This file is indexed.

/usr/include/givaro/givgfq.h is in libgivaro-dev 3.7.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
// ==========================================================================
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// file: givgfq.h
// Time-stamp: <08 Nov 11 15:07:32 Jean-Guillaume.Dumas@imag.fr>
// date: 1999
// version:
// author: Jean-Guillaume.Dumas

/*! @file givgfq.h
 * @ingroup zpz
 * @brief   Arithmetic on GF(p^k), with p a prime number less than 2^16.
 */

#ifndef __GIVARO_gfq1_H
#define __GIVARO_gfq1_H

#include "givaro/givconfig.h"
#include "givaro/givinteger.h"
#include <iostream>
#include <vector>
#include "givaro/giv_randiter.h"
#include "givaro/givpoly1factor.h"

namespace Givaro {

//! class GFqDom
template<class TT> class GFqDom {
protected:
	typedef typename Signed_Trait<TT>::unsigned_type UTT;
	typedef TT Rep;
	typedef typename std::vector<UTT>::size_type  UT  ;
public:
	Rep zero;
	Rep one;
protected:
	UTT _characteristic;	// Field Characteristic (p)
	UTT _exponent;		// Extension degree (k)
	UTT _irred;		// Irreducible polynomial in p-adic
	UTT _q;			// p^k
	UTT _qm1;		// p^k-1
	UTT _qm1o2;		// (p^k-1)/2
public:
        Rep mOne;

protected:
	// G is a generator of GF(q)
	// p is GF(q)'s characteristic
	// log2pol[ i ] = G^i(p)
	// pol2log[ j ] = i such that log2pol[i] = j
	// plus1[i] = k such that G^i + 1 = G^k
	std::vector<UTT> _log2pol;
	std::vector<UTT> _pol2log;
	std::vector<TT> _plus1;

    	UTT zech2padic(UTT x) { return _log2pol[x]; };
    	UTT padic2zech(UTT x) { return _pol2log[x]; };


	// Floating point representations
	double _dcharacteristic;

public:
	typedef GFqDom<TT> Self_t;
	typedef Rep Element;
	//     class Element {
	//     public:
	//         mutable Rep _value;

	//         Element() {}
	//     };

	typedef UTT Residu_t;

	// ----- Representation of vector of the Element
	typedef Rep* Array;
	typedef const Rep* constArray;

	GFqDom(): zero(0), one(1), mOne(-1), _log2pol(0), _pol2log(0),_plus1(0) {}

        // Automatic construction
	GFqDom( const UTT P, const UTT e = 1);

        // Construction with prescribed irreducible polynomial
        //   coefficients of the vector should be integers-like
        //   there will be a call to this->init to build the
        //   representation of the irreducible polynomial
    	template<typename Vector>
    	GFqDom(const UTT P, const UTT e, const Vector& modPoly);

	GFqDom( const GFqDom<TT>& F)
	{
		zero = F.zero;
		one = F.one;
                mOne = F.mOne;
		_characteristic = F._characteristic;
		_dcharacteristic = F._dcharacteristic;
		_exponent = F._exponent;
		_irred = F._irred;
		_q = F._q;
		_qm1 = F._qm1;
		_qm1o2 = F._qm1o2;
		_log2pol = F._log2pol;
		_pol2log = F._pol2log;
		_plus1 = F._plus1;
	}

	// Allows to choose the randomization
	// and therefore the field generator
	//     template<class RandIter >
	//     GFqDom(RandIter& g, const UTT P, const UTT e = 1);

	// Destructor
	//    ~GFqDom() {};


	GFqDom<TT> operator=( const GFqDom<TT>& F)
	{
		this->zero = F.zero;
		this->one = F.one;
		this->mOne = F.mOne;
		this->_characteristic = F._characteristic;
		this->_dcharacteristic = F._dcharacteristic;
		this->_exponent = F._exponent;
		this->_irred = F._irred;
		this->_q = F._q;
		this->_qm1 = F._qm1;
		this->_qm1o2 = F._qm1o2;
		this->_log2pol = F._log2pol;
		this->_pol2log = F._pol2log;
		this->_plus1 = F._plus1;
		return *this;
	}



	// Access to the modulus, characteristic, size, exponent
	UTT residu() const;
	UTT characteristic() const;
	Integer& characteristic(Integer& p) const
	{
		return p=characteristic();
	}
	unsigned long& characteristic(unsigned long& p) const
	{
		return p=(unsigned long)_characteristic;
	}

	UTT cardinality() const;
	UTT size() const;
	UTT exponent() const;
	// Internal representation of the used generator
	Rep& generator(Rep&) const;
	// p-adic representation of the used generator
	UTT generator() const;
	// p-adic representation of the used irreducible polynomial
	UTT irreducible() const;

	// the internal representation of the polynomial X
	// where the indeterminate is replaced by the characteristic
	// This has no meaning if exponent is 1
	Rep sage_generator() const;
	Rep indeterminate() const;
	Rep& indeterminate(Rep&) const;

	// Initialization of Elements
	Rep& init( Rep&) const;
	Rep& init( Rep&, const int) const ;
	Rep& init( Rep&, const unsigned int) const ;
	Rep& init( Rep&, const long) const ;
	Rep& init( Rep&, const unsigned long) const ;
	Rep& init( Rep&, const Integer) const;
	Rep& init( Rep&, const float) const ;
	Rep& init( Rep&, const double) const ;
#ifndef __GIVARO__DONOTUSE_longlong__
	Rep& init( Rep&, const long long) const;
	Rep& init( Rep&, const unsigned long long) const ;
#endif
	Rep& init( Rep& a, std::istream& s ) const { return read(a,s); }

	// Initialization of a polynomial
	template<typename val_t, template<class,class> class Vector,template <class> class Alloc>
	Rep& init( Rep&, const Vector<val_t,Alloc<val_t> >&);


	// -- Misc: r <- a mod p
	Rep& assign (Rep&, const Integer) const;
	Rep& assign (Rep&, const Rep) const;
	void assign ( const size_t sz, Array r, constArray a ) const;

	// --- IO methods for the Domain
	std::istream& read ( std::istream& s );
	std::ostream& write( std::ostream& s ) const;
	// --- IO methods for the Elements
	std::istream& read ( std::istream& s, Rep& a ) const;
	std::ostream& write( std::ostream& s, const Rep a ) const;

	// Conversions of the elements
	std::ostream& 	convert(std::ostream& s, const Rep a ) const { return write(s,a); }
	TT 		convert(const Rep) const ;
	long& 		convert(long&, const Rep) const ;
	unsigned long& 	convert(unsigned long&, const Rep) const ;
	int& 		convert(int&, const Rep) const ;
	float&	        convert(float&, const Rep) const ;
	double& 	convert(double&, const Rep) const ;
	unsigned int& 	convert(unsigned int&, const Rep) const ;
	Integer& 	convert(Integer&, const Rep) const ;
#ifndef __GIVARO__DONOTUSE_longlong__
	long long& 	convert(long long&, const Rep) const ;
	unsigned long long& convert(unsigned long long&, const Rep) const ;
#endif

	// Test operators
	inline int operator== (const GFqDom<TT>& a) const;
	inline int operator!= (const GFqDom<TT>& a) const;

	// Miscellaneous functions
	bool areEqual( const Rep&, const Rep&  ) const;
	bool areNEqual ( const Rep , const Rep ) const;
	bool isZero( const Rep ) const;
	bool isnzero( const Rep ) const;
	bool isOne ( const Rep ) const;
	bool isunit ( const Rep ) const; // Element belongs to prime subfield
	size_t length ( const Rep ) const;



	// ----- Operations with reduction: r <- a op b mod p, r <- op a mod p
	Rep& mul (Rep& r, const Rep a, const Rep b) const;
	Rep& div (Rep& r, const Rep a, const Rep b) const;
	Rep& add (Rep& r, const Rep a, const Rep b) const;
	Rep& sub (Rep& r, const Rep a, const Rep b) const;
	Rep& neg (Rep& r, const Rep a) const;
	Rep& inv (Rep& r, const Rep a) const;

	Rep& mulin (Rep& r, const Rep a) const;
	Rep& divin (Rep& r, const Rep a) const;
	Rep& addin (Rep& r, const Rep a) const;
	Rep& subin (Rep& r, const Rep a) const;
	Rep& negin (Rep& r) const;
	Rep& invin (Rep& r) const;

	// ----- Operations with reduction: r <- a op b mod p, r <- op a mod p
	void mul (const size_t sz, Array r, constArray a, constArray b) const;
	void mul (const size_t sz, Array r, constArray a, Rep b) const;

	void div (const size_t sz, Array r, constArray a, constArray b) const;
	void div (const size_t sz, Array r, constArray a, Rep b) const;

	void add (const size_t sz, Array r, constArray a, constArray b) const;
	void add (const size_t sz, Array r, constArray a, Rep b) const;

	void sub (const size_t sz, Array r, constArray a, constArray b) const;
	void sub (const size_t sz, Array r, constArray a, Rep b) const;
	void neg (const size_t sz, Array r, constArray a) const;
	void inv (const size_t sz, Array r, constArray a) const;

	Rep& axpy (Rep& r, const Rep a, const Rep b, const Rep c) const;
	void axpy (const size_t sz, Array r, Rep a, constArray x, constArray y) const;
	void axpy (const size_t sz, Array r, Rep a, constArray x, Rep c) const;

	// -- axpyin: r <- r + a * x mod p
	Rep& axpyin (Rep& r, const Rep a, const Rep b) const;
	void axpyin (const size_t sz, Array r, Rep a, constArray x) const;

	// -- axmy: r <- a * b - c mod p
	Rep& axmy (Rep& r, const Rep a, const Rep b, const Rep c) const;
	void axmy (const size_t sz, Array r, Rep a, constArray x, constArray y) const;
	void axmy (const size_t sz, Array r, Rep a, constArray x, Rep c) const;

	// -- maxpy: r <- c - a * b mod p
	Rep& maxpy (Rep& r, const Rep a, const Rep b, const Rep c) const;

	// -- axmyin: r <-  a * b - r mod p
	Rep& axmyin (Rep& r, const Rep a, const Rep b) const;
	// void axmyin (const size_t sz, Array r, Rep a, constArray x) const;

	//   // -- sqpyin: r <- r + a * a mod p
	//     Rep& sqpyin (Rep& r, const Rep a) const;


	// -- maxpyin: r <- r - a * b mod p
	Rep& maxpyin (Rep& r, const Rep a, const Rep b) const;
	void maxpyin (const size_t sz, Array r, Rep a, constArray x) const;

	// <- \sum_i a[i], return 1 if a.size() ==0,
	void reduceadd ( Rep& r, const size_t sz, constArray a ) const;

	// <- \prod_i a[i], return 1 if a.size() ==0,
	void reducemul ( Rep& r, const size_t sz, constArray a ) const;

	// <- \sum_i a[i] * b[i]
	Rep& dotprod ( Rep& r, const size_t sz, constArray a, constArray b ) const;

	// ----- random generators
	// ----- random generators

	template<class RandIter> Rep& random(RandIter& g, Rep& r) const ;
	template<class RandIter> Rep& random(RandIter& g, Rep& r, long s) const ;
	template<class RandIter> Rep& random(RandIter& g, Rep& r, const Rep& b) const ;
	template<class RandIter> Rep& nonzerorandom(RandIter& g, Rep& r) const ;
	template<class RandIter> Rep& nonzerorandom(RandIter& g, Rep& r, long s) const ;
	template<class RandIter> Rep& nonzerorandom(RandIter& g, Rep& r, const Rep& b) const ;

	typedef GIV_randIter< GFqDom<TT> , Rep> randIter;
#if 0
	// - Set to a non zero random value
	void set_nrand(Rep&) const;
	// - Set to a random value
	void set_rand(Rep&) const;
#endif

#ifdef __GIVARO_COUNT__
	void clear()
	{
		_add_count = 0;
		_mul_count = 0;
		_neg_count = 0;
		_div_count = 0;
		_sub_count = 0;
		_inv_count = 0;
		_add_call = 0;
		_mul_call = 0;
		_neg_call = 0;
		_div_call = 0;
		_sub_call = 0;
		_inv_call = 0;
	}

	void info() const
	{
		cerr << "Mul Call: " << _mul_call << ", real: " << _mul_count << endl;
		cerr << "Add Call: " << _add_call << ", real: " << _add_count << endl;
		cerr << "Div Call: " << _div_call << ", real: " << _div_count << endl;
		cerr << "Sub Call: " << _sub_call << ", real: " << _sub_count << endl;
		cerr << "Neg Call: " << _neg_call << ", real: " << _neg_count << endl;
		cerr << "Inv Call: " << _inv_call << ", real: " << _inv_count << endl;
	}
#endif


#ifdef __GIVARO_COUNT__
	static    long long _add_count;
	static    long long _mul_count;
	static    long long _neg_count;
	static    long long _div_count;
	static    long long _sub_count;
	static    long long _inv_count;
	static    long long _add_call;
	static    long long _mul_call;
	static    long long _neg_call;
	static    long long _div_call;
	static    long long _sub_call;
	static    long long _inv_call;
#endif

	static void Init();
	static void End();
};

} // namespace Givaro

#include "givaro/givgfq.inl"

#endif // __GIVARO_gfq1_H
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s