generator as initialized
void mark_initialized() {init_flag = true;};
//! Check if generator is initialized
bool is_initialized() const {return init_flag;};
private:
bool init_flag; //!< True if generator is initialized
std::string* type; //!< Generator type
protected:
//! Save generator data to a file
virtual void save(const std::string& filename) const = 0;
//! Read generator data from a file
virtual void load(const std::string& filename) = 0;
};
// ----------------------------------------------------------------------
// LDPC_Generator_Systematic
// ----------------------------------------------------------------------
/*!
\brief Systematic LDPC Generator class
A generator is basically a dense GF(2) matrix with a constructor
that can create the generator matrix from a parity check matrix.
\note Please refer to the tutorials for examples of how to use this
class.
\author Erik G. Larsson and Adam Piatyszek
*/
class ITPP_EXPORT LDPC_Generator_Systematic : public LDPC_Generator
{
public:
//! Default constructor
LDPC_Generator_Systematic(): LDPC_Generator("systematic"), G() {}
//! Parametrized constructor
LDPC_Generator_Systematic(LDPC_Parity* const H,
bool natural_ordering = false,
const ivec& ind = "");
//! Virtual destructor
virtual ~LDPC_Generator_Systematic() {}
//! Generator specific encode function
virtual void encode(const bvec &input, bvec &output);
/*!
\brief Construct systematic generator matrix
This function constructs a systematic generator matrix from a parity
check matrix (\c LDPC_Parity). The order of the columns is
randomized unless otherwise requested via the \c natural_ordering
parameter.
\param H A pointer to the parity check matrix \c H
\param natural_ordering If this flag is true, the columns are not
randomly reordered (no interleaving applied), i.e. the function tries
so far as possible to avoid permuting columns at all. The permutation
takes place only if absolutely necessary.
\param ind Vector of column indices (variable nodes) to avoid in the
systematic part. If this vector is supplied, the algorithm then avoids
to use variable nodes corresponding to this index vector as systematic
bits. This can be used for example to avoid using variable nodes of a
low degree as systematic bits. This parameter is ignored if the
natural_ordering flag is set.
\return This function returns the permutation vector \c P on the
variable nodes that was necessary to construct a full rank generator.
This is the permutation which effectively has been applied to the
columns of \c H. The k-th column of the original \c H is the \c P(k)-th
column of the rearranged \c H.
\note This function modifies the parity check matrix \c H. Its columns
may be sorted so that it gets the structure \f$ H = [H_{1} H_{2}] \f$
where \f$ H_{2} \f$ is square and invertible. The computed generator
then satisfies \f$ [H_{1} H_{2}][I; G'] = 0 \f$.
*/
ivec construct(LDPC_Parity* const H, bool natural_ordering = false,
const ivec& ind = "");
protected:
//! Save generator data to a file
virtual void save(const std::string& filename) const;
//! Read generator data from a file
virtual void load(const std::string& filename);
private:
GF2mat G; // the matrix is stored in transposed form
};
// ----------------------------------------------------------------------
// BLDPC_Generator
// ----------------------------------------------------------------------
/*!
\brief Block LDPC Generator class
\author Adam Piatyszek
\note Please refer to the BLDPC_Parity class description for
information on B-LDPC codes
*/
class ITPP_EXPORT BLDPC_Generator : public LDPC_Generator
{
public:
//! Default constructor
BLDPC_Generator(const std::string type = "BLDPC"):
LDPC_Generator(type), H_enc(), N(0), M(0), K(0), Z(0) {}
//! Parametrized constructor
BLDPC_Generator(const BLDPC_Parity* const H,
const std::string type = "BLDPC");
//! Get expansion factor
int get_exp_factor() const { return Z; }
//! Generator specific encode function
void encode(const bvec &input, bvec &output);
//! Construct the BLDPC generator
void construct(const BLDPC_Parity* const H);
protected:
//! Save generator data to a file
void save(const std::string &filename) const;
//! Read generator data from a file
void load(const std::string &filename);
GF2mat H_enc; //!< Preprocessed parity check matrix
int N; //!< Codeword length = H_enc.cols()
int M; //!< Number of parity check bits = H_enc.rows()
int K; //!< Number of information bits = N-M
int Z; //!< Expansion factor
};
// ----------------------------------------------------------------------
// LDPC_Code
// ----------------------------------------------------------------------
/*!
\ingroup fec
\brief Low-density parity check (LDPC) codec
This class provides the functionality for encoding and decoding of LDPC
codes defined via \c LDPC_Parity and \c LDPC_Generator classes.
LDPC codecs are constructed from parity check and generator
matrices. Since the procedure of constructing the codec can be
time-consuming (for example, due to optimization of the parity
matrix and computation of the generator matrix), codecs can be
saved to a file for later use. This class provides functionality
and a special file format (the file format is designed to optimize
the operation of the decoder) to do this. Some examples of load
and save operations follow:
Saving a codec without generator matrix:
\code
// assume the parity matrix is already defined and stored in H
LDPC_Code C(&H);
C.save_code("filename.it");
\endcode
Saving a codec with generator matrix (for the example of systematic generator):
\code
// assume the parity matrix is already defined and stored in H
LDPC_Generator_Systematic G(&H); // create generator
LDPC_Code C(&H, &G);
C.save_code("filename.it");
\endcode
Loading a codec without a generator:
\code
LDPC_Code("filename.it");
\endcode
Loading a codec with a generator (systematic in this example):
\code
LDPC_Generator_Systematic G; // the generator object must be created first
LDPC_Code("filename.it", &G);
\endcode
\note Please refer to the tutorials \ref ldpc_gen_codes and \ref
ldpc_bersim_awgn for extensive examples of how to use LDPC codes.
\note For issues relating to the accuracy of LLR computations,
please see the documentation of \c LLR_calc_unit
\author Erik G. Larsson, Adam Piatyszek and Gorka Prieto (decoder improvements)
*/
class ITPP_EXPORT LDPC_Code : public Channel_Code
{
public:
//! Default constructor
LDPC_Code();
/*!
\brief Constructor, from a parity check matrix and optionally a
generator.
This constructor simply calls \c set_code().
\param H The parity check matrix
\param G A pointer to the optional generator object
\param perform_integrity_check if true, then check that the parity and generator matrices are consistent
*/
LDPC_Code(const LDPC_Parity* const H, LDPC_Generator* const G = 0,
bool perform_integrity_check = true);
/*!
\brief Constructor, from a saved file
This constructor simply calls \c load_code().
*/
LDPC_Code(const std::string& filename, LDPC_Generator* const G = 0);
//! Destructor
virtual ~LDPC_Code() {delete dec_method;}
/*!
\brief Set the codec, from a parity check matrix and optionally a
generator
\param H The parity check matrix
\param G A pointer to the optional generator object
\param perform_integrity_check if true, then check that the parity and generator matrices are consistent
*/
void set_code(const LDPC_Parity* const H, LDPC_Generator* const G = 0,
bool perform_integrity_check = true);
/*!
\brief Set the codec, by reading from a saved file
The file format is defined in the source code. LDPC codecs can
be saved with the function \c save_code().
\param filename Name of the file where the codec is stored
\param G A pointer to the optional generator object
\note If \c G points at \c 0 (default), the generator data is not
read from the saved file. This means that the encoding can not be
performed.
*/
void load_code(const std::string& filename, LDPC_Generator* const G = 0);
/*!
\brief Save the codec to a file
\param filename Name of the file where to store the codec
\note The decoder parameters (\c max_iters, \c syndr_check_each_iter,
\c syndr_check_at_start and \c llrcalc) are not saved to a file.
*/
void save_code(const std::string& filename) const;
/*!
\brief Set the decoding method
Currently only a belief propagation method ("BP" or "bp") is
supported.
\note The default method set in the class constructors is "BP".
*/
void set_decoding_method(const std::string& method);
/*!
\brief Set the decoding loop exit conditions
\param max_iters Maximum number of the decoding iterations
\param syndr_check_each_iter If true, break the decoding loop as soon
as valid codeword is found. Recommended value: \c true.
\param syndr_check_at_start If true, perform a syndrome check before
entering the decoding loop. If LLRin corresponds to a valid codeword,
set LLRout = LLRin. Recommended value: \c false.
\note The default values set in the class constructor are: "50",
"true" and "false", respectively.
*/
void set_exit_conditions(int max_iters,
bool syndr_check_each_iter = true,
bool syndr_check_at_start = false);
//! Set LLR calculation unit
void set_llrcalc(const LLR_calc_unit& llrcalc);
// ------------ Encoding ---------------------
/*!
\brief Encode codeword
This is a wrapper functions which calls a proper implementation from
the \c LDPC_Generator object.
\param input Vector of \c ncheck input bits
\param output Vector of \c nvar output bits
*/
virtual void encode(const bvec &input, bvec &output);
//! \brief Encode codeword
virtual bvec encode(const bvec &input);
// ------------ Decoding ---------------------
//! Inherited from the base class - not implemented here
virtual void decode(const bvec &, bvec &) {
it_error("LDPC_Code::decode(): Hard input decoding not implemented");
}
//! Inherited from the base class - not implemented here
virtual bvec decode(const bvec &) {
it_error("LDPC_Code::decode(): Hard input decoding not implemented");
return bvec();
}
//! This function outputs systematic bits of the decoded codeword
virtual void decode(const vec &llr_in, bvec &syst_bits);
//! This function outputs systematic bits of the decoded codeword
virtual bvec decode(const vec &llr_in);
//! This function is a wrapper for \c bp_decode()
void decode_soft_out(const vec &llr_in, vec &llr_out);
//! This function is a wrapper for \c bp_decode()
vec decode_soft_out(const vec &llr_in);
/*! \brief Belief propagation decoding.
This function implements the sum-product message passing decoder
(Pearl's belief propagation) using LLR values as messages. A
fast update mechanism is used for nodes with large degrees.
\param LLRin vector of \c nvar input LLR values
\param LLRout vector of \c nvar output LLR values
If the decoder converged to a valid codeword, the function
returns the number of iterations performed. Otherwise the
function returns the number of iterations performed but with
negative sign.
One can use \c set_exit_conditions() method to change the number of
decoding iterations and related parameters parameters. The decoding
function uses \c LLR_calc_unit to implement table-lookup for the
Boxplus operator. By setting the parameters of the \c LLR_calc_unit
provided in \c set_llrcalc(), one can change the resolution, for
example to use a logmax approximation. See the documentation of \c
LLR_calc_unit for details on how to do this.
*/
int bp_decode(const QLLRvec &LLRin, QLLRvec &LLRout);
/*! \brief Syndrome check, on QLLR vector
This function performs a syndrome check on a softbit (LLR
vector). The function returns true for a valid codeword, false
else.
\param LLR LLR-vector to check
*/
bool syndrome_check(const QLLRvec &LLR) const;
//! Syndrome check, on bit vector
bool syndrome_check(const bvec &b) const;
/*! \brief Soft syndrome check
This function checks all parity constraints and computes for each
one the posterior probability that it is satisfied. The result is
a vector, whose i:th element is given by \f[ \mbox{Boxplus}_j LLR_{p_{ij}}
\f] where \f[ p_{ij} \f] is the index of the j:th nonzero element
of the i:th row of the code's parity check matrix.
*/
QLLRvec soft_syndrome_check(const QLLRvec &LLR) const;
// ------------ Basic information gathering functions ------
//! Get the coderate
double get_rate() const {
return (1.0 - static_cast<double>(ncheck) / nvar);
}
//! Get the number of variable nodes
int get_nvar() const { return nvar; }
//! Get the number of check nodes
int get_ncheck() const { return ncheck; }
//! Get the number of information bits per codeword
int get_ninfo() const { return nvar - ncheck; }
//! Return the decoding method
std::string get_decoding_method() const { return *dec_method; }
//! Get the maximum number of iterations of the decoder
int get_nrof_iterations() const { return max_iters; }
//! Get LLR calculation unit used in decoder
LLR_calc_unit get_llrcalc() const { return llrcalc; }
//! Print some properties of the codec in plain text
friend ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const LDPC_Code &C);
protected:
//! Function to compute decoder parameterization
void decoder_parameterization(const LDPC_Parity* const H);
//! Function to check the integrity of the parity check matrix and generator
void integrity_check();
//! Initialize decoder
void setup_decoder();
private:
bool H_defined; //!< true if parity check matrix is defined
bool G_defined; //!< true if generator is defined
int nvar; //!< Number of variable nodes
int ncheck; //!< Number of check nodes
LDPC_Generator *G; //!< Generator object pointer
// decoder parameters
std::string* dec_method; //!< Decoding method
int max_iters; //!< Maximum number of iterations
bool psc; //!< check syndrom after each iteration
bool pisc; //!< check syndrom before first iteration
LLR_calc_unit llrcalc; //!< LLR calculation unit
// Parity check matrix parameterization
ivec C, V, sumX1, sumX2, iind, jind;
// temporary storage for decoder (memory allocated when codec defined)
QLLRvec mvc, mcv;
//! Maximum check node degree that the class can handle
static const int max_cnd = 200;
};
/*!
\relatesalso LDPC_Code
\brief Print some properties of the LDPC codec in plain text.
*/
ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const LDPC_Code &C);
}
#endif
|