This file is indexed.

/usr/include/itpp/comm/ldpc.h is in libitpp-dev 4.3.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
/*!
 * \file
 * \brief Implementation of Low-Density Parity Check (LDPC) codes
 * \author Erik G. Larsson, Mattias Andersson, Adam Piatyszek and Gorka Prieto 
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef LDPC_H
#define LDPC_H

#include <iostream>
#include <itpp/base/gf2mat.h>
#include <itpp/base/random.h>
#include <itpp/base/sort.h>
#include <itpp/comm/llr.h>
#include <itpp/comm/channel_code.h>
#include <itpp/itexports.h>

namespace itpp
{

// ---------------------------------------------------------------------------
// LDPC_Parity
// ---------------------------------------------------------------------------

/*!
  \brief LDPC parity check matrix generic class

  This class provides a basic set of functions needed to represent a
  parity check matrix, which defines an LDPC code. This class is
  used as base class for a set of specific LDPC parity check matrix
  classes, e.g. regular or irregular LDPC codes.

  This class stores a parity check matrix as a sparse matrix.  The
  transpose of the matrix is also stored to enable efficient access
  to its rows.

  All parity check matrices can be loaded from (saved to) a file by
  converting them from (to) a portable \c GF2mat_sparse_alist format.

  However, typically one will want to create a \c LDPC_Code from the
  parity check matrix (and optionally a generator) and save the
  codec binary data instead.

  Please refer to the tutorial \ref ldpc_gen_codes for some examples
  of code generation.

  \author Erik G. Larsson, Mattias Andersson and Adam Piatyszek
*/
class ITPP_EXPORT LDPC_Parity
{
  friend class LDPC_Code;
public:
  //! Default constructor
  LDPC_Parity(): init_flag(false) {}

  //! Constructor that gives an empty matrix of size ncheck x nvar
  LDPC_Parity(int ncheck, int nvar);

  /*!
    \brief Load an LDPC parity check matrix from a file

    \param filename file name
    \param format file format

    \note Currently, only "alist" format is supported (see
    \c GF2mat_sparse_alist for its definition).

    \sa \c load_alist() and \c save_alist()
  */
  LDPC_Parity(const std::string& filename, const std::string& format);

  //! Constructor, from a \c GF2mat_sparse_alist object
  LDPC_Parity(const GF2mat_sparse_alist& alist);

  //! Virtual destructor
  virtual ~LDPC_Parity() {}

  //! Initialize an empty matrix of size ncheck x nvar
  void initialize(int ncheck, int nvar);

  //! Get the parity check matrix, optionally its transposed form
  GF2mat_sparse get_H(bool transpose = false) const {
    return (transpose ? Ht : H);
  }

  //! Get a specific column from the matrix
  Sparse_Vec<bin> get_col(int c) const { return H.get_col(c); }

  //! Get a specific row from the matrix
  Sparse_Vec<bin> get_row(int r) const { return Ht.get_col(r); }

  //! Get the number of variable nodes (number of columns)
  int get_nvar() const {
    it_assert_debug(H.cols() == nvar,
                    "LDPC_Parity::get_nvar(): Internal error");
    it_assert_debug(Ht.rows() == nvar,
                    "LDPC_Parity::get_nvar(): Internal error");
    return nvar;
  }

  //! Get the number of check nodes (number of rows)
  int get_ncheck() const {
    it_assert_debug(H.rows() == ncheck,
                    "LDPC_Parity::get_ncheck(): Internal error");
    it_assert_debug(Ht.cols() == ncheck,
                    "LDPC_Parity::get_ncheck(): Internal error");
    return ncheck;
  }

  //! Set element (i,j) of the parity check matrix to value
  void set(int i, int j, bin value);

  //! Get element (i,j) of the parity check matrix
  bin get(int i, int j) const {
    it_assert_debug(H(i, j) == Ht(j, i), "LDPC_Parity::get(): Internal error");
    return H(i, j);
  }

  //! Get element (i,j) of the parity check matrix
  bin operator()(int i, int j) const {
    it_assert_debug(H(i, j) == Ht(j, i),
                    "LDPC_Parity::operator(): Internal error");
    return H(i, j);
  }

  //! Display some information about the matrix
  virtual void display_stats() const;

  //! Get the code rate
  double get_rate() const {
    return (1.0 - static_cast<double>(ncheck) / nvar);
  }

  //! Import matrix from \c GF2mat_sparse_alist format
  void import_alist(const GF2mat_sparse_alist& H_alist);

  //! Export matrix to \c GF2mat_sparse_alist format
  GF2mat_sparse_alist export_alist() const;

  //! Load matrix from \c alist_file text file in alist format
  void load_alist(const std::string& alist_file);

  //! Save matrix to \c alist_file text file in alist format
  void save_alist(const std::string& alist_file) const;

protected:
  //! Flag that indicates proper initialization
  bool init_flag;
  //! Maximum node degree class can handle
  static const int Nmax = 200;
  //! The parity check matrix
  GF2mat_sparse H;
  //! The transposed parity check matrix
  GF2mat_sparse Ht;
  //! Number of variable nodes
  int nvar;
  //! Number of check nodes
  int ncheck;
  //! Actual number of ones in each column
  ivec sumX1;
  //! Actual number of ones in each row
  ivec sumX2;

  /*!
    \brief Check for cycles of length L

    This function implements a recursive routine to find loops. The
    function is mainly a tool for testing and debugging more sophisticated
    functions for graph manipulation.

    \param L length of cycles to look for

    \return The function returns the number of cycles found of length L or
    shorter. Cycles may be counted multiple times.

    \note This function can be very slow for large matrices. It is mainly
    intended as a debugging aid.
  */
  int check_for_cycles(int L) const;

  /*!
    \brief Check for connectivity between nodes

    This function examines whether the point (to_m, to_n) in the matrix
    can be reached from the point (from_m, from_n) using at most L steps.
    A recursive search is used.

    The function can be used to search for cycles in the matrix. To
    search for a cycle of length L, set from_m=to_m and from_n=to_n,
    and godir=0.

    \param from_m starting coordinate, row number
    \param to_m goal coordinate, row number
    \param from_n starting coordinate, column number
    \param to_n goal coordinate, row number
    \param g direction: 1=start going vertically, 2=start
    going horizontally
    \param L number of permitted steps

    \return
    - -1 or -3 : destination unreachable
    - -2       : meaningless search (started in a "0" point),
    - -4       : meaningless search
    - >=0      : destination reached with certain number of steps left

    \note This function can be very slow depending on the nature of
    the matrix.

    Note that smaller cycles may appear as longer cycles when using
    this method. More specifically, suppose the method is run with a
    given L and there are cycles in the neighborhood of
    (from_m,from_n) of length L-2 or less, but which do not contain
    (from_m,from_n). These shorter cycles may then also be reported
    as a cycle of length L.  For example, if one of the immediate
    neighbors of (from_m,from_n) is part of a cycle of length 4 this
    method will report that (from_m,from_n) is part of a cycle of
    length 6, if run with L=6. However, if it is known that there
    are no cycles of length L-2 or smaller, and
    check_connectivity(from_m,from_n,from_m,from_n,0,L) returns a
    non-negative value, then one will know with certainty that the
    point (from_m,from_n) is part of a cycle of length L. (This
    behavior is inherent to the simple recursive search used.)
  */
  int check_connectivity(int from_m, int from_n, int to_m, int to_n,
                         int g, int L) const;

  //      inline int get_cmax() const {   return (max(sumX1));  }
  //      inline int get_vmax() const {   return (max(sumX2));  }
  //      ivec get_coldegree() const;
  //      ivec get_rowdegree() const;
};


// ----------------------------------------------------------------------
// LDPC_Parity_Unstructured
// ----------------------------------------------------------------------

/*!
  \brief Pure abstract class for unstructured LDPC matrices

  This class provides a common set of methods for unstructured LDPC
  matrices. For unstructured codes the parity checks are distributed
  at random rather than according to a specific pattern, and the
  generation of a parity matrix can be viewed as drawing a random
  sample from an ensemble of graphs (matrices) that are described by
  a specific degree distribution.

  This class is used as base for the \c LDPC_Parity_Irregular and \c
  LDPC_Parity_Regular generator classes.

  \author Erik G. Larsson, Mattias Andersson and Adam Piatyszek
*/
class ITPP_EXPORT LDPC_Parity_Unstructured : public LDPC_Parity
{
public:
  //! Display some information about the matrix
  virtual void display_stats() const = 0;

  /*!
    \brief Remove cycles (loops) from unstructured parity check matrix.

    This function implements the cycle removal algorithm presented by
    McGowan and Williamson at the IT workshop 2003. The maximum girth of
    the graph that will be attempted is L. The algorithm is bound to
    remove all loops of length L, insofar this is possible. I.e., it does
    not terminate until it is impossible to remove more cycles by swapping
    two edges.

    \param L Target girth. For example, L=6 attempts to removes all
    4-cycles.
    \return The girth of the graph, i.e. the length of the shortest cycle.
    For example, a return value of 6 means that there are no 4-cycles.

    \note This algorithm can take a long time to run for large L or large
    graphs.
  */
  int cycle_removal_MGW(int L);

protected:
  //! Generate a random parity check matrix
  void generate_random_H(const ivec& C, const ivec& R, const ivec& cycopt);

  /*! \brief Compute target number of columns (C) and rows (R) with
      a specific number of ones.

    \param var_deg vector of variable degree distributions, from an edge
    perspective
    \param chk_deg vector of check degree distributions, from an edge
    perspective
    \param Nvar number of variable nodes
    \param C number of columns with a specific number of ones
    \param R number of rows with a specific number of ones

    The result is passed by reference and saved in C and R.
  */
  void compute_CR(const vec& var_deg, const vec& chk_deg, const int Nvar,
                  ivec &C, ivec &R);

};


// ----------------------------------------------------------------------
// LDPC_Parity_Irregular
// ----------------------------------------------------------------------

/*!
  \brief Irregular LDPC code generator class
  \author Erik G. Larsson, Mattias Andersson and Adam Piatyszek
*/
class ITPP_EXPORT LDPC_Parity_Irregular : public LDPC_Parity_Unstructured
{
public:
  //! Default constructor
  LDPC_Parity_Irregular() {}
  //! Constructor that invokes \c generate() method
  LDPC_Parity_Irregular(int Nvar, const vec& var_deg, const vec& chk_deg,
                        const std::string& method = "rand",
                        const ivec& options = "200 6");

  /*!
    \brief Generate an irregular LDPC code

    \param Nvar number of variable nodes
    \param var_deg vector of variable degree distributions, from an edge
    perspective
    \param chk_deg vector of check degree distributions, from an edge
    perspective
    \param method currently the only provided method is "rand" (see below)
    \param options Determines the level of matrix optimization.

    The "rand" method generates a fully unstructured random
    matrix. Some stochastic optimization is performed to avoid
    cycles. This optimization is controlled via the parameter \c
    options. In particular, the girth for the variable-node-degree-2
    part of the graph can be controlled via the parameter
    options(0). The girth for the rest of the nodes can be
    controlled via the parameter options(1). The recommended value
    for options is "200 6" for graphs of small size, and "100 4" for
    large graphs. The value "0 0" means no optimization. Double
    edges are always avoided.

    \note The "rand" method for graph construction provided in this
    function is not intended to provide the best possible error
    performance, but it is a simple, basic, fast tool that can
    easily be used to build relatively good irregular graphs. Better
    results in terms of performance and error-floor can be achieved
    by using other performance measures for the graph than cycle
    length (for irregular codes, the so-called ACE measure for
    example). Additionally, the "rand" method builds the graph edge
    by edge, with no possibility of removing an edge once it has
    been placed. Better results may be achieved by building the
    graphs by placing pairs or n-tuples of edges at time, for
    example, column by column.

    \note Alternative (user-defined) methods for code generation can
    be implemented by inheriting \c LDPC_Parity_Irregular.
  */
  void generate(int Nvar, const vec& var_deg, const vec& chk_deg,
                const std::string& method = "rand",
                const ivec& options = "200 6");

  //! Display some information about the matrix
  void display_stats() const { LDPC_Parity::display_stats(); }
};


// ----------------------------------------------------------------------
// LDPC_Parity_Regular
// ----------------------------------------------------------------------

/*!
  \brief Regular LDPC code generator class
  \author Erik G. Larsson, Mattias Andersson and Adam Piatyszek
*/
class ITPP_EXPORT LDPC_Parity_Regular : public LDPC_Parity_Unstructured
{
public:
  //! Default constructor
  LDPC_Parity_Regular() {}
  //! Constructor that invokes \c generate() method
  LDPC_Parity_Regular(int Nvar, int k, int l,
                      const std::string& method = "rand",
                      const ivec& options = "200 6");

  /*!
    \brief Generate a (k,l) regular LDPC code

    \param Nvar  number of variable nodes
    \param k number of ones per column
    \param l number of ones per row
    \param method See \c LDPC_Parity_Irregular::generate()
    \param options See \c LDPC_Parity_Irregular::generate()

    \note Alternative (user-defined) methods for code generation can
    be implemented by inheriting \c LDPC_Parity_Regular.

    \note In some cases it may be impossible to construct a
    perfectly regular parity check matrix with the desired
    (k,l,Nvar) parameters. The degree distribution will then be
    automatically adjusted so that the matrix can be constructed and
    in this event the resulting code will not be perfectly regular.
  */
  void generate(int Nvar, int k, int l,
                const std::string& method = "rand",
                const ivec& options = "200 6");

  //! Display some information about the matrix
  void display_stats() const { LDPC_Parity::display_stats(); }
};

// ----------------------------------------------------------------------
// BLDPC_Parity
// ----------------------------------------------------------------------

/*!
  \brief Block LDPC code parity-check matrix
  \author Adam Piatyszek

  Block LDPC Codes (B-LDPC) are a special class of Quasi-Cyclic LDPC Codes
  (QC-LDPC). Linear encoding properties and memory efficiency are their
  main advantages.

  B-LDPC codes' parity-check matrix is constructed from so-called base
  matrix by expansion of each single value with a zero matrix or
  cyclic-shifted identity matrix of size Z x Z, where Z is an expansion
  factor. Each non negative value of the base matrix represents the cyclic
  shift value, e.g. 0 means that the identity matrix should not be
  shifted; 6 means than the identity matrix should be circularly
  right-shifted by (6 mod Z). Negative values (usually -1) represents zero
  matrix of size Z x Z.

  Please refer to [MYK05] for more details.

  References:

  [MYK05] S. Myung, K. Yang, J. Kim, "Quasi-Cyclic LDPC Codes for Fast
  Encoding", IEEE Trans. on Inform. Theory, vol. 51, no. 8, August 2005
*/
class ITPP_EXPORT BLDPC_Parity : public LDPC_Parity
{
public:
  //! Default constructor
  BLDPC_Parity(): LDPC_Parity(), Z(0), H_b(), H_b_valid(false) {}

  //! Construct BLDPC matrix from base matrix
  BLDPC_Parity(const imat &base_matrix, int exp_factor);

  //! Construct BLDPC matrix parsing base matrix from a text file
  BLDPC_Parity(const std::string &filename, int exp_factor);

  //! Create BLDPC matrix from base matrix by expansion
  void expand_base(const imat &base_matrix, int exp_factor);

  //! Get expansion factor
  int get_exp_factor() const;

  //! Get base matrix
  imat get_base_matrix() const;

  //! Verify initialisation
  bool is_valid() const { return H_b_valid && init_flag; }

  //! Set expansion factor
  void set_exp_factor(int exp_factor);

  //! Load base matrix from a text file
  void load_base_matrix(const std::string &filename);

  //! Save base matrix to a text file
  void save_base_matrix(const std::string &filename) const;

private:
  int Z;   //!< Expansion factor
  imat H_b;   //!< Base matrix
  bool H_b_valid;  //!< Indicates that base matrix is valid

  //! Calculate base matrix from parity matrix \c H and \c Z
  void calculate_base_matrix();
};


// ----------------------------------------------------------------------
// LDPC_Generator
// ----------------------------------------------------------------------

/*!
  \brief LDPC Generator pure virtual base class

  This is an abstract base class for LDPC generators. It provides a
  generic interface that is used by the \c LDPC_Code class. The \c
  LDPC_Generator class can be inherited to create a new type of
  generator. In addition to the default constructor, the following
  three pure virtual methods need to be defined in a derived class:
  \c encode(), \c save() and \c load().

  See the \c LDPC_Generator_Systematic class for an example
  implementation of a derived generator.

  \author Adam Piatyszek
*/
class ITPP_EXPORT LDPC_Generator
{
  friend class LDPC_Code;
public:
  //! Default constructor
  LDPC_Generator(const std::string& type_in = ""): init_flag(false),
      type(new std::string(type_in)) {}
  //! Virtual destructor
  virtual ~LDPC_Generator() {delete type;}

  //! Generator specific encode function
  virtual void encode(const bvec &input, bvec &output) = 0;

  //! Return generator type
  std::string get_type() const { return *type; }

  //! Mark generator as initialized
  void mark_initialized() {init_flag = true;};

  //! Check if generator is initialized
  bool is_initialized() const {return init_flag;};
private:
  bool init_flag;  //!< True if generator is initialized
  std::string* type;  //!< Generator type
protected:
  //! Save generator data to a file
  virtual void save(const std::string& filename) const = 0;
  //! Read generator data from a file
  virtual void load(const std::string& filename) = 0;
};


// ----------------------------------------------------------------------
// LDPC_Generator_Systematic
// ----------------------------------------------------------------------

/*!
  \brief Systematic LDPC Generator class

  A generator is basically a dense GF(2) matrix with a constructor
  that can create the generator matrix from a parity check matrix.

  \note Please refer to the tutorials for examples of how to use this
  class.

  \author Erik G. Larsson and Adam Piatyszek
*/
class ITPP_EXPORT LDPC_Generator_Systematic : public LDPC_Generator
{
public:
  //! Default constructor
  LDPC_Generator_Systematic(): LDPC_Generator("systematic"), G() {}
  //! Parametrized constructor
  LDPC_Generator_Systematic(LDPC_Parity* const H,
                            bool natural_ordering = false,
                            const ivec& ind = "");

  //! Virtual destructor
  virtual ~LDPC_Generator_Systematic() {}

  //! Generator specific encode function
  virtual void encode(const bvec &input, bvec &output);

  /*!
    \brief Construct systematic generator matrix

    This function constructs a systematic generator matrix from a parity
    check matrix (\c LDPC_Parity). The order of the columns is
    randomized unless otherwise requested via the \c natural_ordering
    parameter.

    \param H A pointer to the parity check matrix \c H

    \param natural_ordering If this flag is true, the columns are not
    randomly reordered (no interleaving applied), i.e. the function tries
    so far as possible to avoid permuting columns at all. The permutation
    takes place only if absolutely necessary.

    \param ind Vector of column indices (variable nodes) to avoid in the
    systematic part. If this vector is supplied, the algorithm then avoids
    to use variable nodes corresponding to this index vector as systematic
    bits. This can be used for example to avoid using variable nodes of a
    low degree as systematic bits. This parameter is ignored if the
    natural_ordering flag is set.

    \return This function returns the permutation vector \c P on the
    variable nodes that was necessary to construct a full rank generator.
    This is the permutation which effectively has been applied to the
    columns of \c H. The k-th column of the original \c H is the \c P(k)-th
    column of the rearranged \c H.

    \note This function modifies the parity check matrix \c H. Its columns
    may be sorted so that it gets the structure \f$ H = [H_{1} H_{2}] \f$
    where \f$ H_{2} \f$ is square and invertible. The computed generator
    then satisfies \f$ [H_{1} H_{2}][I; G'] = 0 \f$.
  */
  ivec construct(LDPC_Parity* const H, bool natural_ordering = false,
                 const ivec& ind = "");

protected:
  //! Save generator data to a file
  virtual void save(const std::string& filename) const;
  //! Read generator data from a file
  virtual void load(const std::string& filename);

private:
  GF2mat G; // the matrix is stored in transposed form
};


// ----------------------------------------------------------------------
// BLDPC_Generator
// ----------------------------------------------------------------------

/*!
  \brief Block LDPC Generator class
  \author Adam Piatyszek

  \note Please refer to the BLDPC_Parity class description for
  information on B-LDPC codes
*/
class ITPP_EXPORT BLDPC_Generator : public LDPC_Generator
{
public:
  //! Default constructor
  BLDPC_Generator(const std::string type = "BLDPC"):
      LDPC_Generator(type), H_enc(), N(0), M(0), K(0), Z(0) {}
  //! Parametrized constructor
  BLDPC_Generator(const BLDPC_Parity* const H,
                  const std::string type = "BLDPC");

  //! Get expansion factor
  int get_exp_factor() const { return Z; }

  //! Generator specific encode function
  void encode(const bvec &input, bvec &output);

  //! Construct the BLDPC generator
  void construct(const BLDPC_Parity* const H);

protected:
  //! Save generator data to a file
  void save(const std::string &filename) const;
  //! Read generator data from a file
  void load(const std::string &filename);

  GF2mat H_enc;  //!< Preprocessed parity check matrix
  int N;   //!< Codeword length = H_enc.cols()
  int M;       //!< Number of parity check bits = H_enc.rows()
  int K;   //!< Number of information bits = N-M
  int Z;   //!< Expansion factor
};


// ----------------------------------------------------------------------
// LDPC_Code
// ----------------------------------------------------------------------

/*!
  \ingroup fec
  \brief Low-density parity check (LDPC) codec

  This class provides the functionality for encoding and decoding of LDPC
  codes defined via \c LDPC_Parity and \c LDPC_Generator classes.

  LDPC codecs are constructed from parity check and generator
  matrices. Since the procedure of constructing the codec can be
  time-consuming (for example, due to optimization of the parity
  matrix and computation of the generator matrix), codecs can be
  saved to a file for later use. This class provides functionality
  and a special file format (the file format is designed to optimize
  the operation of the decoder) to do this. Some examples of load
  and save operations follow:

  Saving a codec without generator matrix:
  \code
  // assume the parity matrix is already defined and stored in H
  LDPC_Code C(&H);
  C.save_code("filename.it");
  \endcode

  Saving a codec with generator matrix (for the example of systematic generator):
  \code
  // assume the parity matrix is already defined and stored in H
  LDPC_Generator_Systematic G(&H); // create generator
  LDPC_Code C(&H, &G);
  C.save_code("filename.it");
  \endcode

  Loading a codec without a generator:
  \code
  LDPC_Code("filename.it");
  \endcode

  Loading a codec with a generator (systematic in this example):
  \code
  LDPC_Generator_Systematic G; // the generator object must be created first
  LDPC_Code("filename.it", &G);
  \endcode

  \note Please refer to the tutorials \ref ldpc_gen_codes and \ref
  ldpc_bersim_awgn for extensive examples of how to use LDPC codes.

  \note For issues relating to the accuracy of LLR computations,
  please see the documentation of \c LLR_calc_unit

  \author Erik G. Larsson, Adam Piatyszek and Gorka Prieto (decoder improvements)
*/
class ITPP_EXPORT LDPC_Code : public Channel_Code
{
public:
  //! Default constructor
  LDPC_Code();

  /*!
    \brief Constructor, from a parity check matrix and optionally a
    generator.

    This constructor simply calls \c set_code().

    \param H The parity check matrix
    \param G A pointer to the optional generator object
    \param perform_integrity_check if true, then check that the parity and generator matrices are consistent
  */
    LDPC_Code(const LDPC_Parity* const H, LDPC_Generator* const G = 0, 
	      bool perform_integrity_check = true);

  /*!
    \brief Constructor, from a saved file

    This constructor simply calls \c load_code().
  */
  LDPC_Code(const std::string& filename, LDPC_Generator* const G = 0);

  //! Destructor
  virtual ~LDPC_Code() {delete dec_method;}


  /*!
    \brief Set the codec, from a parity check matrix and optionally a
    generator

    \param H The parity check matrix
    \param G A pointer to the optional generator object
    \param perform_integrity_check if true, then check that the parity and generator matrices are consistent
  */
  void set_code(const LDPC_Parity* const H, LDPC_Generator* const G = 0, 
		bool perform_integrity_check = true);

  /*!
    \brief Set the codec, by reading from a saved file

    The file format is defined in the source code. LDPC codecs can
    be saved with the function \c save_code().

    \param filename Name of the file where the codec is stored
    \param G A pointer to the optional generator object

    \note If \c G points at \c 0 (default), the generator data is not
    read from the saved file. This means that the encoding can not be
    performed.
  */
  void load_code(const std::string& filename, LDPC_Generator* const G = 0);

  /*!
    \brief Save the codec to a file

    \param filename Name of the file where to store the codec

    \note The decoder parameters (\c max_iters, \c syndr_check_each_iter,
    \c syndr_check_at_start and \c llrcalc) are not saved to a file.
  */
  void save_code(const std::string& filename) const;


  /*!
    \brief Set the decoding method

    Currently only a belief propagation method ("BP" or "bp") is
    supported.

    \note The default method set in the class constructors is "BP".
  */
  void set_decoding_method(const std::string& method);

  /*!
    \brief Set the decoding loop exit conditions

    \param max_iters Maximum number of the decoding iterations
    \param syndr_check_each_iter If true, break the decoding loop as soon
    as valid codeword is found. Recommended value: \c true.
    \param syndr_check_at_start If true, perform a syndrome check before
    entering the decoding loop. If LLRin corresponds to a valid codeword,
    set LLRout = LLRin. Recommended value: \c false.

    \note The default values set in the class constructor are: "50",
    "true" and "false", respectively.
  */
  void set_exit_conditions(int max_iters,
                           bool syndr_check_each_iter = true,
                           bool syndr_check_at_start = false);

  //! Set LLR calculation unit
  void set_llrcalc(const LLR_calc_unit& llrcalc);


  // ------------ Encoding  ---------------------

  /*!
    \brief Encode codeword

    This is a wrapper functions which calls a proper implementation from
    the \c LDPC_Generator object.

    \param input Vector of \c ncheck input bits
    \param output Vector of \c nvar output bits
  */
  virtual void encode(const bvec &input, bvec &output);
  //! \brief Encode codeword
  virtual bvec encode(const bvec &input);


  // ------------ Decoding  ---------------------

  //! Inherited from the base class - not implemented here
  virtual void decode(const bvec &, bvec &) {
    it_error("LDPC_Code::decode(): Hard input decoding not implemented");
  }
  //! Inherited from the base class - not implemented here
  virtual bvec decode(const bvec &) {
    it_error("LDPC_Code::decode(): Hard input decoding not implemented");
    return bvec();
  }

  //! This function outputs systematic bits of the decoded codeword
  virtual void decode(const vec &llr_in, bvec &syst_bits);
  //! This function outputs systematic bits of the decoded codeword
  virtual bvec decode(const vec &llr_in);

  //! This function is a wrapper for \c bp_decode()
  void decode_soft_out(const vec &llr_in, vec &llr_out);
  //! This function is a wrapper for \c bp_decode()
  vec decode_soft_out(const vec &llr_in);

  /*! \brief Belief propagation decoding.

    This function implements the sum-product message passing decoder
    (Pearl's belief propagation) using LLR values as messages.  A
    fast update mechanism is used for nodes with large degrees.

    \param LLRin  vector of \c nvar input LLR values
    \param LLRout vector of \c nvar output LLR values

    If the decoder converged to a valid codeword, the function
    returns the number of iterations performed.  Otherwise the
    function returns the number of iterations performed but with
    negative sign.

    One can use \c set_exit_conditions() method to change the number of
    decoding iterations and related parameters parameters. The decoding
    function uses \c LLR_calc_unit to implement table-lookup for the
    Boxplus operator. By setting the parameters of the \c LLR_calc_unit
    provided in \c set_llrcalc(), one can change the resolution, for
    example to use a logmax approximation. See the documentation of \c
    LLR_calc_unit for details on how to do this.
  */
  int bp_decode(const QLLRvec &LLRin, QLLRvec &LLRout);

  /*! \brief Syndrome check, on QLLR vector

    This function performs a syndrome check on a softbit (LLR
    vector). The function returns true for a valid codeword, false
    else.

    \param LLR LLR-vector to check
  */
  bool syndrome_check(const QLLRvec &LLR) const;

  //! Syndrome check, on bit vector
  bool syndrome_check(const bvec &b) const;

  /*! \brief Soft syndrome check

    This function checks all parity constraints and computes for each
    one the posterior probability that it is satisfied. The result is
    a vector, whose i:th element is given by \f[ \mbox{Boxplus}_j LLR_{p_{ij}}
    \f] where \f[ p_{ij} \f] is the index of the j:th nonzero element
    of the i:th row of the code's parity check matrix.
   */
  QLLRvec soft_syndrome_check(const QLLRvec &LLR) const;

  // ------------ Basic information gathering functions ------

  //! Get the coderate
  double get_rate() const {
    return (1.0 - static_cast<double>(ncheck) / nvar);
  }

  //! Get the number of variable nodes
  int get_nvar() const { return nvar; }

  //! Get the number of check nodes
  int get_ncheck() const { return ncheck; }

  //! Get the number of information bits per codeword
  int get_ninfo() const { return nvar - ncheck; }

  //! Return the decoding method
  std::string get_decoding_method() const { return *dec_method; }

  //! Get the maximum number of iterations of the decoder
  int get_nrof_iterations() const { return max_iters; }

  //! Get LLR calculation unit used in decoder
  LLR_calc_unit get_llrcalc() const { return llrcalc; }

  //! Print some properties of the codec in plain text
  friend ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const LDPC_Code &C);

protected:
  //! Function to compute decoder parameterization
  void decoder_parameterization(const LDPC_Parity* const H);

  //! Function to check the integrity of the parity check matrix and generator
  void integrity_check();

  //! Initialize decoder
  void setup_decoder();

private:
  bool H_defined;  //!< true if parity check matrix is defined
  bool G_defined;  //!< true if generator is defined
  int nvar;   //!< Number of variable nodes
  int ncheck;   //!< Number of check nodes
  LDPC_Generator *G;  //!< Generator object pointer

  // decoder parameters
  std::string* dec_method; //!< Decoding method
  int max_iters;  //!< Maximum number of iterations
  bool psc;   //!< check syndrom after each iteration
  bool pisc;   //!< check syndrom before first iteration
  LLR_calc_unit llrcalc; //!< LLR calculation unit
  // Parity check matrix parameterization
  ivec C, V, sumX1, sumX2, iind, jind;

  // temporary storage for decoder (memory allocated when codec defined)
  QLLRvec mvc, mcv;

  //! Maximum check node degree that the class can handle
  static const int max_cnd = 200;
};


/*!
  \relatesalso LDPC_Code
  \brief Print some properties of the LDPC codec in plain text.
*/
ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const LDPC_Code &C);
}

#endif