/usr/share/ada/adainclude/gtkada/cairo-matrix.ads is in libgtkada2.24.1-dev 2.24.1-14.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | -----------------------------------------------------------------------
-- GtkAda - Ada95 binding for Gtk+/Gnome --
-- --
-- Copyright (C) 2010, AdaCore --
-- --
-- This library is free software; you can redistribute it and/or --
-- modify it under the terms of the GNU General Public --
-- License as published by the Free Software Foundation; either --
-- version 2 of the License, or (at your option) any later version. --
-- --
-- This library is distributed in the hope that it will be useful, --
-- but WITHOUT ANY WARRANTY; without even the implied warranty of --
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU --
-- General Public License for more details. --
-- --
-- You should have received a copy of the GNU General Public --
-- License along with this library; if not, write to the --
-- Free Software Foundation, Inc., 59 Temple Place - Suite 330, --
-- Boston, MA 02111-1307, USA. --
-- --
-----------------------------------------------------------------------
-- <description>
-- Generic matrix operations.
-- </description>
--
-- <c_version>1.8.8</c_version>
-- <group>Cairo</group>
package Cairo.Matrix is
procedure Init
(Matrix : access Cairo_Matrix;
Xx : Gdouble;
Yx : Gdouble;
Xy : Gdouble;
Yy : Gdouble;
X0 : Gdouble;
Y0 : Gdouble);
-- Matrix: a Cairo_Matrix
-- Xx: Xx component of the affine transformation
-- Yx: Yx component of the affine transformation
-- Xy: Xy component of the affine transformation
-- Yy: Yy component of the affine transformation
-- X0: X translation component of the affine transformation
-- Y0: Y translation component of the affine transformation
--
-- Sets matrix to be the affine transformation given by
-- Xx, Yx, Xy, Yy, X0, Y0. The transformation is given
-- by:
--
-- X_new = Xx * X + Xy * Y + X0;
-- Y_new = Yx * X + Yy * Y + Y0;
procedure Init_Identity (Matrix : access Cairo_Matrix);
-- Matrix: a Cairo_Matrix
--
-- Modifies matrix to be an identity transformation.
procedure Init_Translate
(Matrix : access Cairo_Matrix;
Tx : Gdouble;
Ty : Gdouble);
-- Matrix: a Cairo_Matrix
-- Tx: amount to translate in the X direction
-- Ty: amount to translate in the Y direction
--
-- Initializes matrix to a transformation that translates by Tx and
-- Ty in the X and Y dimensions, respectively.
procedure Init_Scale
(Matrix : access Cairo_Matrix;
Sx : Gdouble;
Sy : Gdouble);
-- Matrix: a Cairo_Matrix
-- Sx: scale factor in the X direction
-- Sy: scale factor in the Y direction
--
-- Initializes matrix to a transformation that scales by Sx and Sy
-- in the X and Y dimensions, respectively.
procedure Init_Rotate (Matrix : access Cairo_Matrix; Radians : Gdouble);
-- Matrix: a Cairo_Matrix
-- Radians: angle of rotation, in Radians. The direction of rotation
-- is defined such that positive angles rotate in the direction from
-- the positive X axis toward the positive Y axis. With the default
-- axis orientation of cairo, positive angles rotate in a clockwise
-- direction.
--
-- Initialized matrix to a transformation that rotates by radians.
procedure Translate
(Matrix : access Cairo_Matrix;
Tx : Gdouble;
Ty : Gdouble);
-- Matrix: a Cairo_Matrix
-- Tx: amount to translate in the X direction
-- Ty: amount to translate in the Y direction
--
-- Applies a translation by Tx, Ty to the transformation in
-- matrix. The effect of the new transformation is to first translate
-- the coordinates by Tx and Ty, then apply the original transformation
-- to the coordinates.
procedure Scale
(Matrix : access Cairo_Matrix;
Sx : Gdouble;
Sy : Gdouble);
-- Matrix: a Cairo_Matrix
-- Sx: scale factor in the X direction
-- Sy: scale factor in the Y direction
--
-- Applies scaling by Sx, Sy to the transformation in matrix. The
-- effect of the new transformation is to first scale the coordinates
-- by Sx and Sy, then apply the original transformation to the coordinates.
procedure Rotate (Matrix : access Cairo_Matrix; Radians : Gdouble);
-- Matrix: a Cairo_Matrix
-- Radians: angle of rotation, in Radians. The direction of rotation
-- is defined such that positive angles rotate in the direction from
-- the positive X axis toward the positive Y axis. With the default
-- axis orientation of cairo, positive angles rotate in a clockwise
-- direction.
--
-- Applies rotation by radians to the transformation in matrix. The effect
-- of the new transformation is to first rotate the coordinates by radians,
-- then apply the original transformation to the coordinates.
function Invert (Matrix : access Cairo_Matrix) return Cairo_Status;
-- Matrix: a Cairo_Matrix
--
-- Changes matrix to be the inverse of its original value. Not
-- all transformation matrices have inverses; if the matrix
-- collapses points together (it is "degenerate"),
-- then it has no inverse and this function will fail.
--
-- Returns: If matrix has an inverse, modifies matrix to
-- be the inverse matrix and returns Cairo_Status_Success. Otherwise,
-- returns Cairo_Status_Invalid_Matrix.
procedure Multiply
(Result : access Cairo_Matrix;
A : access Cairo_Matrix;
B : access Cairo_Matrix);
-- Result: a Cairo_Matrix in which to store the Result
-- A: a Cairo_Matrix
-- B: a Cairo_Matrix
--
-- Multiplies the affine transformations in a and b together
-- and stores the result in result. The effect of the resulting
-- transformation is to first apply the transformation in a to the
-- coordinates and then apply the transformation in b to the
-- coordinates.
--
-- It is allowable for result to be identical to either a or b.
procedure Transform_Distance
(Matrix : access Cairo_Matrix;
Dx : access Gdouble;
Dy : access Gdouble);
-- Matrix: a Cairo_Matrix
-- Dx: X component of a distance vector. An in/out parameter
-- Dy: Y component of a distance vector. An in/out parameter
--
-- Transforms the distance vector (Dx,Dy) by matrix. This is
-- similar to Cairo.Matrix.Transform_Point except that the translation
-- components of the transformation are ignored. The calculation of
-- the returned vector is as follows:
--
-- Dx2 = Dx1 * A + Dy1 * C;
-- Dy2 = Dx1 * B + Dy1 * D;
--
-- Affine transformations are position invariant, so the same vector
-- always transforms to the same vector. If (X1,Y1) transforms
-- to (X2,Y2) then (X1+Dx1,Y1+Dy1) will transform to
-- (X1+Dx2,Y1+Dy2) for all values of X1 and X2.
procedure Transform_Point
(Matrix : access Cairo_Matrix;
X : access Gdouble;
Y : access Gdouble);
-- Matrix: a Cairo_Matrix
-- X: X position. An in/out parameter
-- Y: Y position. An in/out parameter
--
-- Transforms the point (X, Y) by matrix.
private
pragma Import (C, Init, "cairo_matrix_init");
pragma Import (C, Init_Identity, "cairo_matrix_init_identity");
pragma Import (C, Init_Translate, "cairo_matrix_init_translate");
pragma Import (C, Init_Scale, "cairo_matrix_init_scale");
pragma Import (C, Init_Rotate, "cairo_matrix_init_rotate");
pragma Import (C, Translate, "cairo_matrix_translate");
pragma Import (C, Scale, "cairo_matrix_scale");
pragma Import (C, Rotate, "cairo_matrix_rotate");
pragma Import (C, Invert, "cairo_matrix_invert");
pragma Import (C, Multiply, "cairo_matrix_multiply");
pragma Import (C, Transform_Distance, "cairo_matrix_transform_distance");
pragma Import (C, Transform_Point, "cairo_matrix_transform_point");
end Cairo.Matrix;
|