/usr/lib/perl5/Imager/Engines.pod is in libimager-perl 0.98+dfsg-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 | =head1 NAME
Imager::Engines - Programmable transformation operations
=head1 SYNOPSIS
use Imager;
my %opts;
my @imgs;
my $img;
...
my $newimg = $img->transform(
xexpr=>'x',
yexpr=>'y+10*sin((x+y)/10)')
or die $img->errstr;
my $newimg = Imager::transform2(\%opts, @imgs)
or die "transform2 failed: $Imager::ERRSTR";
my $newimg = $img->matrix_transform(
matrix=>[ -1, 0, $img->getwidth-1,
0, 1, 0,
0, 0, 1 ]);
=head1 DESCRIPTION
=head2 transform()
The C<transform()> function can be used to generate spatial warps and
rotations and such effects. It only operates on a single image and
its only function is to displace pixels.
It can be given the operations in postfix notation or the module
Affix::Infix2Postfix can be used to generate postfix code from infix
code. Look in the test case t/t55trans.t for an example.
C<transform()> needs expressions (or opcodes) that determine the
source pixel for each target pixel. Source expressions are infix
expressions using any of the +, -, *, / or ** binary operators, the -
unary operator, ( and ) for grouping and the C<sin()> and C<cos()>
functions. The target pixel is input as the variables x and y.
You specify the x and y expressions as C<xexpr> and C<yexpr> respectively.
You can also specify opcodes directly, but that's magic deep enough
that you can look at the source code.
Note: You can still use the transform() function, but the transform2()
function is just as fast and is more likely to be enhanced and
maintained.
$new_img=$img->transform(xexpr=>'x',yexpr=>'y+10*sin((x+y)/10)')
$new_img=$img->transform(xexpr=>'x+0.1*y+5*sin(y/10.0+1.57)',
yexpr=>'y+10*sin((x+y-0.785)/10)')
=head2 transform2()
Imager also supports a C<transform2()> class method which allows you
perform a more general set of operations, rather than just specifying
a spatial transformation as with the transform() method, you can also
perform color transformations, image synthesis and image
combinations from multiple source images.
C<transform2()> takes an reference to an options hash, and a list of
images to operate one (this list may be empty):
my %opts;
my @imgs;
...
my $img = Imager::transform2(\%opts, @imgs)
or die "transform2 failed: $Imager::ERRSTR";
The options hash may define a transformation function, and optionally:
=over
=item *
width - the width of the image in pixels. If this isn't supplied the
width of the first input image is used. If there are no input images
an error occurs.
=item *
height - the height of the image in pixels. If this isn't supplied
the height of the first input image is used. If there are no input
images an error occurs.
=item *
constants - a reference to hash of constants to define for the
expression engine. Some extra constants are defined by Imager
=item *
channels - the number of channels in the output image. If this isn't
supplied a 3 channel image will be created.
=back
The transformation function is specified using either the C<expr> or
C<rpnexpr> member of the options.
=head3 Infix expressions
You can supply infix expressions to transform 2 with the C<expr> keyword.
$opts{expr} = 'return getp1(w-x, h-y)'
The 'expression' supplied follows this general grammar:
( identifier '=' expr ';' )* 'return' expr
This allows you to simplify your expressions using variables.
A more complex example might be:
$opts{expr} = 'pix = getp1(x,y); return if(value(pix)>0.8,pix*0.8,pix)'
Currently to use infix expressions you must have the L<Parse::RecDescent>
module installed (available from CPAN). There is also what might be a
significant delay the first time you run the infix expression parser
due to the compilation of the expression grammar.
=head3 Postfix expressions
You can supply postfix or reverse-polish notation expressions to
transform2() through the C<rpnexpr> keyword.
The parser for C<rpnexpr> emulates a stack machine, so operators will
expect to see their parameters on top of the stack. A stack machine
isn't actually used during the image transformation itself.
You can store the value at the top of the stack in a variable called
C<foo> using C<!foo> and retrieve that value again using @foo. The !foo
notation will pop the value from the stack.
An example equivalent to the infix expression above:
$opts{rpnexpr} = 'x y getp1 !pix @pix value 0.8 gt @pix 0.8 * @pix ifp'
At the end of the expression there should be a single pixel value left
on the stack, which is used as the output pixel.
=head3 Operators
transform2() has a fairly rich range of operators.
Each entry below includes the usage with C<rpnexpr>, formatted as:
=over
I<operand> I<operand> ... B<I<operator>> -- I<result>
=back
If the operand or result begins with "N" it is a numeric value, if it
begins with "C" it is a color or pixel value.
=over
=item +, *, -, /, %, **
multiplication, addition, subtraction, division, remainder and
exponentiation. Multiplication, addition and subtraction can be used
on color values too - though you need to be careful - adding 2 white
values together and multiplying by 0.5 will give you gray, not white.
Division by zero (or a small number) just results in a large number.
Modulo zero (or a small number) results in zero. % is implemented
using fmod() so you can use this to take a value mod a floating point
value.
=for stopwords N1 N2 N uminus
C<rpnexpr> usage:
=over
I<N1> I<N2> B<+> -- I<N>
I<N1> I<N2> B<*> -- I<N>
I<N1> I<N2> B<-> -- I<N>
I<N1> I<N2> B</> -- I<N>
I<N1> I<N2> B<**> -- I<N>
I<N1> B<uminus> -- I<N>
=back
=item sin(N), cos(N), atan2(y,x)
Some basic trig functions. They work in radians, so you can't just
use the hue values.
=for stopwords Ny Nx atan2
C<rpnexpr> usage:
=over
I<N> B<sin> -- I<N>
I<N> B<cos> -- I<N>
I<Ny> I<Nx> B<atan2> -- I<N>
=back
=item distance(x1, y1, x2, y2)
Find the distance between two points. This is handy (along with
atan2()) for producing circular effects.
=for stopwords Nx1 Ny1 Nx2 Ny2
C<rpnexpr> usage:
=over
I<Nx1> I<Ny1> I<Nx2> I<Ny2> B<distance> -- I<N>
=back
=item sqrt(n)
Find the square root. I haven't had much use for this since adding
the distance() function.
C<rpnexpr> usage:
=over
I<N> B<sqrt> -- I<N>
=back
=item abs(n)
Find the absolute value.
C<rpnexpr> usage:
=over
I<N> B<abs> -- I<N>
=back
=item getp1(x,y), getp2(x,y), getp3(x, y)
Get the pixel at position (x,y) from the first, second or third image
respectively. I may add a getpn() function at some point, but this
prevents static checking of the instructions against the number of
images actually passed in.
=for stopwords getp1 getp2 getp3
C<rpnexpr> usage:
=over
I<Nx> I<Ny> B<getp1> -- I<C>
I<Nx> I<Ny> B<getp2> -- I<C>
I<Nx> I<Ny> B<getp3> -- I<C>
=back
=item value(c), hue(c), sat(c), hsv(h,s,v), hsva(h,s,v,alpha)
Separates a color value into it's value (brightness), hue (color)
and saturation elements. Use hsv() to put them back together (after
suitable manipulation), or hsva() to include a transparency value.
=for stopwords Nh Ns Nv hsv hsva Nr Ng Nb rgb rgba
C<rpnexpr> usage:
=over
I<C> B<value> -- I<N>
I<C> B<hue> -- I<N>
I<C> B<sat> -- I<N>
I<Nh> I<Ns> I<Nv> B<hsv> -- I<C>
I<Nh> I<Ns> I<Nv> I<Na> B<hsva> -- I<C>
=back
=item red(c), green(c), blue(c), rgb(r,g,b), rgba(r,g,b,a)
Separates a color value into it's red, green and blue colors. Use
rgb(r,g,b) to put it back together, or rgba() to include a
transparency value.
C<rpnexpr> usage:
=over
I<C> B<red> -- I<N>
I<C> B<green> -- I<N>
I<C> B<blue> -- I<N>
I<Nr> I<Ng> I<Nb> B<rgb> -- I<C>
I<Nr> I<Ng> I<Nb> I<Na> B<rgba> -- I<C>
=back
=item alpha(c)
Retrieve the alpha value from a color.
C<rpnexpr> usage:
=over
I<C> B<alpha> -- I<N>
=back
=item int(n)
Convert a value to an integer. Uses a C int cast, so it may break on
large values.
C<rpnexpr> usage:
=over
I<N> B<int> -- I<N>
=back
=item if(cond,ntrue,nfalse), if(cond,ctrue,cfalse)
A simple (and inefficient) if function.
=for stopwords Ncond ifp
C<rpnexpr> usage:
=over
I<Ncond> I<N-true-result> I<N-false-result> B<if> -- I<N>
I<Ncond> I<C-true-result> I<C-false-result> B<if> -- I<C>
I<Ncond> I<C-true-result> I<C-false-result> B<ifp> -- I<C>
=back
=item <=,<,==,>=,>,!=
Relational operators (typically used with if()). Since we're working
with floating point values the equalities are 'near equalities' - an
epsilon value is used.
=over
I<N1> I<N2> B<< <= >> -- I<N>
I<N1> I<N2> B<< < >> -- I<N>
I<N1> I<N2> B<< >= >> -- I<N>
I<N1> I<N2> B<< > >> -- I<N>
I<N1> I<N2> B<< == >> -- I<N>
I<N1> I<N2> B<< != >> -- I<N>
=back
=item &&, ||, not(n)
Basic logical operators.
C<rpnexpr> usage:
=over
I<N1> I<N2> B<and> -- I<N>
I<N1> I<N2> B<or> -- I<N>
I<N> B<not> -- I<N>
=back
=item log(n), exp(n)
Natural logarithm and exponential.
C<rpnexpr> usage:
=over
I<N> B<log> -- I<N>
I<N> B<exp> -- I<N>
=back
=item det(a, b, c, d)
Calculate the determinant of the 2 x 2 matrix;
a b
c d
=for stopwords Na Nv Nc Nd det
C<rpnexpr> usage:
=over
I<Na> I<Nb> I<Nc> I<Nd> B<det> -- I<N>
=back
=back
=head3 Constants
transform2() defines the following constants:
=over
=item C<pi>
The classical constant.
=item C<w>
=item C<h>
The width and height of the output image.
=item C<cx>
=item C<cy>
The center of the output image.
=item C<w>I<image number>
=item C<h>I<image number>
The width and height of each of the input images, C<w1> is the width
of the first input image and so on.
=item C<cx>I<image number>
=item C<cy>I<image number>
The center of each of the input images, (C<cx1>, C<cy1>) is the center
of the first input image and so on.
=back
A few examples:
=over
rpnexpr=>'x 25 % 15 * y 35 % 10 * getp1 !pat x y getp1 !pix @pix sat 0.7 gt @pat @pix ifp'
tiles a smaller version of the input image over itself where the
color has a saturation over 0.7.
rpnexpr=>'x 25 % 15 * y 35 % 10 * getp1 !pat y 360 / !rat x y getp1 1 @rat - pmult @pat @rat pmult padd'
tiles the input image over itself so that at the top of the image the
full-size image is at full strength and at the bottom the tiling is
most visible.
rpnexpr=>'x y getp1 !pix @pix value 0.96 gt @pix sat 0.1 lt and 128 128 255 rgb @pix ifp'
replace pixels that are white or almost white with a palish blue
rpnexpr=>'x 35 % 10 * y 45 % 8 * getp1 !pat x y getp1 !pix @pix sat 0.2 lt @pix value 0.9 gt and @pix @pat @pix value 2 / 0.5 + pmult ifp'
Tiles the input image over it self where the image isn't white or almost
white.
rpnexpr=>'x y 160 180 distance !d y 180 - x 160 - atan2 !a @d 10 / @a + 3.1416 2 * % !a2 @a2 180 * 3.1416 / 1 @a2 sin 1 + 2 / hsv'
Produces a spiral.
rpnexpr=>'x y 160 180 distance !d y 180 - x 160 - atan2 !a @d 10 / @a + 3.1416 2 * % !a2 @a 180 * 3.1416 / 1 @a2 sin 1 + 2 / hsv'
A spiral built on top of a color wheel.
=back
For details on expression parsing see L<Imager::Expr>. For details on
the virtual machine used to transform the images, see
L<Imager::regmach>.
# generate a colorful spiral
# requires that Parse::RecDescent be installed
my $newimg = Imager::transform2({
width => 160, height=>160,
expr => <<EOS
dist = distance(x, y, w/2, h/2);
angle = atan2(y-h/2, x-w/2);
angle2 = (dist / 10 + angle) % ( 2 * pi );
return hsv(angle*180/pi, 1, (sin(angle2)+1)/2);
EOS
});
# replace green portions of an image with another image
my $newimg = Imager::transform2({
rpnexpr => <<EOS
x y getp2 !pat # used to replace green portions
x y getp1 !pix # source with "green screen"
@pix red 10 lt @pix blue 10 lt && # low blue and red
@pix green 254 gt && # and high green
@pat @pix ifp
EOS
}, $source, $background);
=head2 Matrix Transformations
=over
=item matrix_transform()
Rather than having to write code in a little language, you can use a
matrix to perform affine transformations, using the matrix_transform()
method:
my $newimg = $img->matrix_transform(matrix=>[ -1, 0, $img->getwidth-1,
0, 1, 0,
0, 0, 1 ]);
By default the output image will be the same size as the input image,
but you can supply the C<xsize> and C<ysize> parameters to change the
size.
Rather than building matrices by hand you can use the Imager::Matrix2d
module to build the matrices. This class has methods to allow you to
scale, shear, rotate, translate and reflect, and you can combine these
with an overloaded multiplication operator.
WARNING: the matrix you provide in the matrix operator transforms the
co-ordinates within the B<destination> image to the co-ordinates
within the I<source> image. This can be confusing.
You can also supply a C<back> argument which acts as a background
color for the areas of the image with no samples available (outside
the rectangle of the source image.) This can be either an
Imager::Color or Imager::Color::Float object. This is B<not> mixed
transparent pixels in the middle of the source image, it is B<only>
used for pixels where there is no corresponding pixel in the source
image.
=back
=head1 AUTHOR
Tony Cook <tonyc@cpan.org>, Arnar M. Hrafnkelsson
=cut
|