This file is indexed.

/usr/include/itpp/base/algebra/schur.h is in libitpp-dev 4.3.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
/*!
 * \file
 * \brief Definitions of Schur decomposition functions
 * \author Adam Piatyszek
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef SCHUR_H
#define SCHUR_H

#include <itpp/base/mat.h>
#include <itpp/itexports.h>

namespace itpp
{

/*!
 * \ingroup matrixdecomp
 * \brief Schur decomposition of a real matrix
 *
 * This function computes the Schur form of a square real matrix
 * \f$ \mathbf{A} \f$. The Schur decomposition satisfies the
 * following equation:
 * \f[ \mathbf{U} \mathbf{T} \mathbf{U}^{T} = \mathbf{A} \f]
 * where: \f$ \mathbf{U} \f$ is a unitary, \f$ \mathbf{T} \f$ is upper
 * quasi-triangular, and \f$ \mathbf{U}^{T} \f$ is the transposed
 * \f$ \mathbf{U} \f$ matrix.
 *
 * The upper quasi-triangular matrix may have \f$ 2 \times 2 \f$ blocks on
 * its diagonal.
 *
 * Uses the LAPACK routine DGEES.
 */
ITPP_EXPORT bool schur(const mat &A, mat &U, mat &T);

/*!
 * \ingroup matrixdecomp
 * \brief Schur decomposition of a real matrix
 *
 * This function computes the Schur form of a square real matrix
 * \f$ \mathbf{A} \f$. The Schur decomposition satisfies the
 * following equation:
 * \f[ \mathbf{U} \mathbf{T} \mathbf{U}^{T} = \mathbf{A} \f]
 * where: \f$ \mathbf{U} \f$ is a unitary, \f$ \mathbf{T} \f$ is upper
 * quasi-triangular, and \f$ \mathbf{U}^{T} \f$ is the transposed
 * \f$ \mathbf{U} \f$ matrix.
 *
 * The upper quasi-triangular matrix may have \f$ 2 \times 2 \f$ blocks on
 * its diagonal.
 *
 * \return  Real Schur matrix \f$ \mathbf{T} \f$
 *
 * uses the LAPACK routine DGEES.
 */
ITPP_EXPORT mat schur(const mat &A);


/*!
 * \ingroup matrixdecomp
 * \brief Schur decomposition of a complex matrix
 *
 * This function computes the Schur form of a square complex matrix
 * \f$ \mathbf{A} \f$. The Schur decomposition satisfies
 * the following equation:
 * \f[ \mathbf{U} \mathbf{T} \mathbf{U}^{H} = \mathbf{A} \f]
 * where: \f$ \mathbf{U} \f$ is a unitary, \f$ \mathbf{T} \f$ is upper
 * triangular, and \f$ \mathbf{U}^{H} \f$ is the Hermitian
 * transposition of the \f$ \mathbf{U} \f$ matrix.
 *
 * Uses the LAPACK routine ZGEES.
 */
ITPP_EXPORT bool schur(const cmat &A, cmat &U, cmat &T);

/*!
 * \ingroup matrixdecomp
 * \brief Schur decomposition of a complex matrix
 *
 * This function computes the Schur form of a square complex matrix
 * \f$ \mathbf{A} \f$. The Schur decomposition satisfies
 * the following equation:
 * \f[ \mathbf{U} \mathbf{T} \mathbf{U}^{H} = \mathbf{A} \f]
 * where: \f$ \mathbf{U} \f$ is a unitary, \f$ \mathbf{T} \f$ is upper
 * triangular, and \f$ \mathbf{U}^{H} \f$ is the Hermitian
 * transposition of the \f$ \mathbf{U} \f$ matrix.
 *
 * \return  Complex Schur matrix \f$ \mathbf{T} \f$
 *
 * Uses the LAPACK routine ZGEES.
 */
ITPP_EXPORT cmat schur(const cmat &A);


} // namespace itpp

#endif // #ifndef SCHUR_H