/usr/include/itpp/base/algebra/det.h is in libitpp-dev 4.3.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | /*!
* \file
* \brief Definitions of determinant calculations
* \author Tony Ottosson
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef DET_H
#define DET_H
#include <itpp/base/mat.h>
#include <itpp/itexports.h>
namespace itpp
{
/*!
\brief Determinant of real square matrix.
\ingroup determinant
Calculate determinant of the real matrix \f$\mathbf{X}\f$
Uses LU-factorisation.
\f[
\det(\mathbf{X}) = \det(\mathbf{P}^T \mathbf{L}) \det(\mathbf{U}) = \det(\mathbf{P}^T) \prod(\mathrm{diag}(\mathbf{U}))
\f]
and the determinant of the permuation matrix is \f$ \pm 1\f$ depending on the number of row permutations
*/
ITPP_EXPORT double det(const mat &X);
/*!
\brief Determinant of complex square matrix.
\ingroup determinant
Calculate determinant of the complex matrix \f$\mathbf{X}\f$
Uses LU-factorisation.
\f[
\det(\mathbf{X}) = \det(\mathbf{P}^T \mathbf{L}) \det(\mathbf{U}) = \det(\mathbf{P}^T) \prod(\mathrm{diag}(\mathbf{U}))
\f]
and the determinant of the permuation matrix is \f$ \pm 1\f$ depending on the number of row permutations
*/
ITPP_EXPORT std::complex<double> det(const cmat &X);
} // namespace itpp
#endif // #ifndef DET_H
|