/usr/include/itpp/base/svec.h is in libitpp-dev 4.3.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 | /*!
* \file
* \brief Sparse Vector Class definitions
* \author Tony Ottosson and Tobias Ringstrom
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef SVEC_H
#define SVEC_H
#include <itpp/base/vec.h>
#include <itpp/base/math/min_max.h>
#include <cstdlib>
#include <itpp/itexports.h>
namespace itpp
{
// Declaration of class Vec
template <class T> class Vec;
// Declaration of class Sparse_Vec
template <class T> class Sparse_Vec;
// ----------------------- Sparse_Vec Friends -------------------------------
//! v1+v2 where v1 and v2 are sparse vector
template <class T>
Sparse_Vec<T> operator+(const Sparse_Vec<T> &v1, const Sparse_Vec<T> &v2);
//! v1*v2 where v1 and v2 are sparse vectors
template <class T>
T operator*(const Sparse_Vec<T> &v1, const Sparse_Vec<T> &v2);
//! v1*v2 where v1 is a sparse vector and v2 is a dense vector
template <class T>
T operator*(const Sparse_Vec<T> &v1, const Vec<T> &v2);
//! v1*v2 where v1 is a dense vector and v2 is a sparse vector
template <class T>
T operator*(const Vec<T> &v1, const Sparse_Vec<T> &v2);
//! Elementwise multiplication of two sparse vectors returning a sparse vector
template <class T>
Sparse_Vec<T> elem_mult(const Sparse_Vec<T> &v1, const Sparse_Vec<T> &v2);
//! Elementwise multiplication of a sparse vector and a dense vector returning a dense vector
template <class T>
Vec<T> elem_mult(const Sparse_Vec<T> &v1, const Vec<T> &v2);
//! Elementwise multiplication of a sparse vector and a dense vector returning a sparse vector
template <class T>
Sparse_Vec<T> elem_mult_s(const Sparse_Vec<T> &v1, const Vec<T> &v2);
//! Elementwise multiplication of a dense vector and a sparse vector returning a dense vector
template <class T>
Vec<T> elem_mult(const Vec<T> &v1, const Sparse_Vec<T> &v2);
//! Elementwise multiplication of a dense vector and a sparse vector returning a sparse vector
template <class T>
Sparse_Vec<T> elem_mult_s(const Vec<T> &v1, const Sparse_Vec<T> &v2);
namespace details
{
//this template selects appropriate type for Eps value used to remove small elements from
//sparse containers
template <typename NumT> struct Sparse_Eps_Type_Selector;
template <> struct Sparse_Eps_Type_Selector<double> {typedef double eps_type;};
template <> struct Sparse_Eps_Type_Selector<std::complex<double> > {typedef double eps_type;};
template <> struct Sparse_Eps_Type_Selector<int> {typedef int eps_type;};
template <> struct Sparse_Eps_Type_Selector<short> {typedef short eps_type;};
template <> struct Sparse_Eps_Type_Selector<itpp::bin> {typedef int eps_type;};
}
/*!
\brief Templated sparse vector class
\author Tony Ottosson and Tobias Ringstrom
A sparse vector is a vector where most elements are zero. The
maximum number of none-zero elements is a parameter to the
constructor. The elements are stored in random order, i.e. they
are not sorted.
*/
template <class T>
class Sparse_Vec
{
public:
//! Default constructor
Sparse_Vec();
/*!
\brief Initiate an empty sparse vector
\param sz Size of the sparse vector (i.e. maximum index is (\c sz - 1))
\param data_init Maximum number of non-zero elements in the sparse vector (default value 200)
*/
Sparse_Vec(int sz, int data_init = 200);
/*!
\brief Initiate a new sparse vector.
\param v The elements of \c v are copied into the new sparse vector
*/
Sparse_Vec(const Sparse_Vec<T> &v);
/*!
\brief Initiate a new sparse vector from a dense vector.
\param v The elements of \c v are copied into the new sparse vector
*/
Sparse_Vec(const Vec<T> &v);
/*!
\brief Initiate a new sparse vector from a dense vector. Elements of \c v larger than \c epsilon are copied into the new sparse vector.
\note If the type T is complex<double>, then the elements of \c v larger than \c abs(epsilon) are copied into the new sparse vector.
*/
Sparse_Vec(const Vec<T> &v, T epsilon);
//! Destructor
~Sparse_Vec();
/*!
\brief Set the size \c sz of the sparse vector. Default value \c data_init=-1 \c => allocated size for the data is not changed.
\param sz Size of the sparse vector (i.e. maximum index is (\c sz - 1))
\param data_init Maximum number of non-zero elements in the sparse vector (default value -1 \c => allocated size for the data is not changed)
*/
void set_size(int sz, int data_init = -1);
//! Returns the size of the sparse vector
int size() const { return v_size; }
//! Number of non-zero elements in the sparse vector
inline int nnz() {
if (check_small_elems_flag) {
remove_small_elements();
}
return used_size;
}
//! Returns the density of the sparse vector: (number of non-zero elements)/(size of the vector)
double density();
//! Set that all elements smaller than \a epsilon should be set to zero.
void set_small_element(const T& epsilon);
/*!
Removes all elements that are smaller than \a epsilon from the non-zero elements.
\note The small element \a epsilon can be set by the member function set_small_element. If no small value is set, the default value is always \c epsilon=0.
*/
void remove_small_elements();
/*!
\brief Set the maximum number of non-zero elements to \c new_size
\param new_size The new maximum number of non-zero elements.
*/
void resize_data(int new_size);
//! Set the maximum number of non-zero elements equal to the actual number of non-zero elements
void compact();
//! Returns a full, dense vector in \c v
void full(Vec<T> &v) const;
//! Returns a full, dense vector
Vec<T> full() const;
//! Returns the element with index \c i
T operator()(int i) const;
//! Set element \c i equal to \c v
void set(int i, T v);
//! Set the elements of the sparse vector with indices \c index_vec to the values in \c v
void set(const ivec &index_vec, const Vec<T> &v);
//! Set a new element with index \c i equal to \c v
void set_new(int i, T v);
//! Set new elements with indices \c index_vec equal to the values in \c v (no check whether the same index is used several times)
void set_new(const ivec &index_vec, const Vec<T> &v);
//! Add element \c i with \c v
void add_elem(const int i, const T v);
//! Add \c v to the elements specified by \c index_vec with \c v
void add(const ivec &index_vec, const Vec<T> &v);
//! Set the sparse vector to the all zero vector (removes all non-zero elements)
void zeros();
//! Set the i-th element to zero (i.e. clear that element if it contains a non-zero value)
void zero_elem(const int i);
//! Clear all non-zero elements of the sparse vector
void clear();
//! Clear the i-th element (if it contains a non-zero value)
void clear_elem(const int i);
/*!
\brief Extract the reference to the p-th non-zero data element
*/
inline void get_nz_data(int p, T& data_out) {
if (check_small_elems_flag) {
remove_small_elements();
}
data_out = data[p];
}
//! Returns the p-th non-zero data element
inline T get_nz_data(int p) {
if (check_small_elems_flag) {
remove_small_elements();
}
return data[p];
}
//! Returns the vector index of the p-th non-zero element
inline int get_nz_index(int p) {
if (check_small_elems_flag) {
remove_small_elements();
}
return index[p];
}
//! Returns the p-th non-zero value in \c dat and the corresponding vector index in \c idx
inline void get_nz(int p, int &idx, T &dat) {
if (check_small_elems_flag) {
remove_small_elements();
}
idx = index[p];
dat = data[p];
}
//! Return the indices of non-zero values
ivec get_nz_indices();
//! Return sparse subvector from index \c i1 to index \c i2
Sparse_Vec<T> get_subvector(int i1, int i2) const;
//! Returns the sum of all values squared
T sqr() const;
//! Assign sparse vector the value and length of the sparse vector \c v
void operator=(const Sparse_Vec<T> &v);
//! Assign sparse vector the value and length of the dense vector \c v
void operator=(const Vec<T> &v);
//! Returns the sign inverse of all elements in the sparse vector
Sparse_Vec<T> operator-() const;
//! Compare two sparse vectors. False if wrong sizes or different values
bool operator==(const Sparse_Vec<T> &v);
//! Add sparse vector \c v to all non-zero elements of the sparse vector
void operator+=(const Sparse_Vec<T> &v);
//! Add vector \c v to all non-zero elements of the sparse vector
void operator+=(const Vec<T> &v);
//! Subtract sparse vector \c v from all non-zero elements of the sparse vector
void operator-=(const Sparse_Vec<T> &v);
//! Subtract vector \c v from all non-zero elements of the sparse vector
void operator-=(const Vec<T> &v);
//! Multiply the scalar \c v to all non-zero elements of the sparse vector
void operator*=(const T &v);
//! Divide all non-zero elements of the sparse vector with the scalar \c v
void operator/=(const T &v);
//! Addition v1+v2 where v1 and v2 are sparse vector
friend Sparse_Vec<T> operator+<>(const Sparse_Vec<T> &v1, const Sparse_Vec<T> &v2);
//! Scalar product v1*v2 where v1 and v2 are sparse vectors
friend T operator*<>(const Sparse_Vec<T> &v1, const Sparse_Vec<T> &v2);
//! Scalar product v1*v2 where v1 is a sparse vector and v2 is a dense vector
friend T operator*<>(const Sparse_Vec<T> &v1, const Vec<T> &v2);
//! Scalar product v1*v2 where v1 is a dense vector and v2 is a sparse vector
friend T operator*<>(const Vec<T> &v1, const Sparse_Vec<T> &v2);
//! Element wise multiplication of two sparse vectors
friend Sparse_Vec<T> elem_mult <>(const Sparse_Vec<T> &v1, const Sparse_Vec<T> &v2);
//! Element wise multiplication of a sparse vector and a dense vector
friend Vec<T> elem_mult <>(const Sparse_Vec<T> &v1, const Vec<T> &v2);
//! Element wise multiplication of a sparse vector and a dense vector returning a sparse vector
friend Sparse_Vec<T> elem_mult_s <>(const Sparse_Vec<T> &v1, const Vec<T> &v2);
//! Element wise multiplication of a a dense vector and a sparse vector
friend Vec<T> elem_mult <>(const Vec<T> &v1, const Sparse_Vec<T> &v2);
//! Element wise multiplication of a a dense vector and a sparse vector returning a sparse vector
friend Sparse_Vec<T> elem_mult_s <>(const Vec<T> &v1, const Sparse_Vec<T> &v2);
private:
void init();
void alloc();
void free();
int v_size, used_size, data_size;
T *data;
int *index;
typename details::Sparse_Eps_Type_Selector<T>::eps_type eps;
bool check_small_elems_flag;
};
/*!
\relates Sparse_Vec
\brief Type definition of an integer sparse vector
*/
typedef Sparse_Vec<int> sparse_ivec;
/*!
\relates Sparse_Vec
\brief Type definition of a double sparse vector
*/
typedef Sparse_Vec<double> sparse_vec;
/*!
\relates Sparse_Vec
\brief Type definition of a complex<double> sparse vector
*/
typedef Sparse_Vec<std::complex<double> > sparse_cvec;
// ----------------------- Implementation starts here --------------------------------
template <class T>
void Sparse_Vec<T>::init()
{
v_size = 0;
used_size = 0;
data_size = 0;
data = 0;
index = 0;
eps = 0;
check_small_elems_flag = true;
}
template <class T>
void Sparse_Vec<T>::alloc()
{
if (data_size != 0) {
data = new T[data_size];
index = new int[data_size];
}
}
template <class T>
void Sparse_Vec<T>::free()
{
delete [] data;
data = 0;
delete [] index;
index = 0;
}
template <class T>
Sparse_Vec<T>::Sparse_Vec()
{
init();
}
template <class T>
Sparse_Vec<T>::Sparse_Vec(int sz, int data_init)
{
init();
v_size = sz;
used_size = 0;
data_size = data_init;
alloc();
}
template <class T>
Sparse_Vec<T>::Sparse_Vec(const Sparse_Vec<T> &v)
{
init();
v_size = v.v_size;
used_size = v.used_size;
data_size = v.data_size;
eps = v.eps;
check_small_elems_flag = v.check_small_elems_flag;
alloc();
for (int i = 0; i < used_size; i++) {
data[i] = v.data[i];
index[i] = v.index[i];
}
}
template <class T>
Sparse_Vec<T>::Sparse_Vec(const Vec<T> &v)
{
init();
v_size = v.size();
used_size = 0;
data_size = std::min(v.size(), 10000);
alloc();
for (int i = 0; i < v_size; i++) {
if (v(i) != T(0)) {
if (used_size == data_size)
resize_data(data_size*2);
data[used_size] = v(i);
index[used_size] = i;
used_size++;
}
}
compact();
}
template <class T>
Sparse_Vec<T>::Sparse_Vec(const Vec<T> &v, T epsilon)
{
init();
v_size = v.size();
used_size = 0;
data_size = std::min(v.size(), 10000);
eps = std::abs(epsilon);
alloc();
for (int i = 0; i < v_size; i++) {
if (std::abs(v(i)) > eps) {
if (used_size == data_size)
resize_data(data_size*2);
data[used_size] = v(i);
index[used_size] = i;
used_size++;
}
}
compact();
}
template <class T>
Sparse_Vec<T>::~Sparse_Vec()
{
free();
}
template <class T>
void Sparse_Vec<T>::set_size(int new_size, int data_init)
{
v_size = new_size;
used_size = 0;
if (data_init != -1) {
free();
data_size = data_init;
alloc();
}
}
template <class T>
double Sparse_Vec<T>::density()
{
if (check_small_elems_flag) {
remove_small_elements();
}
//return static_cast<double>(used_size) / v_size;
return double(used_size) / v_size;
}
template <class T>
void Sparse_Vec<T>::set_small_element(const T& epsilon)
{
eps = std::abs(epsilon);
remove_small_elements();
}
template <class T>
void Sparse_Vec<T>::remove_small_elements()
{
int i;
int nrof_removed_elements = 0;
//Remove small elements
for (i = 0;i < used_size;i++) {
if (std::abs(data[i]) <= eps) {
nrof_removed_elements++;
}
else if (nrof_removed_elements > 0) {
data[i-nrof_removed_elements] = data[i];
index[i-nrof_removed_elements] = index[i];
}
}
//Set new size after small elements have been removed
used_size -= nrof_removed_elements;
//Set the flag to indicate that all small elements have been removed
check_small_elems_flag = false;
}
template <class T>
void Sparse_Vec<T>::resize_data(int new_size)
{
it_assert(new_size >= used_size, "Sparse_Vec<T>::resize_data(int new_size): New size is to small");
if (new_size != data_size) {
if (new_size == 0)
free();
else {
T *tmp_data = data;
int *tmp_pos = index;
data_size = new_size;
alloc();
for (int p = 0; p < used_size; p++) {
data[p] = tmp_data[p];
index[p] = tmp_pos[p];
}
delete [] tmp_data;
delete [] tmp_pos;
}
}
}
template <class T>
void Sparse_Vec<T>::compact()
{
if (check_small_elems_flag) {
remove_small_elements();
}
resize_data(used_size);
}
template <class T>
void Sparse_Vec<T>::full(Vec<T> &v) const
{
v.set_size(v_size);
v = T(0);
for (int p = 0; p < used_size; p++)
v(index[p]) = data[p];
}
template <class T>
Vec<T> Sparse_Vec<T>::full() const
{
Vec<T> r(v_size);
full(r);
return r;
}
// This is slow. Implement a better search
template <class T>
T Sparse_Vec<T>::operator()(int i) const
{
it_assert_debug(i >= 0 && i < v_size, "The index of the element is out of range");
bool found = false;
int p;
for (p = 0; p < used_size; p++) {
if (index[p] == i) {
found = true;
break;
}
}
return found ? data[p] : T(0);
}
template <class T>
void Sparse_Vec<T>::set(int i, T v)
{
it_assert_debug(i >= 0 && i < v_size, "The index of the element is out of range");
bool found = false;
bool larger_than_eps;
int p;
for (p = 0; p < used_size; p++) {
if (index[p] == i) {
found = true;
break;
}
}
larger_than_eps = (std::abs(v) > eps);
if (found && larger_than_eps)
data[p] = v;
else if (larger_than_eps) {
if (used_size == data_size)
resize_data(data_size*2 + 100);
data[used_size] = v;
index[used_size] = i;
used_size++;
}
//Check if the stored element is smaller than eps. In that case it should be removed.
if (std::abs(v) <= eps) {
remove_small_elements();
}
}
template <class T>
void Sparse_Vec<T>::set_new(int i, T v)
{
it_assert_debug(v_size > i, "The index of the element exceeds the size of the sparse vector");
//Check that the new element is larger than eps!
if (std::abs(v) > eps) {
if (used_size == data_size)
resize_data(data_size*2 + 100);
data[used_size] = v;
index[used_size] = i;
used_size++;
}
}
template <class T>
void Sparse_Vec<T>::add_elem(const int i, const T v)
{
bool found = false;
int p;
it_assert_debug(v_size > i, "The index of the element exceeds the size of the sparse vector");
for (p = 0; p < used_size; p++) {
if (index[p] == i) {
found = true;
break;
}
}
if (found)
data[p] += v;
else {
if (used_size == data_size)
resize_data(data_size*2 + 100);
data[used_size] = v;
index[used_size] = i;
used_size++;
}
check_small_elems_flag = true;
}
template <class T>
void Sparse_Vec<T>::add(const ivec& index_vec, const Vec<T>& v)
{
bool found = false;
int i, p, q;
int nrof_nz = v.size();
it_assert_debug(v_size > max(index_vec), "The indices exceeds the size of the sparse vector");
//Elements are added if they have identical indices
for (q = 0; q < nrof_nz; q++) {
i = index_vec(q);
for (p = 0; p < used_size; p++) {
if (index[p] == i) {
found = true;
break;
}
}
if (found)
data[p] += v(q);
else {
if (used_size == data_size)
resize_data(data_size*2 + 100);
data[used_size] = v(q);
index[used_size] = i;
used_size++;
}
found = false;
}
check_small_elems_flag = true;
}
template <class T>
void Sparse_Vec<T>::zeros()
{
used_size = 0;
check_small_elems_flag = false;
}
template <class T>
void Sparse_Vec<T>::zero_elem(const int i)
{
bool found = false;
int p;
it_assert_debug(v_size > i, "The index of the element exceeds the size of the sparse vector");
for (p = 0; p < used_size; p++) {
if (index[p] == i) {
found = true;
break;
}
}
if (found) {
data[p] = data[used_size-1];
index[p] = index[used_size-1];
used_size--;
}
}
template <class T>
void Sparse_Vec<T>::clear()
{
used_size = 0;
check_small_elems_flag = false;
}
template <class T>
void Sparse_Vec<T>::clear_elem(const int i)
{
bool found = false;
int p;
it_assert_debug(v_size > i, "The index of the element exceeds the size of the sparse vector");
for (p = 0; p < used_size; p++) {
if (index[p] == i) {
found = true;
break;
}
}
if (found) {
data[p] = data[used_size-1];
index[p] = index[used_size-1];
used_size--;
}
}
template <class T>
void Sparse_Vec<T>::set(const ivec& index_vec, const Vec<T>& v)
{
it_assert_debug(v_size > max(index_vec), "The indices exceeds the size of the sparse vector");
//Clear all old non-zero elements
clear();
//Add the new non-zero elements
add(index_vec, v);
}
template <class T>
void Sparse_Vec<T>::set_new(const ivec& index_vec, const Vec<T>& v)
{
int q;
int nrof_nz = v.size();
it_assert_debug(v_size > max(index_vec), "The indices exceeds the size of the sparse vector");
//Clear all old non-zero elements
clear();
for (q = 0; q < nrof_nz; q++) {
if (std::abs(v[q]) > eps) {
if (used_size == data_size)
resize_data(data_size*2 + 100);
data[used_size] = v(q);
index[used_size] = index_vec(q);
used_size++;
}
}
}
template <class T>
ivec Sparse_Vec<T>::get_nz_indices()
{
int n = nnz();
ivec r(n);
for (int i = 0; i < n; i++) {
r(i) = get_nz_index(i);
}
return r;
}
template <class T>
Sparse_Vec<T> Sparse_Vec<T>::get_subvector(int i1, int i2) const
{
it_assert_debug(v_size > i1 && v_size > i2 && i1 <= i2 && i1 >= 0, "The index of the element exceeds the size of the sparse vector");
Sparse_Vec<T> r(i2 - i1 + 1);
for (int p = 0; p < used_size; p++) {
if (index[p] >= i1 && index[p] <= i2) {
if (r.used_size == r.data_size)
r.resize_data(r.data_size*2 + 100);
r.data[r.used_size] = data[p];
r.index[r.used_size] = index[p] - i1;
r.used_size++;
}
}
r.eps = eps;
r.check_small_elems_flag = check_small_elems_flag;
r.compact();
return r;
}
template <class T>
T Sparse_Vec<T>::sqr() const
{
T sum(0);
for (int p = 0; p < used_size; p++)
sum += data[p] * data[p];
return sum;
}
template <class T>
void Sparse_Vec<T>::operator=(const Sparse_Vec<T> &v)
{
free();
v_size = v.v_size;
used_size = v.used_size;
data_size = v.data_size;
eps = v.eps;
check_small_elems_flag = v.check_small_elems_flag;
alloc();
for (int i = 0; i < used_size; i++) {
data[i] = v.data[i];
index[i] = v.index[i];
}
}
template <class T>
void Sparse_Vec<T>::operator=(const Vec<T> &v)
{
free();
v_size = v.size();
used_size = 0;
data_size = std::min(v.size(), 10000);
eps = std::abs(T(0));
check_small_elems_flag = false;
alloc();
for (int i = 0; i < v_size; i++) {
if (v(i) != T(0)) {
if (used_size == data_size)
resize_data(data_size*2);
data[used_size] = v(i);
index[used_size] = i;
used_size++;
}
}
compact();
}
template <class T>
Sparse_Vec<T> Sparse_Vec<T>::operator-() const
{
Sparse_Vec r(v_size, used_size);
for (int p = 0; p < used_size; p++) {
r.data[p] = -data[p];
r.index[p] = index[p];
}
r.used_size = used_size;
return r;
}
template <class T>
bool Sparse_Vec<T>::operator==(const Sparse_Vec<T> &v)
{
int p, q;
bool found = false;
//Remove small elements before comparing the two sparse_vectors
if (check_small_elems_flag)
remove_small_elements();
if (v_size != v.v_size) {
//Return false if vector sizes are unequal
return false;
}
else {
for (p = 0;p < used_size;p++) {
for (q = 0;q < v.used_size;q++) {
if (index[p] == v.index[q]) {
found = true;
break;
}
}
if (found == false)
//Return false if non-zero element not found, or if elements are unequal
return false;
else if (data[p] != v.data[q])
//Return false if non-zero element not found, or if elements are unequal
return false;
else
//Check next non-zero element
found = false;
}
}
/*Special handling if sizes do not match.
Required since v may need to do remove_small_elements() for true comparison*/
if (used_size != v.used_size) {
if (used_size > v.used_size) {
//Return false if number of non-zero elements is less in v
return false;
}
else {
//Ensure that the remaining non-zero elements in v are smaller than v.eps
int nrof_small_elems = 0;
for (q = 0;q < v.used_size;q++) {
if (std::abs(v.data[q]) <= v.eps)
nrof_small_elems++;
}
if (v.used_size - nrof_small_elems != used_size)
//Return false if the number of "true" non-zero elements are unequal
return false;
}
}
//All elements checks => return true
return true;
}
template <class T>
void Sparse_Vec<T>::operator+=(const Sparse_Vec<T> &v)
{
int i, p;
T tmp_data;
int nrof_nz_v = v.used_size;
it_assert_debug(v_size == v.size(), "Attempted addition of unequal sized sparse vectors");
for (p = 0; p < nrof_nz_v; p++) {
i = v.index[p];
tmp_data = v.data[p];
//get_nz(p,i,tmp_data);
add_elem(i, tmp_data);
}
check_small_elems_flag = true;
}
template <class T>
void Sparse_Vec<T>::operator+=(const Vec<T> &v)
{
int i;
it_assert_debug(v_size == v.size(), "Attempted addition of unequal sized sparse vectors");
for (i = 0; i < v.size(); i++)
if (v(i) != T(0))
add_elem(i, v(i));
check_small_elems_flag = true;
}
template <class T>
void Sparse_Vec<T>::operator-=(const Sparse_Vec<T> &v)
{
int i, p;
T tmp_data;
int nrof_nz_v = v.used_size;
it_assert_debug(v_size == v.size(), "Attempted subtraction of unequal sized sparse vectors");
for (p = 0; p < nrof_nz_v; p++) {
i = v.index[p];
tmp_data = v.data[p];
//v.get_nz(p,i,tmp_data);
add_elem(i, -tmp_data);
}
check_small_elems_flag = true;
}
template <class T>
void Sparse_Vec<T>::operator-=(const Vec<T> &v)
{
int i;
it_assert_debug(v_size == v.size(), "Attempted subtraction of unequal sized sparse vectors");
for (i = 0; i < v.size(); i++)
if (v(i) != T(0))
add_elem(i, -v(i));
check_small_elems_flag = true;
}
template <class T>
void Sparse_Vec<T>::operator*=(const T &v)
{
int p;
for (p = 0; p < used_size; p++) {
data[p] *= v;
}
check_small_elems_flag = true;
}
template <class T>
void Sparse_Vec<T>::operator/=(const T &v)
{
int p;
for (p = 0; p < used_size; p++) {
data[p] /= v;
}
if (eps > 0) {
check_small_elems_flag = true;
}
}
template <class T>
T operator*(const Sparse_Vec<T> &v1, const Sparse_Vec<T> &v2)
{
it_assert_debug(v1.v_size == v2.v_size, "Sparse_Vec<T> * Sparse_Vec<T>");
T sum(0);
Vec<T> v1f(v1.v_size);
v1.full(v1f);
for (int p = 0; p < v2.used_size; p++) {
if (v1f[v2.index[p]] != T(0))
sum += v1f[v2.index[p]] * v2.data[p];
}
return sum;
}
template <class T>
T operator*(const Sparse_Vec<T> &v1, const Vec<T> &v2)
{
it_assert_debug(v1.size() == v2.size(), "Multiplication of unequal sized vectors attempted");
T sum(0);
for (int p1 = 0; p1 < v1.used_size; p1++)
sum += v1.data[p1] * v2[v1.index[p1]];
return sum;
}
template <class T>
T operator*(const Vec<T> &v1, const Sparse_Vec<T> &v2)
{
it_assert_debug(v1.size() == v2.size(), "Multiplication of unequal sized vectors attempted");
T sum(0);
for (int p2 = 0; p2 < v2.used_size; p2++)
sum += v1[v2.index[p2]] * v2.data[p2];
return sum;
}
template <class T>
Sparse_Vec<T> elem_mult(const Sparse_Vec<T> &v1, const Sparse_Vec<T> &v2)
{
it_assert_debug(v1.v_size == v2.v_size, "elem_mult(Sparse_Vec<T>, Sparse_Vec<T>)");
Sparse_Vec<T> r(v1.v_size);
ivec pos(v1.v_size);
pos = -1;
for (int p1 = 0; p1 < v1.used_size; p1++)
pos[v1.index[p1]] = p1;
for (int p2 = 0; p2 < v2.used_size; p2++) {
if (pos[v2.index[p2]] != -1) {
if (r.used_size == r.data_size)
r.resize_data(r.used_size*2 + 100);
r.data[r.used_size] = v1.data[pos[v2.index[p2]]] * v2.data[p2];
r.index[r.used_size] = v2.index[p2];
r.used_size++;
}
}
r.compact();
return r;
}
template <class T>
Vec<T> elem_mult(const Sparse_Vec<T> &v1, const Vec<T> &v2)
{
it_assert_debug(v1.v_size == v2.size(), "elem_mult(Sparse_Vec<T>, Vec<T>)");
Vec<T> r(v1.v_size);
r = T(0);
for (int p1 = 0; p1 < v1.used_size; p1++)
r[v1.index[p1]] = v1.data[p1] * v2[v1.index[p1]];
return r;
}
template <class T>
Sparse_Vec<T> elem_mult_s(const Sparse_Vec<T> &v1, const Vec<T> &v2)
{
it_assert_debug(v1.v_size == v2.size(), "elem_mult(Sparse_Vec<T>, Vec<T>)");
Sparse_Vec<T> r(v1.v_size);
for (int p1 = 0; p1 < v1.used_size; p1++) {
if (v2[v1.index[p1]] != T(0)) {
if (r.used_size == r.data_size)
r.resize_data(r.used_size*2 + 100);
r.data[r.used_size] = v1.data[p1] * v2[v1.index[p1]];
r.index[r.used_size] = v1.index[p1];
r.used_size++;
}
}
r.compact();
return r;
}
template <class T>
Vec<T> elem_mult(const Vec<T> &v1, const Sparse_Vec<T> &v2)
{
it_assert_debug(v1.size() == v2.v_size, "elem_mult(Vec<T>, Sparse_Vec<T>)");
Vec<T> r(v2.v_size);
r = T(0);
for (int p2 = 0; p2 < v2.used_size; p2++)
r[v2.index[p2]] = v1[v2.index[p2]] * v2.data[p2];
return r;
}
template <class T>
Sparse_Vec<T> elem_mult_s(const Vec<T> &v1, const Sparse_Vec<T> &v2)
{
it_assert_debug(v1.size() == v2.v_size, "elem_mult(Vec<T>, Sparse_Vec<T>)");
Sparse_Vec<T> r(v2.v_size);
for (int p2 = 0; p2 < v2.used_size; p2++) {
if (v1[v2.index[p2]] != T(0)) {
if (r.used_size == r.data_size)
r.resize_data(r.used_size*2 + 100);
r.data[r.used_size] = v1[v2.index[p2]] * v2.data[p2];
r.index[r.used_size] = v2.index[p2];
r.used_size++;
}
}
r.compact();
return r;
}
template <class T>
Sparse_Vec<T> operator+(const Sparse_Vec<T> &v1, const Sparse_Vec<T> &v2)
{
it_assert_debug(v1.v_size == v2.v_size, "Sparse_Vec<T> + Sparse_Vec<T>");
Sparse_Vec<T> r(v1);
ivec pos(v1.v_size);
pos = -1;
for (int p1 = 0; p1 < v1.used_size; p1++)
pos[v1.index[p1]] = p1;
for (int p2 = 0; p2 < v2.used_size; p2++) {
if (pos[v2.index[p2]] == -1) {// A new entry
if (r.used_size == r.data_size)
r.resize_data(r.used_size*2 + 100);
r.data[r.used_size] = v2.data[p2];
r.index[r.used_size] = v2.index[p2];
r.used_size++;
}
else
r.data[pos[v2.index[p2]]] += v2.data[p2];
}
r.check_small_elems_flag = true; // added dec 7, 2006
r.compact();
return r;
}
//! Convert a dense vector \c v into its sparse representation
template <class T>
inline Sparse_Vec<T> sparse(const Vec<T> &v)
{
Sparse_Vec<T> s(v);
return s;
}
//! Convert a dense vector \c v into its sparse representation
template <class T>
inline Sparse_Vec<T> sparse(const Vec<T> &v, T epsilon)
{
Sparse_Vec<T> s(v, epsilon);
return s;
}
//! Convert a sparse vector \c s into its dense representation
template <class T>
inline Vec<T> full(const Sparse_Vec<T> &s)
{
Vec<T> v;
s.full(v);
return v;
}
//! \cond
// ---------------------------------------------------------------------
// Instantiations
// ---------------------------------------------------------------------
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Sparse_Vec<int>;
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Sparse_Vec<double>;
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Sparse_Vec<std::complex<double> >;
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_ivec operator+(const sparse_ivec &,
const sparse_ivec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_vec operator+(const sparse_vec &,
const sparse_vec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_cvec operator+(const sparse_cvec &,
const sparse_cvec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT int operator*(const sparse_ivec &, const sparse_ivec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT double operator*(const sparse_vec &, const sparse_vec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::complex<double> operator*(const sparse_cvec &,
const sparse_cvec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT int operator*(const sparse_ivec &, const ivec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT double operator*(const sparse_vec &, const vec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::complex<double> operator*(const sparse_cvec &,
const cvec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT int operator*(const ivec &, const sparse_ivec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT double operator*(const vec &, const sparse_vec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::complex<double> operator*(const cvec &,
const sparse_cvec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_ivec elem_mult(const sparse_ivec &,
const sparse_ivec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_vec elem_mult(const sparse_vec &, const sparse_vec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_cvec elem_mult(const sparse_cvec &,
const sparse_cvec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT ivec elem_mult(const sparse_ivec &, const ivec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec elem_mult(const sparse_vec &, const vec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec elem_mult(const sparse_cvec &, const cvec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_ivec elem_mult_s(const sparse_ivec &, const ivec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_vec elem_mult_s(const sparse_vec &, const vec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_cvec elem_mult_s(const sparse_cvec &, const cvec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT ivec elem_mult(const ivec &, const sparse_ivec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec elem_mult(const vec &, const sparse_vec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec elem_mult(const cvec &, const sparse_cvec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_ivec elem_mult_s(const ivec &, const sparse_ivec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_vec elem_mult_s(const vec &, const sparse_vec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_cvec elem_mult_s(const cvec &, const sparse_cvec &);
//! \endcond
} // namespace itpp
#endif // #ifndef SVEC_H
|