/usr/include/givaro/givintfactor.h is in libgivaro-dev 3.7.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | // =================================================================== //
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Needs Container structures : stl ones for instance
// Time-stamp: <29 Jun 05 14:12:09 Jean-Guillaume.Dumas@imag.fr>
// =================================================================== //
/*! @file givintfactor.h
* @ingroup integers
* @brief factorisation
*- Prime numbers
* - Factor sets :
* - Pollard's rho method for factorization
* - Elliptic curves factorization by Lenstra
* .
*/
#ifndef __GIVARO_factorisation_H
#define __GIVARO_factorisation_H
#include <iostream>
#include "givaro/givinteger.h"
#include "givaro/givintprime.h"
#include "givaro/givrandom.h"
// #define BOUNDARY_factor TABMAX2
#define factor_first_primes(tmp,n) (tmp = isZero(mod(tmp,n,23))?23:( isZero(mod(tmp,n,19))?19:( isZero(mod(tmp,n,17))?17: (isZero(mod(tmp,n,2))?2:( isZero(mod(tmp,n,3))?3:( isZero(mod(tmp,n,5))?5:( isZero(mod(tmp,n,7))?7: ( isZero(mod(tmp,n,11))?11:13 ))))))))
#define factor_second_primes(tmp,n) (tmp = isZero(mod(tmp,n,31))?31:( isZero(mod(tmp,n,29))?29: ( isZero(mod(tmp,n,37))?37: ( isZero(mod(tmp,n,41))?41:( isZero(mod(tmp,n,43))?43: ( isZero(mod(tmp,n,71))?71:( isZero(mod(tmp,n,67))?67:( isZero(mod(tmp,n,61))?61:( isZero(mod(tmp,n,59))?59: ( isZero(mod(tmp,n,53))?53:( isZero(mod(tmp,n,47))?47: ( isZero(mod(tmp,n,97))?97: ( isZero(mod(tmp,n,89))?89:( isZero(mod(tmp,n,83))?83:( isZero(mod(tmp,n,79))?79:73)))))))))))))))
namespace Givaro {
// =================================================================== //
// Set or Container of divisors, factors.
// =================================================================== //
//! Integer Factor Domain.
template<class RandIter = GivRandom>
class IntFactorDom : public IntPrimeDom {
private:
// 2*3*5*7*11*13*17*19*23
const int PROD_first_primes;
// 29*31*37*41*43*47*53*59*61*67*71*73*79*83*89*97
const Rep PROD_second_primes;
protected:
RandIter _g;
public:
typedef RandIter random_generator;
IntFactorDom(RandIter g = RandIter()) :
IntPrimeDom(),
PROD_first_primes(223092870),
PROD_second_primes("10334565887047481278774629361"),
_g(g)
{
}
// loops defaulted to 0 forces Pollard's factorization to
// be complete
Rep& factor(Rep& r, const Rep& n, unsigned long loops = 0) const
{
if (isOne(gcd(r,n,PROD_first_primes)))
if (isOne(gcd(r,n,PROD_second_primes))) {
#ifdef GIVARO_LENSTRA
return Lenstra((const RandIter&)_g, r, n);
#else
return Pollard((const RandIter&)_g, r, n, loops);
#endif
} else
return factor_second_primes(r,n);
else
return factor_first_primes(r,n);
}
// Factors are checked for primality
Rep& iffactorprime (Rep& r, const Rep& n, unsigned long loops = 0) const
{
if (factor(r, n, loops) != 1) {
if (! isprime(r,_GIVARO_ISPRIMETESTS_) ) {
Rep nn = r; factor(r,nn, loops);
}
while (! isprime(r,_GIVARO_ISPRIMETESTS_) ) {
Rep nn = r;
if (isOne(gcd(r,nn,PROD_first_primes))) {
if (isOne(gcd(r,nn,PROD_second_primes))) {
Pollard((const RandIter&)_g, r, nn, loops);
} else {
factor_second_primes(r,nn);
}
} else {
factor_first_primes(r,nn);
}
if (r == nn) {
Lenstra((const RandIter&)_g, r, nn) ;
break; // In case Lenstra fails also
}
}
}
return r;
}
Rep& primefactor(Rep& r, const Rep& n) const {
while ((iffactorprime(r,n,0) == 1) && (! isprime(n, _GIVARO_ISPRIMETESTS_)) ) {}
return r;
}
/// Factors with primes
// loops defaulted to 0 forces factorization to be complete
// otherwise returns if factorization is complete or not
// Factors are checked for primality
template<class Container1, class Container2> bool set
( Container1& setint, Container2& setpwd, const Rep& a, unsigned long loops = 0) const ;
///
template<class Container> void set( Container&, const Rep&) const ;
///
template<class Container> void Erathostene(Container&, const Rep&) const ;
///
template<class Container, class Cont2, class Cont3> Container& divisors(Container& L, const Cont2& Lf, const Cont3& Le) const;
template<class Container> Container& divisors(Container&, const Rep& ) const ;
/// returns a small factor
Rep& Erathostene(Rep&, const Rep& p ) const ;
// Pollard with a bound on the number of loops
// Bound 0 is without bound
Rep& Pollard(const RandIter&, Rep&, const Rep& n, unsigned long threshold = 0) const ;
// returns a factor by Lenstra's elliptic curves method
Rep& Lenstra(const RandIter&, Rep&, const Rep& n, const Rep& B1 = 10000000, const unsigned long curves = 30) const ;
std::ostream& write(std::ostream& o, const Rep& n) const;
template<class Array> std::ostream& write(std::ostream& o, Array&, const Rep& n) const;
private:
// Those are parameters for Pollard's algorithms
// Pollard_fctin : must be somewhat a "random" function in Z/nZ
// Pollard_cst can be a slight alternative for the Pfct x^2+1
#ifndef Pollard_cst
#define Pollard_cst 1
#endif
Rep& Pollard_fctin(Rep & x, const Rep& n) const
{
mulin(x,x);
addin(x,Pollard_cst);
return modin(x,n);
}
};
} // Givaro
#include "givaro/givintfactor.inl"
#endif // __GIVARO_factorisation_H
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
|