This file is indexed.

/usr/share/doc/libgfshare1/theory.html is in libgfshare-dev 1.0.5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  
  "http://www.w3.org/TR/html4/loose.dtd">  
<html > 
<head><title>Theory used by libgfshare</title> 
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"> 
<meta name="generator" content="TeX4ht (http://www.cse.ohio-state.edu/~gurari/TeX4ht/)"> 
<meta name="originator" content="TeX4ht (http://www.cse.ohio-state.edu/~gurari/TeX4ht/)"> 
<!-- html --> 
<meta name="src" content="theory.tex"> 
<meta name="date" content="2014-03-09 23:36:00"> 
<link rel="stylesheet" type="text/css" href="theory.css"> 
</head><body 
>
   <div class="maketitle">



<h2 class="titleHead">Theory used by libgfshare</h2>
<div class="author" ><span 
class="cmr-12">Simon McVittie</span></div><br />
<div class="date" ><span 
class="cmr-12">23rd April 2006</span></div>
   </div>
   <h3 class="sectionHead"><span class="titlemark">1   </span> <a 
 id="x1-10001"></a>Introduction</h3>
<!--l. 13--><p class="noindent" >libgfshare implements Shamir secret sharing [SHAMIR] over the field <span 
class="cmmi-10">GF</span>(2<sup><span 
class="cmr-7">8</span></sup>), instead of <span 
class="cmmi-10">GF</span>(<span 
class="cmmi-10">p</span>) for a prime <span 
class="cmmi-10">p </span>as suggested
by Shamir&#8217;s paper. This document aims to prove the security and integrity of this scheme.
<!--l. 17--><p class="indent" >   Note that while I believe this document to be correct, I accept no responsibility for loss or damage caused by relying on
the correctness of my proof.
<!--l. 21--><p class="noindent" >
   <h3 class="sectionHead"><span class="titlemark">2   </span> <a 
 id="x1-20002"></a>Definitions</h3>
<!--l. 23--><p class="noindent" >Let <span 
class="cmmi-10">F </span>be a field with multiplicative identity 1 and additive identity 0.
<!--l. 25--><p class="indent" >   If <span 
class="cmmi-10">A </span>= <span 
class="cmsy-10">{</span>(<span 
class="cmmi-10">a</span><sub><span 
class="cmr-7">1</span></sub><span 
class="cmmi-10">,b</span><sub><span 
class="cmr-7">1</span></sub>)<span 
class="cmmi-10">,</span><img 
src="theory0x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,</span>(<span 
class="cmmi-10">a</span><sub><span 
class="cmmi-7">n</span></sub><span 
class="cmmi-10">,b</span><sub><span 
class="cmmi-7">n</span></sub>)<span 
class="cmsy-10">}</span>, with the <span 
class="cmmi-10">a</span><sub><span 
class="cmmi-7">i</span></sub> distinct nonzero elements of F and the <span 
class="cmmi-10">b</span><sub><span 
class="cmmi-7">i</span></sub> elements of <span 
class="cmmi-10">F</span>, indexed by
<span 
class="cmmi-10">I </span>= <span 
class="cmsy-10">{</span>1<span 
class="cmmi-10">,</span><img 
src="theory1x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,n</span><span 
class="cmsy-10">}</span>, then define
   <center class="par-math-display" >
<img 
src="theory2x.png" alt="       &sum;      &prod;
PA(x) =    bj       (x &minus; ak)(aj &minus; ak)&minus;1
        j&isin;I  k&isin;I,k&frasl;=j
" class="par-math-display" ></center>
<!--l. 31--><p class="nopar" >
<!--l. 33--><p class="indent" >   a polynomial of degree at most <span 
class="cmmi-10">n </span><span 
class="cmsy-10">&minus; </span>1. (By distinctness of the <span 
class="cmmi-10">a</span><sub><span 
class="cmmi-7">i</span></sub>, the inverses required exist.) This is the Lagrange
interpolating polynomial for the points in <span 
class="cmmi-10">A</span>.
<!--l. 37--><p class="noindent" >
   <h3 class="sectionHead"><span class="titlemark">3   </span> <a 
 id="x1-30003"></a>Lemma 1</h3>
<!--l. 39--><p class="noindent" >Let <span 
class="cmmi-10">a</span><sub><span 
class="cmr-7">1</span></sub><span 
class="cmmi-10">,</span><img 
src="theory3x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,a</span><sub><span 
class="cmmi-7">t</span></sub> <span 
class="cmsy-10">&isin; </span><span 
class="cmmi-10">F </span>be distinct and nonzero; let <span 
class="cmmi-10">b</span><sub><span 
class="cmr-7">1</span></sub><span 
class="cmmi-10">,</span><img 
src="theory4x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,b</span><sub><span 
class="cmmi-7">t</span><span 
class="cmsy-7">&minus;</span><span 
class="cmr-7">1</span></sub><span 
class="cmmi-10">,c </span><span 
class="cmsy-10">&isin; </span><span 
class="cmmi-10">F </span>be arbitrary. Then there exists <span 
class="cmmi-10">b</span><sub><span 
class="cmmi-7">t</span></sub> <span 
class="cmsy-10">&isin; </span><span 
class="cmmi-10">F </span>such that if
<span 
class="cmmi-10">A </span>= <span 
class="cmsy-10">{</span>(<span 
class="cmmi-10">a</span><sub><span 
class="cmr-7">1</span></sub><span 
class="cmmi-10">,b</span><sub><span 
class="cmr-7">1</span></sub>)<span 
class="cmmi-10">,</span><img 
src="theory5x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,</span>(<span 
class="cmmi-10">a</span><sub><span 
class="cmmi-7">t</span></sub><span 
class="cmmi-10">,b</span><sub><span 
class="cmmi-7">t</span></sub>)<span 
class="cmsy-10">} </span>then <span 
class="cmmi-10">P</span><sub><span 
class="cmmi-7">A</span></sub>(0) = <span 
class="cmmi-10">c</span>.
<!--l. 43--><p class="noindent" >
   <h4 class="subsectionHead"><span class="titlemark">3.1   </span> <a 
 id="x1-40003.1"></a>Proof</h4>
<!--l. 45--><p class="noindent" >Let <span 
class="cmmi-10">I </span>= <span 
class="cmsy-10">{</span>1<span 
class="cmmi-10">,</span><img 
src="theory6x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,t</span><span 
class="cmsy-10">}</span>. We have
   <center class="par-math-display" >
<img 
src="theory7x.png" alt="       &sum;      &prod;               &minus;1  &sum;      &prod;             &minus;1
PA(0) =   bj       &minus; ak(aj &minus; ak) =   yj      ak(ak &minus; aj)
        j&isin;I  k&isin;I,k&frasl;=j                j&isin;I  k&isin;I,k&frasl;=j
" class="par-math-display" ></center>
<!--l. 50--><p class="nopar" >
<!--l. 52--><p class="indent" >   Let
   <center class="par-math-display" >
<img 
src="theory8x.png" alt="    &lfloor;                             &rfloor; &lfloor;                &rfloor;
          &sum;       &prod;                    &prod;
bt = &lceil;c +     bj      ak(aj &minus; ak)&minus;1&rceil; &lceil;     a&minus;k1(ak &minus; at)&rceil;
         j&isin;I,j&frasl;=t  k&isin;I,k&frasl;=j               k&isin;I,k&frasl;=t
" class="par-math-display" ></center>
<!--l. 57--><p class="nopar" >
<!--l. 59--><p class="indent" >   Then
   <center class="par-math-display" >
<img 
src="theory9x.png" alt="         &sum;       &prod;                     &prod;
PA (0) =      bj       ak(ak &minus; aj)&minus;1 + bt    ak(ak &minus; at)&minus;1
        j&isin;I,j&frasl;=t  k&isin;I,k&frasl;=j                k&isin;I,k&frasl;=t
" class="par-math-display" ></center>
<!--l. 63--><p class="nopar" >
   <center class="math-display" >
<img 
src="theory10x.png" alt="    &sum;       &prod;             &minus;1   &sum;       &prod;             &minus; 1
=       bj      ak(ak &minus; aj) &minus;       bj      ak(ak &minus; aj) + c
  j&isin;I,j&frasl;=t  k&isin;I,k&frasl;=j              j&isin;I,j&frasl;=t  k&isin;I,k&frasl;=j
" class="math-display" ></center>
<!--l. 65--><p class="nopar" >
   <center class="math-display" >
<img 
src="theory11x.png" alt="= c
" class="math-display" ></center>
<!--l. 67--><p class="nopar" >
<!--l. 69--><p class="indent" >   as required.
<!--l. 71--><p class="noindent" >
   <h3 class="sectionHead"><span class="titlemark">4   </span> <a 
 id="x1-50004"></a>Lemma 2</h3>
<!--l. 73--><p class="noindent" >For any <span 
class="cmmi-10">x</span><sub><span 
class="cmr-7">1</span></sub><span 
class="cmmi-10">,</span><img 
src="theory12x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,x</span><sub><span 
class="cmmi-7">t</span></sub> distinct and nonzero elements of <span 
class="cmmi-10">F</span>, and any <span 
class="cmmi-10">y</span><sub><span 
class="cmr-7">1</span></sub><span 
class="cmmi-10">,</span><img 
src="theory13x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,y</span><sub><span 
class="cmmi-7">t</span></sub><span 
class="cmmi-10">,u </span>arbitrary elements of <span 
class="cmmi-10">F</span>, let
   <center class="par-math-display" >
<img 
src="theory14x.png" alt="X  = {(x1,y1),&sdot;&sdot;&sdot;,(xt,yt)}
" class="par-math-display" ></center>
<!--l. 76--><p class="nopar" >
<!--l. 78--><p class="indent" >   and
   <center class="par-math-display" >
<img 
src="theory15x.png" alt="U = {(x1,y1),&sdot;&sdot;&sdot;,(xt&minus; 1,yt&minus;1),(u,PX (u))}
" class="par-math-display" ></center>
<!--l. 80--><p class="nopar" >
<!--l. 82--><p class="indent" >   Then <span 
class="cmmi-10">P</span><sub><span 
class="cmmi-7">X</span></sub> = <span 
class="cmmi-10">P</span><sub><span 
class="cmmi-7">U</span></sub><span 
class="cmmi-10">,i.e.P</span><sub><span 
class="cmmi-7">X</span></sub>(<span 
class="cmmi-10">x</span>) = <span 
class="cmmi-10">P</span><sub><span 
class="cmmi-7">U</span></sub>(<span 
class="cmmi-10">x</span>) for all <span 
class="cmmi-10">x </span><span 
class="cmsy-10">&isin; </span><span 
class="cmmi-10">F</span>.
<!--l. 84--><p class="noindent" >
   <h4 class="subsectionHead"><span class="titlemark">4.1   </span> <a 
 id="x1-60004.1"></a>Proof</h4>
<!--l. 86--><p class="noindent" >Let <span 
class="cmmi-10">S</span><sub><span 
class="cmmi-7">a,b</span></sub> = <img 
src="theory16x.png" alt="{(x1,y1),&sdot;&sdot;&sdot;,(xt&minus; 1,yt&minus;1),(a,b)}"  class="left" align="middle">. Then
   <center class="par-math-display" >
<img 
src="theory17x.png" alt="         &sum;                    &prod;                        &prod;
PSa,b(x) =   yj(x&minus; a)(xj &minus; a)&minus; 1      (x &minus; xk)(xj &minus; xk)&minus;1 + b (x &minus; xk)(a&minus; xk)&minus;1
         j&#x003C;t                 k&frasl;=j,k&#x003C;t                    k&#x003C;t
" class="par-math-display" ></center>
<!--l. 93--><p class="nopar" >
<!--l. 95--><p class="indent" >   Hence if we let <span 
class="cmmi-10">d</span><sub><span 
class="cmmi-7">i,j</span></sub> = <span 
class="cmmi-10">x</span><sub><span 
class="cmmi-7">i</span></sub> <span 
class="cmsy-10">&minus;</span><span 
class="cmmi-10">x</span><sub><span 
class="cmmi-7">j</span></sub> and <span 
class="cmmi-10">e</span><sub><span 
class="cmmi-7">i</span></sub> = <span 
class="cmmi-10">u</span><span 
class="cmsy-10">&minus;</span><span 
class="cmmi-10">x</span><sub><span 
class="cmmi-7">i</span></sub> (both of which are necessarily nonzero, by distinctness of the <span 
class="cmmi-10">x</span><sub><span 
class="cmmi-7">i</span></sub> and <span 
class="cmmi-10">u</span>) we
have
   <center class="par-math-display" >
<img 
src="theory18x.png" alt="        &sum;      &minus; 1 &prod;       &minus;1    &prod;     &minus;1
PX (u) =   yjetdj,t       ekdj,k + yt  ekdt,k
        j&#x003C;t       k&frasl;=j,k&#x003C;t         k&#x003C;t
" class="par-math-display" ></center>
<!--l. 102--><p class="nopar" >
<!--l. 104--><p class="indent" >   and if we also let <span 
class="cmmi-10">f</span><sub><span 
class="cmmi-7">i</span></sub> = <span 
class="cmmi-10">x </span><span 
class="cmsy-10">&minus; </span><span 
class="cmmi-10">x</span><sub><span 
class="cmmi-7">i</span></sub>,
   <center class="par-math-display" >
<img 
src="theory19x.png" alt="P  (x) = &sum; y (u&minus; x)e&minus;1  &prod;   f d&minus;1+ P  (u)&prod;  f e&minus; 1
  U     j&#x003C;t j       j k&frasl;=j,k&#x003C;t k j,k   X    k&#x003C;t kk
" class="par-math-display" ></center>
<!--l. 109--><p class="nopar" >
   <center class="math-display" >
<img 
src="theory20x.png" alt="                                              (                                )
        &sum;              &prod;           { &prod;      } { &sum;          &prod;            &prod;      }
PU (x) =    yj(u &minus; x)e&minus;j 1      fkd&minus;j,1k +    fke&minus;k1       yjetd&minus;j1,t      ekd&minus;j,1l + yt  eld&minus;t1,l
        j&#x003C;t           k&frasl;=j,k&#x003C;t        k&#x003C;t       ( j&#x003C;t      l&frasl;=j,l&#x003C;t         l&#x003C;t     )
" class="math-display" ></center>
<!--l. 115--><p class="nopar" >
<!--l. 117--><p class="indent" >   Expanding,
   <center class="par-math-display" >
<img 
src="theory21x.png" alt="           &sum;              { &prod;            }
PU (x ) =     j&#x003C;tyj(u&minus; x)e&minus;j1    k&frasl;=j,k&#x003C;t fkd&minus;j,1k
           +&sum;    y e d&minus;1{&prod;      e d&minus;1} {&prod;    f e&minus;1}
              j{&#x003C;&prod;t j t j,t   l&frasl;=j,l&#x003C;}t k j,l     k&#x003C;t k k
           +yt   k&#x003C;tekd&minus;t,1kfke&minus;k1
" class="par-math-display" ></center>
<!--l. 127--><p class="nopar" >
   <center class="par-math-display" >
<img 
src="theory22x.png" alt="            &lfloor;          ({           )}             ({                )} &rfloor;
PU(x) = &sum; yj&lceil; (u &minus; x)e&minus; 1   &prod;   fkd&minus; 1 + etd&minus;1fje&minus;1   &prod;    ekd&minus; 1fke&minus;1  &rceil; + yt&prod; d&minus; 1fk
       j&#x003C;t          j  (k&frasl;=j,k&#x003C;t   j,k)      j,t   j ( k&frasl;=j,k&#x003C;t  j,k  k )       k&#x003C;t t,k
" class="par-math-display" ></center>
<!--l. 137--><p class="nopar" >
   <center class="math-display" >
<img 
src="theory23x.png" alt="     &lfloor;             &rfloor;
  &sum;       &prod;          [                    ]    &prod;
=    &lceil;yj      fkd&minus;j1,k&rceil;  (u &minus; x)e&minus;j 1+ ete&minus;j1d&minus;j,t1fj + yt   d&minus;t1,kfk
  j&#x003C;t   k&frasl;=j,k&#x003C;t                                 k&#x003C;t
" class="math-display" ></center>
<!--l. 141--><p class="nopar" >
<!--l. 143--><p class="indent" >   Now
   <center class="par-math-display" >
<img 
src="theory24x.png" alt="(u &minus; x )e&minus;j1 + ete&minus;j1d&minus;j1,tfj = (e&minus;j1d&minus;j1,t)[(u &minus; x)dj,t + etfj]
" class="par-math-display" ></center>
<!--l. 148--><p class="nopar" >
   <center class="math-display" >
<img 
src="theory25x.png" alt="    &minus;1 &minus;1
= (ej dj,t)[(u &minus; x)(xj &minus; xt) +(u &minus; xt)(x&minus; xj)]
" class="math-display" ></center>
<!--l. 150--><p class="nopar" >
   <center class="math-display" >
<img 
src="theory26x.png" alt="    &minus;1 &minus;1
= (ej dj,t)(x &minus; xt)(u&minus; xj)
" class="math-display" ></center>
<!--l. 152--><p class="nopar" >
   <center class="math-display" >
<img 
src="theory27x.png" alt="   &minus;1
= dj,tft
" class="math-display" ></center>
<!--l. 154--><p class="nopar" >
<!--l. 156--><p class="indent" >   Hence
   <center class="par-math-display" >
<img 
src="theory28x.png" alt="           &lfloor;             &rfloor;
P  (x) = &sum;  &lceil;y   &prod;   f d&minus;1&rceil; [f d&minus;1]+ y &prod;  d&minus;1f =  P (x)
 U      j&#x003C;t  jk&frasl;=j,k&#x003C;t k j,k   t j,t    tk&#x003C;t t,k k    X
" class="par-math-display" ></center>
<!--l. 163--><p class="nopar" >
<!--l. 165--><p class="indent" >   as required.
<!--l. 167--><p class="noindent" >
   <h3 class="sectionHead"><span class="titlemark">5   </span> <a 
 id="x1-70005"></a>Construction</h3>
<!--l. 169--><p class="noindent" >Let <span 
class="cmmi-10">s </span>be the number of &#8220;shares&#8221; and <span 
class="cmmi-10">t </span>be the required threshold to recover the shared secret (i.e. we construct a &#8220;<span 
class="cmmi-10">t </span>of <span 
class="cmmi-10">s</span>&#8221;
share).
<!--l. 172--><p class="indent" >   Given a secret <span 
class="cmmi-10">f </span><span 
class="cmsy-10">&isin; </span><span 
class="cmmi-10">F </span>we may construct a Lagrange interpolating polynomial <span 
class="cmmi-10">P</span><sub><span 
class="cmmi-7">X</span></sub> of degree no more than <span 
class="cmmi-10">t </span><span 
class="cmsy-10">&minus; </span>1, with
<span 
class="cmmi-10">P</span><sub><span 
class="cmmi-7">X</span></sub>(0) = <span 
class="cmmi-10">f</span>, as follows:
<!--l. 176--><p class="indent" >   - choose distinct nonzero <span 
class="cmmi-10">x</span><sub><span 
class="cmr-7">1</span></sub><span 
class="cmmi-10">,</span><img 
src="theory29x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,x</span><sub><span 
class="cmmi-7">s</span></sub> <span 
class="cmsy-10">&isin; </span><span 
class="cmmi-10">F</span>
<!--l. 178--><p class="indent" >   - choose arbitrary (and unpredictable) <span 
class="cmmi-10">y</span><sub><span 
class="cmr-7">1</span></sub><span 
class="cmmi-10">,</span><img 
src="theory30x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,y</span><sub><span 
class="cmmi-7">t</span><span 
class="cmsy-7">&minus;</span><span 
class="cmr-7">1</span></sub> <span 
class="cmsy-10">&isin; </span><span 
class="cmmi-10">F</span>
<!--l. 180--><p class="indent" >   - use Lemma 1 to select <span 
class="cmmi-10">y</span><sub><span 
class="cmmi-7">t</span></sub> such that <span 
class="cmmi-10">X </span>= <span 
class="cmsy-10">{</span>(<span 
class="cmmi-10">x</span><sub><span 
class="cmr-7">1</span></sub><span 
class="cmmi-10">,y</span><sub><span 
class="cmr-7">1</span></sub>)<span 
class="cmmi-10">,</span><img 
src="theory31x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,</span>(<span 
class="cmmi-10">x</span><sub><span 
class="cmmi-7">t</span></sub><span 
class="cmmi-10">,y</span><sub><span 
class="cmmi-7">t</span></sub>)<span 
class="cmsy-10">} </span>has the desired intercept <span 
class="cmmi-10">f</span>
<!--l. 183--><p class="indent" >   To obtain additional shares, calculate <span 
class="cmmi-10">y</span><sub><span 
class="cmmi-7">t</span><span 
class="cmr-7">+1</span></sub> = <span 
class="cmmi-10">P</span><sub><span 
class="cmmi-7">X</span></sub>(<span 
class="cmmi-10">x</span><sub><span 
class="cmmi-7">t</span><span 
class="cmr-7">+1</span></sub>)<span 
class="cmmi-10">,</span><img 
src="theory32x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,y</span><sub><span 
class="cmmi-7">s</span></sub> = <span 
class="cmmi-10">P</span><sub><span 
class="cmmi-7">X</span></sub>(<span 
class="cmmi-10">x</span><sub><span 
class="cmmi-7">s</span></sub>).
<!--l. 186--><p class="noindent" >
   <h3 class="sectionHead"><span class="titlemark">6   </span> <a 
 id="x1-80006"></a>Alternate construction, as used in libgfshare</h3>
<!--l. 188--><p class="noindent" >In libgfshare the construction used is as follows:
<!--l. 190--><p class="indent" >   - construct a polynomial <span 
class="cmmi-10">P </span>by choosing arbitrary and unpredictable coefficients of <span 
class="cmmi-10">x,</span><img 
src="theory33x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,x</span><sup><span 
class="cmmi-7">t</span><span 
class="cmsy-7">&minus;</span><span 
class="cmr-7">1</span></sup> from <span 
class="cmmi-10">F</span>, and setting the
coefficient of <span 
class="cmmi-10">x</span><sup><span 
class="cmr-7">0</span></sup> to <span 
class="cmmi-10">f</span>: this therefore has the desired intercept <span 
class="cmmi-10">f</span>
<!--l. 194--><p class="indent" >   - choose distinct nonzero <span 
class="cmmi-10">x</span><sub><span 
class="cmr-7">1</span></sub><span 
class="cmmi-10">,</span><img 
src="theory34x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,x</span><sub><span 
class="cmmi-7">s</span></sub> <span 
class="cmsy-10">&isin; </span><span 
class="cmmi-10">F </span>and evaluate <span 
class="cmmi-10">y</span><sub><span 
class="cmr-7">1</span></sub> = <span 
class="cmmi-10">P</span>(<span 
class="cmmi-10">x</span><sub><span 
class="cmr-7">1</span></sub>)<span 
class="cmmi-10">,</span><img 
src="theory35x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,y</span><sub><span 
class="cmmi-7">s</span></sub> = <span 
class="cmmi-10">P</span>(<span 
class="cmmi-10">x</span><sub><span 
class="cmmi-7">s</span></sub>)
<!--l. 197--><p class="noindent" >
   <h4 class="subsectionHead"><span class="titlemark">6.1   </span> <a 
 id="x1-90006.1"></a>Proof of equivalence in a finite field <span 
class="cmmi-10">F</span></h4>
<!--l. 199--><p class="noindent" >Suppose <span 
class="cmmi-10">F </span>is finite, as is the case in libgfshare, and that in each construction, arbitrary choices are made from among all
possible values in <span 
class="cmmi-10">F</span>.
<!--l. 203--><p class="indent" >   In the alternate construction, given <span 
class="cmmi-10">x</span><sub><span 
class="cmr-7">1</span></sub><span 
class="cmmi-10">,</span><img 
src="theory36x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,x</span><sub><span 
class="cmmi-7">t</span></sub><span 
class="cmmi-10">,f </span>we choose a polynomial <span 
class="cmmi-10">P</span>(<span 
class="cmmi-10">x</span>) = <span 
class="cmmi-10">f </span>+ <span 
class="cmmi-10">m</span><sub><span 
class="cmr-7">1</span></sub><span 
class="cmmi-10">x </span>+ <img 
src="theory37x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" > + <span 
class="cmmi-10">m</span><sub><span 
class="cmmi-7">t</span><span 
class="cmsy-7">&minus;</span><span 
class="cmr-7">1</span></sub><span 
class="cmmi-10">x</span><sup><span 
class="cmmi-7">t</span><span 
class="cmsy-7">&minus;</span><span 
class="cmr-7">1</span></sup> by choosing
arbitrary coefficients <span 
class="cmmi-10">m</span><sub><span 
class="cmr-7">1</span></sub><span 
class="cmmi-10">,</span><img 
src="theory38x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,m</span><sub><span 
class="cmmi-7">t</span><span 
class="cmsy-7">&minus;</span><span 
class="cmr-7">1</span></sub> <span 
class="cmsy-10">&isin; </span><span 
class="cmmi-10">F</span>, i.e. choosing arbitrarily from among the <img 
src="theory39x.png" alt="|F|"  class="left" align="middle"><sup><span 
class="cmmi-7">t</span><span 
class="cmsy-7">&minus;</span><span 
class="cmr-7">1</span></sup> distinct polynomials of degree no
more than <span 
class="cmmi-10">t </span><span 
class="cmsy-10">&minus; </span>1 with intercept <span 
class="cmmi-10">f</span>.
<!--l. 209--><p class="indent" >   In the first construction, given <span 
class="cmmi-10">x</span><sub><span 
class="cmr-7">1</span></sub><span 
class="cmmi-10">,</span><img 
src="theory40x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,x</span><sub><span 
class="cmmi-7">t</span></sub><span 
class="cmmi-10">,f </span>we obtain a polynomial by choosing arbitrary <span 
class="cmmi-10">y</span><sub><span 
class="cmr-7">1</span></sub><span 
class="cmmi-10">,</span><img 
src="theory41x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,y</span><sub><span 
class="cmmi-7">t</span><span 
class="cmsy-7">&minus;</span><span 
class="cmr-7">1</span></sub> <span 
class="cmsy-10">&isin; </span><span 
class="cmmi-10">F</span>. The
polynomials chosen are necessarily distinct since no polynomial can pass through both (<span 
class="cmmi-10">x</span><sub><span 
class="cmmi-7">i</span></sub><span 
class="cmmi-10">,p</span>) and (<span 
class="cmmi-10">x</span><sub><span 
class="cmmi-7">i</span></sub><span 
class="cmmi-10">,q</span>) for any <span 
class="cmmi-10">p</span><span 
class="cmmi-10">&ne;</span><span 
class="cmmi-10">q</span>, so by
choosing each <span 
class="cmmi-10">y</span><sub><span 
class="cmmi-7">i</span></sub> from among the <img 
src="theory42x.png" alt="|F |"  class="left" align="middle"> elements of <span 
class="cmmi-10">F</span>, we choose arbitrarily from a set of <img 
src="theory43x.png" alt="|F |"  class="left" align="middle"><sup><span 
class="cmmi-7">t</span><span 
class="cmsy-7">&minus;</span><span 
class="cmr-7">1</span></sup> distinct polynomials whose
intercepts are all <span 
class="cmmi-10">f</span>.
<!--l. 216--><p class="indent" >   Since there are only <img 
src="theory44x.png" alt="|F |"  class="left" align="middle"><sup><span 
class="cmmi-7">t</span><span 
class="cmsy-7">&minus;</span><span 
class="cmr-7">1</span></sup> such polynomials, each construction chooses arbitrarily from among the same set, and by
the pigeonhole principle there exists a bijective mapping between sets of arbitrary <span 
class="cmmi-10">y </span>values in the first construction and sets
of arbitrary coefficients in the second.
<!--l. 222--><p class="noindent" >
   <h3 class="sectionHead"><span class="titlemark">7   </span> <a 
 id="x1-100007"></a>Theorem: With at least <span 
class="cmmi-10">t </span>pieces the secret is recoverable</h3>
<!--l. 224--><p class="noindent" >Let <span 
class="cmmi-10">B </span><span 
class="cmsy-10">&sub;</span><img 
src="theory45x.png" alt="{(x ,y),&sdot;&sdot;&sdot;,(x ,y )}
   1 1       s  s"  class="left" align="middle"> with <span 
class="cmsy-10">|</span><span 
class="cmmi-10">B</span><span 
class="cmsy-10">| </span>= <span 
class="cmmi-10">t</span>. Then <span 
class="cmmi-10">P</span><sub><span 
class="cmmi-7">B</span></sub>(0) = <span 
class="cmmi-10">c</span>.
<!--l. 227--><p class="indent" >   Further, if <span 
class="cmmi-10">B</span><sup><span 
class="cmsy-7">&prime;</span></sup><span 
class="cmsy-10">&sub;</span><img 
src="theory46x.png" alt="{(x ,y ),&sdot;&sdot;&sdot;,(x ,y )}
   1  1      s  s"  class="left" align="middle"> with <span 
class="cmsy-10">|</span><span 
class="cmmi-10">B</span><sup><span 
class="cmsy-7">&prime;</span></sup><span 
class="cmsy-10">| </span><span 
class="cmmi-10">&#x003E; t</span>, then for every subset <span 
class="cmmi-10">B </span>of <span 
class="cmmi-10">B</span><sup><span 
class="cmsy-7">&prime;</span></sup> with <span 
class="cmsy-10">|</span><span 
class="cmmi-10">B</span><span 
class="cmsy-10">| </span>= <span 
class="cmmi-10">t</span>, <span 
class="cmmi-10">P</span><sub><span 
class="cmmi-7">B</span></sub>(0) = <span 
class="cmmi-10">f</span>.
<!--l. 231--><p class="noindent" >
   <h4 class="subsectionHead"><span class="titlemark">7.1   </span> <a 
 id="x1-110007.1"></a>Proof</h4>
<!--l. 233--><p class="noindent" >The second part is trivially implied by the first.
<!--l. 235--><p class="indent" >   Recall that <span 
class="cmmi-10">X </span>= <img 
src="theory47x.png" alt="{(x1,y1),&sdot;&sdot;&sdot;,(xt,yt)}"  class="left" align="middle"> and that <span 
class="cmmi-10">P</span><sub><span 
class="cmmi-7">X</span></sub>(0) = <span 
class="cmmi-10">f</span>. If <span 
class="cmmi-10">B </span>= <span 
class="cmmi-10">X </span>the result is true. If not, repeatedly
apply Lemma 2 to replace an element of <span 
class="cmmi-10">X </span>not in <span 
class="cmmi-10">B </span>with an element of <span 
class="cmmi-10">B </span>not in <span 
class="cmmi-10">X</span>, preserving the value of
<span 
class="cmmi-10">P</span>(0).
<!--l. 240--><p class="noindent" >
   <h3 class="sectionHead"><span class="titlemark">8   </span> <a 
 id="x1-120008"></a>Theorem: With fewer than <span 
class="cmmi-10">t </span>pieces no information is gained</h3>
<!--l. 242--><p class="noindent" >Let <span 
class="cmmi-10">C </span><span 
class="cmsy-10">&sub;</span><img 
src="theory48x.png" alt="{(x1,y1),&sdot;&sdot;&sdot;,(xs,ys)}"  class="left" align="middle"> with <span 
class="cmsy-10">|</span><span 
class="cmmi-10">C</span><span 
class="cmsy-10">| </span><span 
class="cmmi-10">&#x003C; t</span>. Then for each <span 
class="cmmi-10">d </span><span 
class="cmsy-10">&isin; </span><span 
class="cmmi-10">F</span>, there exists <span 
class="cmmi-10">D </span><span 
class="cmsy-10">&sup; </span><span 
class="cmmi-10">C</span>, <span 
class="cmsy-10">|</span><span 
class="cmmi-10">D</span><span 
class="cmsy-10">| </span>= <span 
class="cmmi-10">t</span>, such that
<span 
class="cmmi-10">d </span>= <span 
class="cmmi-10">P</span><sub><span 
class="cmmi-7">D</span></sub>(0).
<!--l. 246--><p class="indent" >   (In other words, any <span 
class="cmmi-10">d </span><span 
class="cmsy-10">&isin; </span><span 
class="cmmi-10">F </span>remains a possible value for the secret, so an attacker with fewer than <span 
class="cmmi-10">t </span>shares has gained no
information.)
<!--l. 249--><p class="noindent" >
   <h4 class="subsectionHead"><span class="titlemark">8.1   </span> <a 
 id="x1-130008.1"></a>Proof</h4>
<!--l. 251--><p class="noindent" >Let <span 
class="cmmi-10">a</span><sub><span 
class="cmmi-7">i</span></sub>, <span 
class="cmmi-10">b</span><sub><span 
class="cmmi-7">i</span></sub> be such that <span 
class="cmmi-10">C </span>= <img 
src="theory49x.png" alt="{(a1,b1),&sdot;&sdot;&sdot;,(an,bn)}"  class="left" align="middle">, some <span 
class="cmmi-10">n &#x003C; t</span>. Choose arbitrary <span 
class="cmmi-10">a</span><sub><span 
class="cmmi-7">n</span><span 
class="cmr-7">+1</span></sub><span 
class="cmmi-10">,</span><img 
src="theory50x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,a</span><sub><span 
class="cmmi-7">t</span></sub> and arbitrary <span 
class="cmmi-10">b</span><sub><span 
class="cmmi-7">n</span><span 
class="cmr-7">+1</span></sub><span 
class="cmmi-10">,</span><img 
src="theory51x.png" alt="&sdot;&sdot;&sdot;"  class="cdots" ><span 
class="cmmi-10">,b</span><sub><span 
class="cmmi-7">t</span><span 
class="cmsy-7">&minus;</span><span 
class="cmr-7">1</span></sub>.
Let <span 
class="cmmi-10">b</span><sub><span 
class="cmmi-7">t</span></sub> be chosen by applying Lemma 1 with <span 
class="cmmi-10">c </span>:= <span 
class="cmmi-10">d</span>. Then by choice of <span 
class="cmmi-10">b</span><sub><span 
class="cmmi-7">t</span></sub>, <span 
class="cmmi-10">P</span><sub><span 
class="cmmi-7">C</span></sub>(0) = <span 
class="cmmi-10">d </span>as required.
<!--l. 256--><p class="noindent" >
   <h3 class="sectionHead"><span class="titlemark">9   </span> <a 
 id="x1-140009"></a>Implementation in <span 
class="cmmi-10">GF</span>(2<sup><span 
class="cmr-7">8</span></sup>)</h3>
<!--l. 258--><p class="noindent" >The program <span 
class="cmtt-10">test</span><span 
class="cmtt-10">_gfshare</span><span 
class="cmtt-10">_isfield</span>, compiled and run by <span 
class="cmtt-10">make check</span>, demonstrates that the calculations done by
libgfshare are indeed performed in a field.
<!--l. 262--><p class="noindent" >
   <h3 class="sectionHead"><span class="titlemark">10   </span> <a 
 id="x1-1500010"></a>Attacks not addressed</h3>
<!--l. 264--><p class="noindent" >This document has not addressed the following:
<!--l. 266--><p class="indent" >   - Attacks based on the use of a predictable or partially predictable pseudorandom number generator might be
possible.
<!--l. 269--><p class="indent" >   - In the implementation used in libgfshare, the field <span 
class="cmmi-10">F </span>is the field of byte values, with addition being bitwise exclusive-or,
and multiplication as usual; each byte of the secret is shared separately by applying this algorithm separately.
This means that when a secret file is shared, the length in bytes of each share equals the length in bytes of
the secret. If the length of the secret is itself secret, it should be padded to some standard length before
sharing.
<!--l. 277--><p class="noindent" >
   <h3 class="sectionHead"><span class="titlemark">11   </span> <a 
 id="x1-1600011"></a>References</h3>
<!--l. 279--><p class="noindent" >[SHAMIR] Adi Shamir, &#8221;How to share a secret&#8221;, Communications of the ACM, 22(1), pp612&#8211;613, 1979. Available at
<a 
href="http://www.cs.tau.ac.il/~bchor/Shamir.html" class="url" ><span 
class="cmtt-10">http://www.cs.tau.ac.il/</span><span 
class="cmtt-10">~</span><span 
class="cmtt-10">bchor/Shamir.html</span></a>
<!--l. 281--><p class="noindent" >
   <h3 class="sectionHead"><span class="titlemark">12   </span> <a 
 id="x1-1700012"></a>Copyright and disclaimer</h3>
<!--l. 283--><p class="noindent" >Copyright 2006 Simon McVittie, <a 
href="http://smcv.pseudorandom.co.uk/" class="url" ><span 
class="cmtt-10">http://smcv.pseudorandom.co.uk/</span></a>
<!--l. 285--><p class="indent" >   Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the &#8221;Software&#8221;), to deal in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
<!--l. 292--><p class="indent" >   The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.
<!--l. 295--><p class="indent" >   THE SOFTWARE IS PROVIDED &#8221;AS IS&#8221;, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    
</body></html>