/usr/include/givaro/givintrsa.h is in libgivaro-dev 3.7.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 | // =================================================================== //
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Time-stamp: <07 May 09 13:51:58 Jean-Guillaume.Dumas@imag.fr>
// =================================================================== //
/** @file givintrsa.h
* @ingroup integers
* @brief RSA scheme.
*/
#ifndef __GIVARO_rsa_H
#define __GIVARO_rsa_H
#include <iostream>
#include "givaro/givinteger.h"
#include "givaro/givintprime.h"
#include "givaro/givintfactor.h"
#include "givaro/givrandom.h"
// k = 2^16 + 1, is prime
#define SIMPLE_EXPONENT (Element( (1<<16)+1 ))
// =================================================================== //
// RSA public-key cipher codes
// =================================================================== //
namespace Givaro {
//! RSA domain
template<class RandIter = GivRandom>
class IntRSADom : public IntFactorDom<RandIter> {
public:
// JGD 19.02.2003 : Should work nicely, but produces:
// "implicit typename is deprecated"
// using IntFactorDom<RandIter>::Element;
// using IntFactorDom<RandIter>::random_generator;
typedef typename IntFactorDom<RandIter>::Element Element;
typedef typename IntFactorDom<RandIter>::random_generator random_generator;
private:
Element _n, _e;
Element _d;
long _lm;
public:
// =================================================================== //
//! Constructors
// =================================================================== //
//@{
IntRSADom(bool fi = false, RandIter g = RandIter() ) :
IntFactorDom<RandIter>(g), _fast_impl(fi)
{
keys_gen(IntFactorDom<RandIter>::_g, 257, 255, _n, _e, _d);
_lm = log(_n,1<<(8*sizeof(unsigned char)));
}
IntRSADom(const long s, bool fi = false, RandIter g = RandIter() ) :
IntFactorDom<RandIter>(g), _fast_impl(fi)
{
keys_gen(IntFactorDom<RandIter>::_g, (s>>1)-1, (s>>1)+1, _n, _e, _d);
_lm = log(_n,1<<(8*sizeof(unsigned char)));
}
IntRSADom(const long p, const long q, bool fi = false, RandIter g = RandIter() ) :
IntFactorDom<RandIter>(g), _fast_impl(fi)
{
keys_gen(IntFactorDom<RandIter>::_g, p, q, _n, _e, _d);
_lm = log(_n,1<<(8*sizeof(unsigned char)));
}
IntRSADom(const Element& n, const Element& e, const Element& d) :
_n(n), _e(e), _d(d), _lm(log(n,1<<(8*sizeof(unsigned char)))), _fast_impl( e == SIMPLE_EXPONENT )
{}
IntRSADom(const Element& n, const Element& e) :
_n(n), _e(e), _d(0), _lm(log(n,1<<(8*sizeof(unsigned char)))), _fast_impl( e == SIMPLE_EXPONENT )
{}
//@}
// =================================================================== //
//! Accesses
// =================================================================== //
//@{
const Element& getn() const { return _n; }
const Element& gete() const { return _e; }
const Element& getd() const { return _d; }
//@}
// =================================================================== //
//! Text conversions
// =================================================================== //
//@{
std::ostream& encipher(std::ostream&, std::istream&) const ;
std::ostream& decipher(std::ostream&, std::istream&) ;
//@}
// =================================================================== //
// Keys generation
// public keys are n and e, the secret key is d.
// ciphering is computing : x^e mod m, in CBC mode
// deciphering is computing : b^d mod m
// since for any x, x^(e.d) = x mod m
// =================================================================== //
// =================================================================== //
/*! Strong Primes.
* @bib
* - J. Gordon, <i>Strong Primes Are Easy to Find</i>, EUROCRYPT'84, LNCS 209.
*/
// =================================================================== //
Element& strong_prime(random_generator& g, long psize, Element& p) const;
// =================================================================== //
/** Key gen.
* Here m = p*q
* p and q are prime numbers of respective sizes psize, qsize
* Moreover p-1 and q-1 have one prime factor of respective size 2/3
* since k.u = 1 mod (p-1)(q-1)
*/
// =================================================================== //
//@{
void keys_gen(random_generator& g, long psize, long qsize, Element& n, Element& e, Element& d, Element& p, Element& q) const ;
void keys_gen(random_generator& g, long psize, long qsize, Element& n, Element& e, Element& d) const ;
//@}
// =================================================================== //
//! log[10]
// =================================================================== //
long log(const Element& n, const long = 10) const ;
// =================================================================== //
//! Text conversions
// =================================================================== //
std::ostream& ecriture_str(std::ostream&, const Element&) const ;
std::ostream& ecriture_str_last(std::ostream&, const Element&) const ;
std::ostream& ecriture_Int(std::ostream&, const Element&) const ;
// =================================================================== //
//! Breaking codes : finding u knowing only m an k ...
// =================================================================== //
Element& point_break(Element& u) ;
protected:
//! Fast implementation.
//! Means simple enciphering key, and deciphering via chinese remaindering.
//! @warning this means less security !
bool _fast_impl;
};
} // Givaro
#include "givaro/givintrsa.inl"
#endif // __GIVARO_rsa_H
|