This file is indexed.

/usr/include/givaro/givhighorder.h is in libgivaro-dev 3.7.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
// ===============================================================
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Time-stamp: <15 Apr 11 16:37:12 Jean-Guillaume.Dumas@imag.fr>
// Author: J-G. Dumas
// Description: Storjohann's high-order lifting
// Reference:   A. Storjohann. High-order lifting. ISSAC 2002.
// ===============================================================
#ifndef __GIVARO_highorder_H
#define __GIVARO_highorder_H

#ifndef _GIVARO_HIGHORDER_THRESHOLD
#define _GIVARO_HIGHORDER_THRESHOLD 30
#endif


#include <givaro/givpoly1.h>
#include <givaro/givfractiondomain.h>
#include <givaro/givtruncdomain.h>

#include <givaro/givpower.h>
#include <givaro/givquotientdomain.h>


namespace Givaro {

template<class Domain>
struct HighOrder {

       // -- Self_t
    typedef HighOrder<Domain>			Self_t;

        // -- Exported types
    typedef FracDom< Poly1Dom<Domain,Dense> >	Father_t;
    typedef FracDom< Poly1Dom<Domain,Dense> >	Frac_t;

    typedef Poly1Dom<Domain,Dense>		Ring_t;
    typedef Poly1Dom<Domain,Dense>		Poly_t;
    typedef TruncDom<Domain> 			Trunc_t;
    typedef typename Trunc_t::Element	Truncated;
    typedef typename Ring_t::Element	Ring_E;
    typedef typename Ring_t::Element	Polynomial;
    typedef Frac<Ring_E, Ring_E>		Element;
    typedef Frac<Ring_E, Ring_E>		Rep;

    typedef Domain				Domain_t;
    typedef typename Domain::Element	Type_t;

    const Poly_t	_poldom;
    const Domain& _dom;
    const Trunc_t _truncdom;

    const Poly_t& getpoldom() const { return _poldom; }
    const Domain& getdomain() const { return _dom; }
    const Trunc_t& gettruncdom() const { return _truncdom; }



    HighOrder(const Domain& d, const Indeter& Z = Indeter() ) : _poldom(d, Z), _dom(_poldom.getdomain()), _truncdom(_poldom) {}

    Polynomial& taylor(Polynomial& Tay, const Rep& Fra, Degree order) const {
        Degree d; _poldom.degree(d,Fra._den);
        Tay.resize((size_t)order.value()+1);
        size_t i = 0;
        for( ; (i<Fra._num.size()) && (order>=(long)i); ++i) {
            _dom.assign(Tay[i],Fra._num[i]);
            for(size_t j = 1; (j<Fra._den.size()) && (j<=i); ++j) {
                _dom.maxpyin(Tay[i],Fra._den[j],Tay[i-j]);
            }
            _dom.divin(Tay[i], Fra._den.front());
        }
        for( ; (order>=(long)i); ++i) {
            _dom.assign(Tay[i], _dom.zero);
            for(size_t j = 1; (j<Fra._den.size()) && (j<=i); ++j) {
                _dom.maxpyin(Tay[i],Fra._den[j],Tay[i-j]);
            }
            _dom.divin(Tay[i], Fra._den.front());
        }
        return _poldom.setdegree(Tay);
    }


    Truncated& Fiduccia(Truncated& F, const Rep& Fra, Degree a, Degree b) const {
        Polynomial Tay;
        Degree dA; _poldom.degree(dA, Fra._den);
        this->taylor(Tay, Fra, dA);
        return Fiduccia(F, Tay, Fra._den, a, b);
    }

    Truncated& Fiduccia(Truncated& F, const Polynomial& Tay, const Polynomial& FraDen, Degree a, Degree b) const {
	  Degree dA; _poldom.degree(dA, FraDen);
	  Polynomial Rev; _poldom.init(Rev,dA);
	  for(int i=0;i<dA.value();++i)
            _dom.div(Rev[(size_t)i],(FraDen)[(size_t)dA.value()-(size_t)i],FraDen.front());
          _dom.assign(Rev[(size_t)dA.value()],_dom.one);
          return FiducciaReversed(F, Tay, Rev, a, b);
    }

    Truncated& Fiduccia(Truncated& F, const Polynomial& Tay, const Polynomial& FraDen, Degree b) const {
          return Fiduccia(F, Tay, FraDen, b, b);
    }

    Truncated& Fiduccia(Truncated& F, const Rep& Fra, Degree b) const {
        return Fiduccia(F, Fra, b, b);
    }


    Type_t& shifteddotproduct(Type_t& dp, const Polynomial& P, const Polynomial& Q, const long shift) const {
        Degree dl; _poldom.degree(dl, P);

        GIVARO_STATE( Degree dq; _poldom.degree(dq, Q);  );
        GIVARO_ASSERT( (dl.value()+shift) <= (dq.value()+1), " in dotproduct HighOrder dP: " << dl << ", dQ: " << dq << ", shift: " << shift );

        _dom.assign(dp,_dom.zero);
        for(long i=0;i<=dl.value();++i)
            _dom.axpyin(dp, P[(size_t)i], Q[(size_t)(i+shift)]);

        return dp;
    }



    Truncated& FiducciaReversed(Truncated& F, const Polynomial& Tay, const Polynomial& FraDen, Degree a, Degree b) const {

	Degree dT; _poldom.degree(dT, Tay);
//         std::cout << "a: " << a << ", b: " << b << ", dT: " << dT << std::endl;
	if (b > dT) {
	  Degree dA; _poldom.degree(dA, FraDen);

	  Polynomial Xl; _poldom.init(Xl);
	  Polynomial Xone; _poldom.init(Xone,Degree(1));
	  QuotientDom<Poly_t> Qdom(_poldom, FraDen);
	  Qdom.assign(Xone);

	  const long bonus = dT.value()-dA.value()+1;

          Degree dR(b-a);
          Polynomial Res; _poldom.init(Res, dR);
          long iterT=a.value();
          long iterR=0;

          for( ; iterT < dT.value(); ++iterR,++iterT)
              _dom.assign(Res[(size_t)iterR],Tay[(size_t)iterT]);

	  dom_power(Xl, Xone, iterT-bonus, Qdom);

 	  Degree dl; _poldom.degree(dl, Xl);
          shifteddotproduct( Res[(size_t)iterR], Xl, Tay, bonus);


          for( ++iterR; iterR<=dR.value(); ++iterR) {
              Qdom.mulin(Xl, Xone);
              shifteddotproduct( Res[(size_t)iterR], Xl, Tay, bonus);
          }
	  _truncdom.assign(F, Res);
          return _truncdom.mulin(F, a);
	} else {
	  return _truncdom.assign(F, Tay, Degree(a), Degree(b));
        }
    }

    Truncated& FiducciaReversed(Truncated& F, const Polynomial& Tay, const Polynomial& FraDen, Degree b) const {
        return FiducciaReversed(F, Tay, FraDen, b, b);
    }


//     Truncated& FiducciaReversed(Truncated& F, const Polynomial& Tay, const Polynomial& FraDen, Degree b) const {
// 	Degree dT; _poldom.degree(dT, Tay);
// 	if (b > dT) {
// 	  Degree dA; _poldom.degree(dA, FraDen);

// 	  Polynomial Xl; _poldom.init(Xl);
// 	  Polynomial Xone; _poldom.init(Xone,Degree(1));
// 	  QuotientDom<Poly_t> Qdom(_poldom, FraDen);
// 	  Qdom.assign(Xone);

// 	  const long bonus = dT.value()-dA.value()+1;

// 	  dom_power(Xl, Xone, b.value()-bonus, Qdom);

//  	  Degree dl; _poldom.degree(dl, Xl);

//           Type_t Tl; _dom.init(Tl);
//           shifteddotproduct( Tl, Xl, Tay, bonus);

// 	  return _truncdom.assign(F, Degree(b), Tl);
// 	} else {
// 	  return _truncdom.assign(F, Degree(b), Tay[b.value()]);
// 	}
//     }


    Truncated& FracDevel(Truncated& F, const Rep& Fra, Degree a, Degree b) const {

            // Precondition Degree(Fra._num)<Degree(Fra._den)
        if (b < _GIVARO_HIGHORDER_THRESHOLD) {
            Polynomial Tay;
            this->taylor(Tay, Fra, b);
            return _truncdom.assign(F, Tay, a, b);
        } else {
            std::vector<Truncated> Gam, T;
            std::vector<Degree> Deg;
            Polynomial Tay; Degree dT;
            Degree dA; _poldom.degree(dA, Fra._den);

#ifdef GIVARO_HIGHORDER_TIMER
            Timer GivHOTimer; GivHOTimer.clear(); GivHOTimer.start();
#endif
            this->highorder(Gam, T, Deg, Tay, dT, a, b, Fra._den, dA);
#ifdef GIVARO_HIGHORDER_TIMER
            GivHOTimer.stop();
            std::cerr << "HighOrder_" << a << '^' << b << " : " << GivHOTimer << std::endl;
#endif

            Truncated A, B;
            _truncdom.assign(A, Fra._den);
            _truncdom.assign(B, Fra._num);
            return this->FracDevel(F, B, A, dA, a, b, Tay, dT, Gam, T, Deg);
        }
    }

    Truncated& GammaId(Truncated& Gam, const Polynomial& Tay, const Degree dT, const Degree k0, const Polynomial& A, const Degree dA) const {
        Truncated U0,TA,One;
        _truncdom.assign(TA, A);
        _truncdom.assign(One,_poldom.one );
        _truncdom.assign(U0, Tay, k0-dA,k0-1);
        _truncdom.maxpy(Gam, TA, U0, One, k0, k0+dA-1);
        _truncdom.divin(Gam, k0);
        return Gam;
    }

    Truncated& doubleorder(Truncated& Gam, Truncated& T, const Truncated& Gamp, const Truncated& Tp, const Truncated& S, const Truncated& TA, const Degree dA, const Degree ke) const {
//         std::cerr << "Double order: " << ke << std::endl;
            // ke = 2^e
        Truncated AL;
        _truncdom.mul(AL, Tp, Gamp, ke-dA, ke-1);
        _truncdom.mulin(AL, ke-dA);
//write(std::cout << "AL" << ke.value() << ":=", AL) << ';' << std::endl;

 	_truncdom.mul(Gam, TA, AL, ke*2-dA, ke*2-1);
        _truncdom.negin(Gam);
        _truncdom.divin(Gam, ke*2-dA);
//         _truncdom.setval(Gam);
// write(std::cout << "Gam" << (ke*2-dA) << ":=", Gam) << ';' << std::endl;
// std::cerr << "[G]_" << (ke*2-dA) << std::endl;

        Truncated AH;
        _truncdom.mul(AH, Gam, S, 0, dA-1);
        _truncdom.mulin(AH,ke*2-dA);
//write(std::cout << "AH" << ke.value() << ":=", AH) << ';' << std::endl;

	// Forget the last term
 	_truncdom.truncin(AL, ke*2-dA*2+1, ke*2-dA-1);
        _truncdom.add(T, AL, AH);
// std::cerr << "[I]_" << (ke*2-dA*2+1) << '^' << (ke*2-1) << std::endl;

// write(std::cout << "T" << (ke*2-dA) << ":=", T) << ';' << std::endl;

        return Gam;
    }

    std::vector<Truncated>& highorder(std::vector<Truncated>& Gam, std::vector<Truncated>& T, std::vector<Degree>& Deg, Polynomial& Tay, Degree& dT, Degree a, Degree order, const Polynomial& A, const Degree dA) const {
        Gam.resize(0); T.resize(0); Deg.resize(0);
        size_t e;
        for(e=0; (1L<<e)<dA.value(); ++e) {}
        ++e; // 2^{e-2} < d <= 2^{e-1}
        int dt = int (1UL<<e);

        Degree k0 = 1L<<e;
        Deg.push_back(k0-dA);

        Degree dif = order-a;
        dt = int(dif.value()>dt? dif.value() : dt);
// std::cout << "BEG HighOrder" << std::endl;
// std::cout << "d: " << dA << std::endl;
// std::cout << "e: " << e << std::endl;
// std::cout << "k0: " << k0 << std::endl;
// std::cout << "k0-d: " << Deg.back() << std::endl;
// std::cout << "a: " << a << std::endl;
// std::cout << "b: " << order << std::endl;
// std::cout << "dif: " << dif << std::endl;
// std::cout << "dt: " << dt << std::endl;


        Rep Fra; Fra._num=_poldom.one; Fra._den=A;
        this->taylor(Tay, Fra, dt);
// std::cerr << "[I]_" << 0 << '^' << dt << std::endl;
// write(std::cout << "Tay" << dt << ":=", Tay) << ';' << std::endl;
 	dT = dt;

        Truncated G0; this->GammaId(G0, Tay, dT, Deg.back(), A, dA);
        Gam.push_back(G0);
// std::cerr << "[G]_" << Deg.back() << std::endl;

// write(std::cout << "Gam" << Deg.back() << ":=", G0) << ';' << std::endl;

        Truncated S; _truncdom.assign(S, Tay, Degree(0), dA-1);
// write(std::cout << "S:=", S) << ';' << std::endl;


        Truncated T0; _truncdom.assign(T0,Tay, k0-dA*2+1,k0-1);
 	T.push_back(T0);
// write(std::cout << "T" << e << ":=", T0) << ';' << std::endl;

        Truncated TA; _truncdom.assign(TA, A);
        size_t ordero2 = (size_t)order.value()/2;


        for( ; k0<(long)ordero2; ) {
#ifdef GIVARO_HIGHORDER_TIMER
        Timer GivHOTimer; GivHOTimer.clear(); GivHOTimer.start();
#endif
            doubleorder(G0, T0, Gam.back(), T.back(), S, TA, dA, k0);
            Gam.push_back(G0);
            T.push_back(T0);
            k0*=2; Deg.push_back(k0-dA);
#ifdef GIVARO_HIGHORDER_TIMER
        GivHOTimer.stop();
        std::cerr << "DoubleOrder[" << dA << "]^" << k0 << " out of " << ordero2 << " : " << GivHOTimer << std::endl;
#endif
        }
        return Gam;
    }

    Truncated& Betta(Truncated& B, const Truncated& TB, const Truncated& TA, const Degree dA, const Degree a, const Polynomial& Tay, const Degree dT, const std::vector<Truncated>& Gam, const std::vector<Truncated>& T, const std::vector<Degree>& Deg) const {
// this->write(std::cerr << "BEG Betta" << a << "TB: [", TB) << "]_" << a << std::endl;
#ifdef GIVARO_HIGHORDER_TIMER
          Timer GivHOTimer; GivHOTimer.clear(); GivHOTimer.start();
#endif

          Degree a0=dA*2-1;
          a0 = (a0>a? 0 : a-a0);
          Truncated S;
          this->Inverse(S, a0, a-1, TA, dA, Tay, dT, Gam, T, Deg);
          Truncated U;
          _truncdom.mul(U, S, TB, a-dA, a-1);
//   _truncdom.setval(U);

          _truncdom.maxpy(B, TA, U, TB, a, a+dA-1);
// this->write(std::cerr << "END Betta" << a << " B: [", B) << "]/" << a << std::endl;
#ifdef GIVARO_HIGHORDER_TIMER
          GivHOTimer.stop();
          std::cerr << "Betta[" << dA << "]_" << a << " : " << GivHOTimer << std::endl;
#endif
          return _truncdom.divin(B, a);
    }


    Truncated& FracDevel(Truncated& F, const Truncated& TB, const Truncated& TA, const Degree dA, const Degree a, const Degree b, const Polynomial& Tay, const Degree dT, const std::vector<Truncated>& Gam, const std::vector<Truncated>& T, const std::vector<Degree>& Deg) const {
// this->write(this->write(std::cerr << "BEG FracDevel" << a << '-' << b << ": [", TB) << " x ", TA)<< "]_" << a << '^' << b << std::endl;
        if (b <= dT) {
            Truncated tTay; _truncdom.assign(tTay, Tay, a-dA-1, b);
//             this->write(std::cerr << "END FracDevel" << a << '-' << b << " b<" << dT << ": ", _truncdom.mul(F, TB, tTay, a, b)) << std::endl;
            return _truncdom.mul(F, TB, tTay, a, b);
        } else if (a == 0) {
            std::cerr << "ERROR: This should not happen" << std::endl;
            std::cerr <<"[FracDevel" << a << '-' << b << "]_0^" << b.value() << " with degree(taylor)=" << dT << std::endl;
            return _truncdom.assign(F,_poldom.zero );
        } else {
            Truncated Beta;
            this->Betta(Beta, TB, TA, dA, a, Tay, dT, Gam, T, Deg);
//             _truncdom.setval(Beta);

//             this->FracDevel(F, Beta, TA, dA, Degree(0), b-a, Tay, dT, Gam, T, Deg);
            Truncated tTay; _truncdom.assign(tTay, Tay, 0, b-a);
            _truncdom.mul(F, Beta, tTay, 0, b-a);
//             _truncdom.setval(F);
//             this->write(std::cerr << "END FracDevel" << a << '-' << b << " : [", F) << "]/" << a << std::endl;
            return _truncdom.mulin(F,a);
        }
    }


    Truncated& Inverse(Truncated& I, const Degree a, const Degree b, const Truncated& TA, const Degree dA, const Polynomial& Tay, const Degree dT, const std::vector<Truncated>& Gam, const std::vector<Truncated>& T, const std::vector<Degree>& Deg) const {
// std::cerr << "[I]_" << a << '^' << b << std::endl;

// this->write(std::cerr << "BEG Inverse" << a << '-' << b << ": [", TA) << "]_" << a << '^' << b << std::endl;
        if (b <= dT) {
// this->write(std::cerr << "END Inverse" << a << '-' << b << " b<" << dT << ": ", _truncdom.assign(I, Tay, a, b) ) << std::endl;
            return _truncdom.assign(I, Tay, a, b);
        } else {
            Truncated Gama;
            this->Gamma(Gama, a, TA, dA, Tay, dT, Gam, T, Deg);
//             _truncdom.setval(Gama);
//             this->FracDevel(I, Gama, TA, dA, Degree(0), b-a, Tay, dT, Gam, T, Deg);
            Truncated tTay; _truncdom.assign(tTay, Tay, 0, b-a);
            _truncdom.mul(I, Gama, tTay, 0, b-a);

//             _truncdom.setval(I);
// this->write(std::cerr << "END Inverse" << a << '-' << b << ": [", I ) << "]*" << a << std::endl;
            return _truncdom.mulin(I, a);
        }
    }


    Truncated& Gamma(Truncated& G, const Degree a, const Truncated& TA, const Degree dA, const Polynomial& Tay, const Degree dT, const std::vector<Truncated>& Gam, const std::vector<Truncated>& T, const std::vector<Degree>& Deg) const {
// std::cerr << "[G]_" << a << std::endl;
// this->write(std::cerr << "BEG Gamma" << a << ": [", TA) << "]_" << a << std::endl;
//         if ((a+dA)>dT) {
        if (a>dT) {
            size_t i=0;
            for( ; i<Deg.size(); ++i) {
                if (Deg[i] > a) { --i; break; }
            }
            if (i>=Deg.size()) --i;

            this->Betta(G, Gam[i], TA, dA, a-Deg[i], Tay, dT, Gam, T, Deg);
// this->write(std::cerr << "END Gamma" << a << " B: [", G) << "]" << std::endl;
            return _truncdom.setval(G);
        } else if (a == 0) {
// this->write(std::cerr << "END Gamma" << a << " O: ", _truncdom.one) << std::endl;
            return _truncdom.assign(G, _truncdom.one);
        } else {
            Truncated One; _truncdom.assign(One,_poldom.one );
            Truncated tTay; _truncdom.assign(tTay, Tay, 0, a-1);
            _truncdom.maxpy(G, TA, tTay, One,a,a+dA-1);
// this->write(std::cerr << "END Gamma" << a << " D: [", G) << "]/" << a << std::endl;
            return _truncdom.divin(G, a);
        }
    }



    std::ostream& write( std::ostream& o) const {
        return _truncdom.write(o << "HighOrder<") << '>';
    }
    std::ostream& write( std::ostream& o, const Truncated& n) const {
        return _truncdom.write(o, n);
    }
    std::ostream& write( std::ostream& o, const Polynomial& n) const {
        return _poldom.write(o, n);
    }
    std::ostream& write( std::ostream& o, const Rep& n) const {
        return _poldom.write(_poldom.write(o << '(',n._num) << ")/(", n._den) << ')';
    }



};

} // Givaro

#endif