/usr/include/givaro/givrational.h is in libgivaro-dev 3.7.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 | // ==========================================================================
// $Source: /var/lib/cvs/Givaro/src/kernel/rational/givrational.h,v $
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Authors: M. Samama, T. Gautier
// $Id: givrational.h,v 1.13 2011-02-02 16:23:56 bboyer Exp $
// ==========================================================================
/*! @file givrational.h
* @ingroup rational
* @brief Rationals (and domain)
* NO DOC.
*/
#ifndef __GIVARO_rational_H
#define __GIVARO_rational_H
// #define __GIVARO_GMPplusplus_rational_H
#include "givaro/givinteger.h"
#include "givaro/givmodule.h"
namespace Givaro {
// ----------------------------------- Functions Rational
class Rational ;
int compare(const Rational& a, const Rational& b) ;
int absCompare(const Rational& a, const Rational& b) ;
const Rational pow(const Rational &r, const long l);
const Integer floor (const Rational &r) ;
const Integer ceil (const Rational &r) ;
const Integer round (const Rational &r) ;
const Integer trunc (const Rational &r) ;
const Rational abs (const Rational &r) ;
const Rational pow (const Rational& n, unsigned int l);
const Rational pow (const Rational& n, unsigned long l);
unsigned long length (const Rational& r) ;
int sign (const Rational& r) ;
int isZero (const Rational& r) ;
int isOne (const Rational& r) ;
int isInteger(const Rational& r);
class RationalDom;
//! Rationals. No doc.
class Rational {
public :
// Cstor et dstor
Rational(Neutral n = Neutral::zero) ;
Rational(int n) ;
Rational(long n) ;
Rational(unsigned long n) ;
Rational(long n, long d ) ;
Rational(unsigned long n, unsigned long d ) ;
Rational(double x) ;
Rational(const char* s) ;
Rational(const Integer& n) ;
Rational(const Integer& n, const Integer& d, int red = 1 ) ;
// Rational number reconstruction
/*! @brief Rational number reconstruction.
* \f$ num/den \equiv f \mod m\f$, with \f$|num|<k\f$ and \f$0 < |den| \leq f/kf\f$
* @bib
* - von zur Gathen & Gerhard <i>Modern Computer Algebra</i>, 5.10, Cambridge Univ. Press 1999]
*/
Rational(const Integer& f, const Integer& m, const Integer& k, bool recurs = false ) ;
Rational(const Rational&) ;
//~Rational();
// Predefined cstes
static const Rational zero ;
static const Rational one ;
static const Rational mOne ;
// Logical and physical copies
Rational& operator = (const Rational& );
Rational& logcpy (const Rational& ) ;
Rational& copy (const Rational& ) ;
//------------------Equalities and inequalities between rationals
friend int compare(const Rational& a, const Rational& b) ;
friend int absCompare(const Rational& a, const Rational& b) ;
//----------------Elementary arithmetic between Rational
Rational operator + (const Rational& r) const ;
Rational operator - (const Rational& r) const ;
Rational operator - () const ;
Rational operator + () const ;
Rational operator * (const Rational& r) const ;
Rational operator / (const Rational &r) const ;
Rational& operator += (const Rational& r) ;
Rational& operator -= (const Rational& r) ;
Rational& operator *= (const Rational& r) ;
Rational& operator /= (const Rational &r) ;
Integer operator % (const Integer &r) const;
//-----------------------------------------Arithmetic functions
friend const Rational pow(const Rational &r, const long l);
//-----------------------------------------Miscellaneous
friend const Integer floor (const Rational &r) ;
friend const Integer ceil (const Rational &r) ;
friend const Integer round (const Rational &r) ;
friend const Integer trunc (const Rational &r) ;
inline friend const Rational abs (const Rational &r) ;
friend const Rational pow (const Rational& n, unsigned int l) {
Rational r;
r.num = ::Givaro::pow(n.num, l); r.den = ::Givaro::pow(n.den, l);
return r;
}
friend const Rational pow (const Rational& n, unsigned long l) {
Rational r;
r.num = ::Givaro::pow(n.num, l); r.den = ::Givaro::pow(n.den, l);
return r;
}
const Integer nume() const ;
const Integer deno() const ;
inline friend unsigned long length (const Rational& r) ;
inline friend int sign (const Rational& r) ;
inline friend int isZero (const Rational& r) ;
inline friend int isOne (const Rational& r) ;
inline friend int isInteger(const Rational& r);
std::ostream& print ( std::ostream& o ) const ;
inline Rational reduce(const Rational& R) const ;
static void SetReduce() ;
static void SetNoReduce() ;
// -- Cast operators
operator short() const { return (short)(int) *this; }
operator unsigned short() const { return (unsigned short) (unsigned int) *this; }
operator unsigned char() const { return (unsigned char)(unsigned int) *this; }
operator unsigned int() const { return (unsigned int) (this->num/this->den); }
operator int() const { return (int) (this->num/this->den); }
operator signed char() const { return (signed char) (int) *this; }
operator unsigned long() const { return (unsigned long) (this->num/this->den); }
operator long() const { return (long) (this->num/this->den); }
#ifndef __GIVARO__DONOTUSE_longlong__
operator unsigned long long() const { return (unsigned long long) (this->num/this->den); }
operator long long() const { return (long long) (this->num/this->den); }
#endif
operator std::string() const { return std::string(this->num)+'/'+std::string(this->den); }
operator float() const { return ((float)this->num)/((float)this->den); }
operator double() const { return ((double)this->num)/((double)this->den); }
protected: // Internal Representation : num/den
Integer num, den;
public:
enum ReduceFlag { Reduce = 0x1, NoReduce = 0x0 } ;
protected:
static ReduceFlag flags ; // flags that indicates is reduction is done or not
// by default = Reduce
Rational& reduce() ;
// -- module initialization
static void Init(int* argc, char***argv);
static void End();
friend class GivModule;
friend class RationalDom;
// Rational number reconstruction
bool ratrecon(const Integer& f, const Integer& m, const Integer& k, bool recurs = false ) ;
public:
// - exportation of the module
static GivModule Module;
// -- Cstor for Zero and One to delay initialization after the main
Rational( givNoInit );
}; // ----------------------------------- End of Class Rationalional
extern std::istream& operator>> (std::istream& in, Rational& r) ;
}
#include "givaro/givrational.inl"
namespace Givaro {
//! Rational Domain
class RationalDom {
public:
typedef Rational Element;
typedef Rational Rep;
// -- Cstor
RationalDom() : one(1), mOne(-one), zero(0) {}
template<class X> RationalDom(const X& x) : one(1), mOne(-one),zero(0) {}
int operator==( const RationalDom& ) const { return 1;}
int operator!=( const RationalDom& ) const { return 0;}
// -- Constants
const Rational one;
const Rational mOne;
const Rational zero;
unsigned long characteristic() const { return 0UL; }
Integer& characteristic(Integer& p) const { return p=characteristic();}
// -- assignement
Rep& init( Rep& a ) const{ return a; }
Rep& init ( Rep& a, const Rep& b) const { return a = b ; }
Rep& assign( Rep& a, const Rep& b) const { return a = b ; }
// -- arithmetic operators
Rep& mul( Rep& r, const Rep& a, const Rep& b ) const { return r = a * b; };
Rep& div( Rep& r, const Rep& a, const Rep& b ) const { return r = a / b; };
Rep& add( Rep& r, const Rep& a, const Rep& b ) const { return r = a + b; };
Rep& sub( Rep& r, const Rep& a, const Rep& b ) const { return r = a - b; };
Rep& mulin( Rep& r, const Rep& a) const { return r *= a; };
Rep& divin( Rep& r, const Rep& a) const { return r /= a; };
Rep& addin( Rep& r, const Rep& a) const { return r += a; };
Rep& subin( Rep& r, const Rep& a) const { return r -= a; };
Rep& axpy( Rep& r, const Rep& a, const Rep& b, const Rep& c ) const
{ return r = a * b + c; };
Rep& axpyin( Rep& r, const Rep& a, const Rep& b ) const
{ return r += a * b; };
Rep& maxpy( Rep& r, const Rep& a, const Rep& b, const Rep& c ) const
{ return r = c - a * b; };
Rep& axmy( Rep& r, const Rep& a, const Rep& b, const Rep& c ) const
{ return r = a * b - c; };
Rep& axmyin( Rep& r, const Rep& a, const Rep& b ) const
{ return r = a * b - r ; };
Rep& maxpyin( Rep& r, const Rep& a, const Rep& b ) const
{ return r -= a * b; };
// -- unary methods
Rep& neg( Rep& r, const Rep& a ) const { return r = -a; };
Rep& inv( Rep& r, const Rep& a ) const { r.num=a.den; r.den=a.num; return r; }
Rep& negin( Rep& r ) const { r.num=-r.num; return r; }
Rep& invin( Rep& r ) const { std::swap(r.num,r.den); return r; }
// - return n^l
Rep& pow(Rep& r, const Rep& n, const unsigned long l) const { return r = ::Givaro::pow(n, l); }
Rep& pow(Rep& r, const Rep& n, const unsigned int l) const { return r = ::Givaro::pow(n, l); }
// - Rational number reconstruction
Rep& ratrecon(Rep& r, const Integer& f, const Integer& m, const Integer& k, bool recurs = false) const {
return r = Rational(f,m,k,recurs);
}
Rep& ratrecon(Rep& r, const Integer& f, const Integer& m, bool recurs=true) const {
return r = Rational(f,m, ::Givaro::sqrt(m),recurs);
}
// - Misc
size_t length (const Rep& a) const { return ::Givaro::length(a); }
int sign (const Rep& a) const { return ::Givaro::sign(a); }
int isOne (const Rep& a) const { return compare(a, one) ==0; }
int isZero (const Rep& a) const { return compare(a, zero) ==0; }
int areEqual (const Rep& a, const Rep& b) const { return compare(a, b) ==0; }
int areNEqual(const Rep& a, const Rep& b) const { return compare(a, b) !=0; }
template< class RandIter > Rep& random(RandIter& g, Rep& r, long s = 1) const { return r=Rational(Integer::random(s), Integer::nonzerorandom(s)); }
template< class RandIter > Rep& random(RandIter& g, Rep& r, const Rep& b) const { Integer rnum,rden; Integer::random(rnum,b.nume()); Integer::nonzerorandom(rden,b.deno()); return r=Rational(rnum,rden); }
template< class RandIter > Rep& nonzerorandom(RandIter& g, Rep& r, long s = 1) const { return r=Rational(Integer::nonzerorandom(s), Integer::nonzerorandom(s)); }
template< class RandIter > Rep& nonzerorandom (RandIter& g,Rep& r, const Rep& b) const { Integer rnum,rden; Integer::nonzerorandom(rnum,b.nume()); Integer::nonzerorandom(rden,b.deno()); return r=Rational(rnum,rden); }
// -- IO
// -- IO
std::istream& read ( std::istream& i )
{ char ch;
i >> std::ws >> ch;
if (ch != 'R')
GivError::throw_error(GivBadFormat("RationalDom::read: bad signature domain"));
return i;
}
std::ostream& write( std::ostream& o ) const { return o << 'R'; }
std::istream& read ( std::istream& i, Rep& n) const { return i >> n; }
std::ostream& write( std::ostream& o, const Rep& n) const { return n.print(o); }
};
} //namespace Givaro
#endif // __GIVARO_rational_H
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s:syntax=cpp.doxygen
|