This file is indexed.

/usr/include/givaro/givintrsa.h is in libgivaro-dev 3.7.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
// =================================================================== //
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Time-stamp: <07 May 09 13:51:58 Jean-Guillaume.Dumas@imag.fr>
// =================================================================== //

/** @file givintrsa.h
 * @ingroup integers
 * @brief RSA scheme.
 */

#ifndef __GIVARO_rsa_H
#define __GIVARO_rsa_H

#include <iostream>
#include "givaro/givinteger.h"
#include "givaro/givintprime.h"
#include "givaro/givintfactor.h"
#include "givaro/givrandom.h"


// k = 2^16 + 1, is prime
#define SIMPLE_EXPONENT (Element( (1<<16)+1 ))

// =================================================================== //
// RSA public-key cipher codes
// =================================================================== //

namespace Givaro {

	//! RSA domain
template<class RandIter = GivRandom>
class IntRSADom : public IntFactorDom<RandIter> {
public:
    // JGD 19.02.2003 : Should work nicely, but produces:
    //                  "implicit typename is deprecated"
    // using IntFactorDom<RandIter>::Element;
    // using IntFactorDom<RandIter>::random_generator;
    typedef typename IntFactorDom<RandIter>::Element Element;
    typedef typename IntFactorDom<RandIter>::random_generator random_generator;

private:
    Element _n, _e;
    Element _d;
    long _lm;

public:

// =================================================================== //
//! Constructors
// =================================================================== //
//@{
    IntRSADom(bool fi = false, RandIter g = RandIter() ) :
		IntFactorDom<RandIter>(g), _fast_impl(fi)
	{
	   	keys_gen(IntFactorDom<RandIter>::_g, 257, 255, _n, _e, _d);
	   	_lm = log(_n,1<<(8*sizeof(unsigned char)));
   	}
    IntRSADom(const long s, bool fi = false, RandIter g = RandIter() ) :
		IntFactorDom<RandIter>(g), _fast_impl(fi)
	{
	   	keys_gen(IntFactorDom<RandIter>::_g, (s>>1)-1, (s>>1)+1, _n, _e, _d);
	   	_lm = log(_n,1<<(8*sizeof(unsigned char)));
	}
    IntRSADom(const long p, const long q, bool fi = false, RandIter g = RandIter() ) :
	   	IntFactorDom<RandIter>(g), _fast_impl(fi)
   	{
	   	keys_gen(IntFactorDom<RandIter>::_g, p, q, _n, _e, _d);
	   	_lm = log(_n,1<<(8*sizeof(unsigned char)));
	}
    IntRSADom(const Element& n, const Element& e, const Element& d) :
	   	_n(n), _e(e), _d(d), _lm(log(n,1<<(8*sizeof(unsigned char)))), _fast_impl( e == SIMPLE_EXPONENT )
   	{}
    IntRSADom(const Element& n, const Element& e) :
	   	_n(n), _e(e), _d(0), _lm(log(n,1<<(8*sizeof(unsigned char)))), _fast_impl( e == SIMPLE_EXPONENT )
	{}
	//@}

// =================================================================== //
//! Accesses
// =================================================================== //
//@{
    const Element& getn() const { return _n; }
    const Element& gete() const { return _e; }
    const Element& getd() const { return _d; }
//@}

// =================================================================== //
//! Text conversions
// =================================================================== //
//@{
    std::ostream& encipher(std::ostream&, std::istream&) const ;
    std::ostream& decipher(std::ostream&, std::istream&) ;
	//@}

// =================================================================== //
// Keys generation
// public keys are n and e, the secret key is d.
// ciphering is computing       : x^e mod m, in CBC mode
// deciphering is computing     : b^d mod m
// since for any x, x^(e.d) = x mod m
// =================================================================== //


// =================================================================== //
/*! Strong Primes.
 * @bib
 * - J. Gordon, <i>Strong Primes Are Easy to Find</i>,  EUROCRYPT'84, LNCS 209.
 */
// =================================================================== //
    Element& strong_prime(random_generator& g, long psize, Element& p) const;

// =================================================================== //
/** Key gen.
 * Here m = p*q
 * p and q are prime numbers of respective sizes psize, qsize
 * Moreover p-1 and q-1 have one prime factor of respective size 2/3
 * since k.u = 1 mod (p-1)(q-1)
 */
// =================================================================== //
//@{
    void keys_gen(random_generator& g, long psize, long qsize, Element& n, Element& e, Element& d, Element& p, Element& q) const ;
    void keys_gen(random_generator& g, long psize, long qsize, Element& n, Element& e, Element& d) const ;
	//@}

// =================================================================== //
//! log[10]
// =================================================================== //
    long log(const Element& n, const long = 10) const ;

// =================================================================== //
//! Text conversions
// =================================================================== //
    std::ostream& ecriture_str(std::ostream&, const Element&) const ;
    std::ostream& ecriture_str_last(std::ostream&, const Element&) const ;
    std::ostream& ecriture_Int(std::ostream&, const Element&) const ;

// =================================================================== //
//! Breaking codes : finding u knowing only m an k ...
// =================================================================== //
    Element& point_break(Element& u) ;

protected:
//! Fast implementation.
//! Means simple enciphering key, and deciphering via chinese remaindering.
//! @warning this means less security !
    bool _fast_impl;

};

} // Givaro

#include "givaro/givintrsa.inl"

#endif // __GIVARO_rsa_H