/usr/share/ada/adainclude/gtkada/glib-graphs.adb is in libgtkada2.24.1-dev 2.24.1-14.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 | -----------------------------------------------------------------------
-- GtkAda - Ada95 binding for Gtk+/Gnome --
-- --
-- Copyright (C) 2001-2010, AdaCore --
-- --
-- This library is free software; you can redistribute it and/or --
-- modify it under the terms of the GNU General Public --
-- License as published by the Free Software Foundation; either --
-- version 2 of the License, or (at your option) any later version. --
-- --
-- This library is distributed in the hope that it will be useful, --
-- but WITHOUT ANY WARRANTY; without even the implied warranty of --
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU --
-- General Public License for more details. --
-- --
-- You should have received a copy of the GNU General Public --
-- License along with this library; if not, write to the --
-- Free Software Foundation, Inc., 59 Temple Place - Suite 330, --
-- Boston, MA 02111-1307, USA. --
-- --
-----------------------------------------------------------------------
with Unchecked_Deallocation;
package body Glib.Graphs is
type Search_Color is (White, Gray, Black);
type Color_Array is array (Natural range <>) of Search_Color;
procedure Move_To_Next (E : in out Edge_Iterator);
-- nove the next matching edge, starting at the one pointed to by E
-- E should be the first potential candidate for the next item (ie should
-- already have been moved to the next edge).
------------------
-- Set_Directed --
------------------
procedure Set_Directed (G : in out Graph; Directed : Boolean) is
begin
G.Directed := Directed;
end Set_Directed;
-----------------
-- Is_Directed --
-----------------
function Is_Directed (G : Graph) return Boolean is
begin
return G.Directed;
end Is_Directed;
---------------
-- Get_Index --
---------------
function Get_Index (V : access Vertex) return Natural is
begin
return V.Index;
end Get_Index;
---------------
-- Max_Index --
---------------
function Max_Index (G : Graph) return Natural is
begin
return G.Last_Vertex_Index;
end Max_Index;
----------------
-- Add_Vertex --
----------------
procedure Add_Vertex (G : in out Graph; V : access Vertex'Class) is
begin
V.Index := G.Last_Vertex_Index;
G.Last_Vertex_Index := G.Last_Vertex_Index + 1;
G.Num_Vertices := G.Num_Vertices + 1;
Add (G.Vertices, V);
end Add_Vertex;
--------------
-- Add_Edge --
--------------
procedure Add_Edge
(G : in out Graph;
E : access Edge'Class;
Source, Dest : access Vertex'Class)
is
pragma Unreferenced (G);
begin
pragma Assert (E.Src = null and then E.Dest = null);
E.Src := Vertex_Access (Source);
E.Dest := Vertex_Access (Dest);
Add (Source.Out_Edges, E);
Add (Dest.In_Edges, E);
end Add_Edge;
------------
-- Remove --
------------
procedure Remove (G : in out Graph; E : access Edge'Class) is
pragma Unreferenced (G);
procedure Free is new Unchecked_Deallocation (Edge'Class, Edge_Access);
E2 : Edge_Access := Edge_Access (E);
begin
Remove (E.Src.Out_Edges, E);
Remove (E.Dest.In_Edges, E);
Destroy (E.all);
Free (E2);
end Remove;
-------------
-- Destroy --
-------------
procedure Destroy (G : in out Graph) is
begin
Clear (G);
end Destroy;
-----------
-- Clear --
-----------
procedure Clear (G : in out Graph) is
begin
while G.Vertices /= null loop
Remove (G, G.Vertices.V);
end loop;
end Clear;
------------
-- Remove --
------------
procedure Remove (G : in out Graph; V : access Vertex'Class) is
procedure Free is new Unchecked_Deallocation
(Vertex'Class, Vertex_Access);
E : Edge_Iterator;
E2 : Edge_Access;
V2 : Vertex_Access := Vertex_Access (V);
begin
-- Destroy all outgoing edges
E := First (G, Src => Vertex_Access (V));
while not At_End (E) loop
E2 := Get (E);
Next (E);
Remove (G, E2);
end loop;
-- Destroy all ingoing edges
E := First (G, Dest => Vertex_Access (V));
while not At_End (E) loop
E2 := Get (E);
Next (E);
Remove (G, E2); -- ??? Could be more efficient, since we have
-- the pointer into the list directly
end loop;
-- Free the vertex
Internal_Remove (G, V);
Destroy (V.all);
Free (V2);
end Remove;
---------
-- Add --
---------
procedure Add (List : in out Edge_List; E : access Edge'Class) is
L : Edge_List := List;
begin
-- Insert the item in the list so that items with equal ends are next to
-- each other.
while L /= null loop
if L.E.Src = E.Src and then L.E.Dest = E.Dest then
L.Next := new Edge_List_Record'
(E => Edge_Access (E), Next => L.Next);
return;
end if;
L := L.Next;
end loop;
List := new Edge_List_Record'(E => Edge_Access (E), Next => List);
end Add;
---------
-- Add --
---------
procedure Add (List : in out Vertex_List; V : access Vertex'Class) is
begin
List := new Vertex_List_Record'(V => Vertex_Access (V), Next => List);
end Add;
------------
-- Remove --
------------
procedure Remove (List : in out Edge_List; E : access Edge'Class) is
procedure Internal is new Unchecked_Deallocation
(Edge_List_Record, Edge_List);
Tmp : Edge_List := List;
Previous : Edge_List;
begin
while Tmp /= null
and then Tmp.E /= Edge_Access (E)
loop
Previous := Tmp;
Tmp := Tmp.Next;
end loop;
if Tmp /= null then
if Previous = null then
pragma Assert (Tmp = List);
Previous := List;
List := List.Next;
Internal (Previous);
else
Previous.Next := Tmp.Next;
Internal (Tmp);
end if;
end if;
end Remove;
------------
-- Remove --
------------
procedure Internal_Remove (G : in out Graph; V : access Vertex'Class) is
procedure Internal is new Unchecked_Deallocation
(Vertex_List_Record, Vertex_List);
Tmp : Vertex_List := G.Vertices;
Previous : Vertex_List := null;
begin
while Tmp /= null
and then Tmp.V /= Vertex_Access (V)
loop
Previous := Tmp;
Tmp := Tmp.Next;
end loop;
if Tmp /= null then
if Previous = null then
-- The list contains only one item which is the one to be removed.
-- Once it has been removed the list must be reset to null.
pragma Assert (Tmp = G.Vertices, "Remove vertex");
Previous := G.Vertices;
G.Vertices := G.Vertices.Next;
Internal (Previous);
else
Previous.Next := Tmp.Next;
Internal (Tmp);
end if;
G.Num_Vertices := G.Num_Vertices - 1;
end if;
end Internal_Remove;
-----------
-- First --
-----------
function First (G : Graph) return Vertex_Iterator is
begin
return Vertex_Iterator (G.Vertices);
end First;
----------
-- Next --
----------
procedure Next (V : in out Vertex_Iterator) is
begin
V := Vertex_Iterator (V.Next);
end Next;
------------
-- At_End --
------------
function At_End (V : Vertex_Iterator) return Boolean is
begin
return V = null;
end At_End;
---------
-- Get --
---------
function Get (V : Vertex_Iterator) return Vertex_Access is
begin
return V.V;
end Get;
-----------
-- First --
-----------
function First (G : Graph;
Src, Dest : Vertex_Access := null;
Directed : Boolean := True)
return Edge_Iterator
is
Va : Edge_Iterator :=
(Directed => Directed and then G.Directed,
Repeat_Count => 1,
Src => Src,
Dest => Dest,
Current_Vertex => null,
Current_Edge => null,
First_Pass => True);
begin
if Src /= null then
-- If Src /= null and then Dest = null then
-- Result is the whole list from Src.Out_Nodes
-- If not directed: add to it the list of Dest.Out_Nodes
-- Duplicates in the following case: a given node has two links
-- to and from Src, and the graph is not oriented.
-- Src <-----> B
-- Elsif Src /= null and then Dest /= null then
-- Result is the whole list from Src.Out_Nodes that match Dest
-- If not directed: add to it the list of Dest.In_Nodes that
-- match Src.
-- Duplicates when there is a link from src to dest, and one from
-- dest to src.
Va.Current_Edge := Src.Out_Edges;
elsif Dest = null then
-- If Src = null and then Dest = null then
-- Result is the concatenation for all edges of Edge.Out_Nodes
if G.Vertices /= null then
Va.Current_Vertex := G.Vertices;
Va.Current_Edge := G.Vertices.V.Out_Edges;
end if;
else
-- If Src = null and then Dest /= null then
-- Result is the whole list from Dest.In_Nodes
Va.Current_Edge := Dest.In_Edges;
end if;
Move_To_Next (Va);
return Va;
end First;
------------------
-- Move_To_Next --
------------------
procedure Move_To_Next (E : in out Edge_Iterator) is
begin
if E.Src /= null then
if E.Dest = null then
if E.Current_Edge = null
and then not E.Directed
and then E.First_Pass
then
E.First_Pass := False;
E.Current_Edge := E.Src.In_Edges;
end if;
else
while E.Current_Edge /= null
and then (E.First_Pass or else E.Current_Edge.E.Src /= E.Dest)
and then (not E.First_Pass
or else E.Current_Edge.E.Dest /= E.Dest)
loop
E.Current_Edge := E.Current_Edge.Next;
end loop;
if E.Current_Edge = null
and then not E.Directed
and then E.First_Pass
then
E.First_Pass := False;
E.Current_Edge := E.Src.In_Edges;
Move_To_Next (E);
end if;
end if;
-- In the second pass, we must ignore the recursive links to the
-- item, since they have already been counted.
if not E.First_Pass then
while E.Current_Edge /= null
and then E.Current_Edge.E.Src = E.Current_Edge.E.Dest
loop
E.Current_Edge := E.Current_Edge.Next;
end loop;
end if;
elsif E.Dest = null then
if E.Current_Vertex /= null then
while E.Current_Edge = null loop
E.Current_Vertex := E.Current_Vertex.Next;
exit when E.Current_Vertex = null;
E.Current_Edge := E.Current_Vertex.V.Out_Edges;
end loop;
end if;
else
if E.Current_Edge = null
and then not E.Directed
and then E.First_Pass
then
E.First_Pass := False;
E.Current_Edge := E.Dest.Out_Edges;
end if;
-- In the second pass, we must ignore the recursive links to the
-- item, since they have already been counted.
if not E.First_Pass then
while E.Current_Edge /= null
and then E.Current_Edge.E.Src = E.Current_Edge.E.Dest
loop
E.Current_Edge := E.Current_Edge.Next;
end loop;
end if;
end if;
end Move_To_Next;
----------
-- Next --
----------
procedure Next (E : in out Edge_Iterator) is
Save : constant Edge_Access := E.Current_Edge.E;
begin
E.Current_Edge := E.Current_Edge.Next;
Move_To_Next (E);
if E.Current_Edge /= null then
if E.Current_Edge.E.Src = Save.Src
and then E.Current_Edge.E.Dest = Save.Dest
then
E.Repeat_Count := E.Repeat_Count + 1;
else
E.Repeat_Count := 1;
end if;
else
E.Repeat_Count := 1;
end if;
end Next;
------------
-- At_End --
------------
function At_End (E : Edge_Iterator) return Boolean is
begin
return E.Current_Vertex = null
and then E.Current_Edge = null;
end At_End;
------------------
-- Repeat_Count --
------------------
function Repeat_Count (E : Edge_Iterator) return Positive is
begin
return E.Repeat_Count;
end Repeat_Count;
---------
-- Get --
---------
function Get (E : Edge_Iterator) return Edge_Access is
begin
pragma Assert (not At_End (E));
return E.Current_Edge.E;
end Get;
-------------
-- Get_Src --
-------------
function Get_Src (E : access Edge) return Vertex_Access is
begin
return E.Src;
end Get_Src;
--------------
-- Get_Dest --
--------------
function Get_Dest (E : access Edge) return Vertex_Access is
begin
return E.Dest;
end Get_Dest;
--------------------------
-- Breadth_First_Search --
--------------------------
function Breadth_First_Search
(G : Graph; Root : access Vertex'Class)
return Breadth_Vertices_Array
is
Colors : Color_Array (0 .. G.Last_Vertex_Index - 1) := (others => White);
Distances : array (0 .. G.Last_Vertex_Index - 1) of Natural :=
(others => Natural'Last);
Predecessors : Vertices_Array (0 .. G.Last_Vertex_Index - 1) :=
(others => null);
Queue : Vertices_Array (0 .. G.Num_Vertices - 1);
Queue_Index : Integer := 0;
Queue_First : Integer := 0;
Result : Breadth_Vertices_Array (0 .. G.Num_Vertices - 1);
Result_Index : Natural := 0;
V, U : Vertex_Access;
Eit : Edge_Iterator;
begin
-- Initialize the root
Distances (Root.Index) := 0;
Queue (Queue_Index) := Vertex_Access (Root);
Queue_Index := Queue_Index + 1;
while Queue_First < Queue_Index loop
U := Queue (Queue_First);
Eit := First (G, Src => U);
while not At_End (Eit) loop
V := Get_Dest (Get (Eit));
if V = U then
V := Get_Src (Get (Eit));
end if;
if Colors (V.Index) = White then
Colors (V.Index) := Gray;
Distances (V.Index) := Distances (U.Index) + 1;
Predecessors (V.Index) := U;
Queue (Queue_Index) := V;
Queue_Index := Queue_Index + 1;
end if;
Next (Eit);
end loop;
Queue_First := Queue_First + 1;
Colors (U.Index) := Black;
Result (Result_Index) :=
(U, Distances (U.Index), Predecessors (U.Index));
Result_Index := Result_Index + 1;
end loop;
return Result (Result'First .. Result_Index - 1);
end Breadth_First_Search;
------------------------
-- Depth_First_Search --
------------------------
function Depth_First_Search (G : Graph) return Depth_Vertices_Array is
Acyclic : aliased Boolean;
begin
return Depth_First_Search (G, Acyclic'Access);
end Depth_First_Search;
------------------------
-- Depth_First_Search --
------------------------
function Depth_First_Search
(G : Graph;
Acyclic : access Boolean;
Reverse_Edge_Cb : Reverse_Edge_Callback := null)
return Depth_Vertices_Array
is
Colors : Color_Array (0 .. G.Last_Vertex_Index - 1) := (others => White);
Predecessors : Vertices_Array (0 .. G.Last_Vertex_Index - 1);
Start : array (0 .. G.Last_Vertex_Index - 1) of Natural;
Result : Depth_Vertices_Array (0 .. G.Num_Vertices - 1);
Result_Index : Integer := Result'Last;
Time : Natural := 0;
procedure Depth_First_Visit (U : Vertex_Access);
-- Process the node U
procedure Depth_First_Visit (U : Vertex_Access) is
V : Vertex_Access;
Eit : Edge_Iterator;
begin
Colors (U.Index) := Gray;
Time := Time + 1;
Start (U.Index) := Time;
Eit := First (G, Src => U);
while not At_End (Eit) loop
V := Get_Dest (Get (Eit));
if V = U then
V := Get_Src (Get (Eit));
end if;
if Colors (V.Index) = White then
Predecessors (V.Index) := U;
-- ??? Would be nice to have a non-recursive implementation, to
-- ??? support larger graphs
Depth_First_Visit (V);
Next (Eit);
elsif Colors (V.Index) = Gray then
-- Make the graph acyclic by reversing the edge.
if Reverse_Edge_Cb /= null then
declare
E : constant Edge_Access := Get (Eit);
begin
-- We need to first move the iterator, otherwise it will
-- become invalid when the two edges have been reversed.
Next (Eit);
Reverse_Edge_Cb (G, E);
end;
else
Acyclic.all := False;
Next (Eit);
end if;
else
Next (Eit);
end if;
end loop;
Colors (U.Index) := Black;
Time := Time + 1;
Result (Result_Index) :=
(U, Start (U.Index), Time, Predecessors (U.Index));
Result_Index := Result_Index - 1;
end Depth_First_Visit;
U : Vertex_List;
begin
Acyclic.all := True;
U := G.Vertices;
while U /= null loop
if Colors (U.V.Index) = White then
Depth_First_Visit (U.V);
end if;
U := U.Next;
end loop;
return Result;
end Depth_First_Search;
----------------
-- Is_Acyclic --
----------------
function Is_Acyclic (G : Graph) return Boolean is
Colors : Color_Array (0 .. G.Last_Vertex_Index - 1) := (others => White);
Acyclic : Boolean := True;
procedure Depth_First_Visit (U : Vertex_Access);
-- Process the node U
procedure Depth_First_Visit (U : Vertex_Access) is
V : Vertex_Access;
Eit : Edge_Iterator;
begin
Colors (U.Index) := Gray;
Eit := First (G, Src => U);
while not At_End (Eit) loop
V := Get_Dest (Get (Eit));
if V = U then
V := Get_Src (Get (Eit));
end if;
if Colors (V.Index) = White then
Depth_First_Visit (V);
if not Acyclic then
return;
end if;
elsif Colors (V.Index) = Gray then
Acyclic := False;
return;
end if;
Next (Eit);
end loop;
Colors (U.Index) := Black;
end Depth_First_Visit;
U : Vertex_List;
begin
pragma Assert (G.Directed);
U := G.Vertices;
while U /= null loop
if Colors (U.V.Index) = White then
Depth_First_Visit (U.V);
end if;
U := U.Next;
end loop;
return Acyclic;
end Is_Acyclic;
----------
-- Free --
----------
procedure Free (List : in out Connected_Component_List) is
procedure Internal is new Unchecked_Deallocation
(Connected_Component, Connected_Component_List);
L : Connected_Component_List;
begin
while List /= null loop
L := List.Next;
Internal (List);
List := L;
end loop;
end Free;
-----------------------------------
-- Strongly_Connected_Components --
-----------------------------------
function Strongly_Connected_Components (G : Graph)
return Connected_Component_List is
begin
return Strongly_Connected_Components (G, Depth_First_Search (G));
end Strongly_Connected_Components;
-----------------------------------
-- Strongly_Connected_Components --
-----------------------------------
-- Basically, we do another depth-first search, but on the transpose of
-- G (i.e with all edges inverted).
function Strongly_Connected_Components
(G : Graph; DFS : Depth_Vertices_Array)
return Connected_Component_List
is
Colors : Color_Array (0 .. G.Last_Vertex_Index - 1) := (others => White);
Result : Vertices_Array (0 .. G.Num_Vertices - 1);
Result_Index : Integer := Result'Last;
procedure Depth_First_Visit (U : Vertex_Access);
-- Process the node U
procedure Depth_First_Visit (U : Vertex_Access) is
V : Vertex_Access;
Eit : Edge_Iterator;
begin
Colors (U.Index) := Gray;
Eit := First (G, Dest => U);
while not At_End (Eit) loop
V := Get_Src (Get (Eit));
if V = U then
V := Get_Dest (Get (Eit));
end if;
if Colors (V.Index) = White then
-- ??? Would be nice to have a non-recursive implementation, to
-- ??? support larger graphs
Depth_First_Visit (V);
end if;
Next (Eit);
end loop;
Colors (U.Index) := Black;
Result (Result_Index) := U;
Result_Index := Result_Index - 1;
end Depth_First_Visit;
List : Connected_Component_List := null;
begin
pragma Assert (G.Directed);
for U in DFS'Range loop
if Colors (DFS (U).Vertex.Index) = White then
Depth_First_Visit (DFS (U).Vertex);
List := new Connected_Component'
(Num_Vertices => Result'Last - Result_Index,
Vertices => Result (Result_Index + 1 .. Result'Last),
Next => List);
Result_Index := Result'Last;
end if;
end loop;
return List;
end Strongly_Connected_Components;
-------------
-- Kruskal --
-------------
function Kruskal (G : Graph) return Edges_Array is
Result : Edges_Array (0 .. G.Num_Vertices - 2);
Result_Index : Natural := Result'First;
Eit : Edge_Iterator;
U, V : Vertex_Access;
Sets : array (0 .. G.Last_Vertex_Index - 1) of Natural;
-- This is used to represent the sets that will contain the
-- vertices. Probably not the faster method (the union operation is
-- quite slow), but the easiest to implement.
V_Set : Natural;
begin
-- First put all vertices in their own set
for S in Sets'Range loop
Sets (S) := S;
end loop;
-- ??? Should sort the edges by increasing weight
-- ??? and do the loop in that order
Eit := First (G, Src => Vertex_Access'(null));
while not At_End (Eit) loop
U := Get_Src (Get (Eit));
V := Get_Dest (Get (Eit));
if Sets (U.Index) /= Sets (V.Index) then
Result (Result_Index) := Get (Eit);
Result_Index := Result_Index + 1;
-- Merge the two sets
V_Set := Sets (V.Index);
for S in Sets'Range loop
if Sets (S) = V_Set then
Sets (S) := Sets (U.Index);
end if;
end loop;
end if;
Next (Eit);
end loop;
return Result;
end Kruskal;
------------
-- Length --
------------
function Length (List : Edge_List) return Natural is
E : Edge_List := List;
Count : Natural := 0;
begin
while E /= null loop
Count := Count + 1;
E := E.Next;
end loop;
return Count;
end Length;
---------------
-- In_Degree --
---------------
function In_Degree (G : Graph; V : access Vertex'Class) return Natural is
pragma Unreferenced (G);
begin
return Length (V.In_Edges);
end In_Degree;
----------------
-- Out_Degree --
----------------
function Out_Degree (G : Graph; V : access Vertex'Class) return Natural is
pragma Unreferenced (G);
begin
return Length (V.Out_Edges);
end Out_Degree;
-------------------
-- Move_To_Front --
-------------------
procedure Move_To_Front (G : in out Graph; V : access Vertex'Class) is
Iter : Vertex_List := G.Vertices;
Tmp : Vertex_List;
begin
-- No or only one item => nothing to do
if G.Vertices = null
or else G.Vertices.V = Vertex_Access (V)
or else G.Vertices.Next = null
then
return;
end if;
while Iter.Next /= null and then Iter.Next.V /= Vertex_Access (V) loop
Iter := Iter.Next;
end loop;
if Iter.Next /= null then
Tmp := Iter.Next;
Iter.Next := Tmp.Next;
Tmp.Next := G.Vertices;
G.Vertices := Tmp;
end if;
end Move_To_Front;
------------------
-- Move_To_Back --
------------------
procedure Move_To_Back (G : in out Graph; V : access Vertex'Class) is
Iter : Vertex_List;
Old : Vertex_List := null;
begin
if G.Vertices = null or else G.Vertices.Next = null then
return;
end if;
if G.Vertices.V = Vertex_Access (V) then
Old := G.Vertices;
G.Vertices := G.Vertices.Next;
end if;
Iter := G.Vertices;
while Iter.Next /= null loop
if Iter.Next.V = Vertex_Access (V) then
Old := Iter.Next;
Iter.Next := Old.Next;
else
Iter := Iter.Next;
end if;
end loop;
if Old /= null then
Old.Next := null;
Iter.Next := Old;
end if;
end Move_To_Back;
-----------------
-- Revert_Edge --
-----------------
procedure Revert_Edge (G : Graph; E : Edge_Access) is
pragma Unreferenced (G);
Src : constant Vertex_Access := E.Src;
Dest : constant Vertex_Access := E.Dest;
begin
Remove (E.Src.Out_Edges, E);
Remove (E.Dest.In_Edges, E);
E.Src := Dest;
E.Dest := Src;
Add (E.Src.Out_Edges, E);
Add (E.Dest.In_Edges, E);
end Revert_Edge;
end Glib.Graphs;
|