This file is indexed.

/usr/include/getfem/getfem_continuation.h is in libgetfem++-dev 4.2.1~beta1~svn4482~dfsg-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
/* -*- c++ -*- (enables emacs c++ mode) */
/*===========================================================================
 
 Copyright (C) 2011-2012 Tomas Ligursky, Yves Renard
 
 This file is a part of GETFEM++
 
 Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
 under  the  terms  of the  GNU  Lesser General Public License as published
 by  the  Free Software Foundation;  either version 3 of the License,  or
 (at your option) any later version along with the GCC Runtime Library
 Exception either version 3.1 or (at your option) any later version.
 This program  is  distributed  in  the  hope  that it will be useful,  but
 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 License and GCC Runtime Library Exception for more details.
 You  should  have received a copy of the GNU Lesser General Public License
 along  with  this program;  if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
 
 As a special exception, you  may use  this file  as it is a part of a free
 software  library  without  restriction.  Specifically,  if   other  files
 instantiate  templates  or  use macros or inline functions from this file,
 or  you compile this  file  and  link  it  with other files  to produce an
 executable, this file  does  not  by itself cause the resulting executable
 to be covered  by the GNU Lesser General Public License.  This   exception
 does not  however  invalidate  any  other  reasons why the executable file
 might be covered by the GNU Lesser General Public License.
 
===========================================================================*/

/** @file getfem_continuation.h
    @author Tomas Ligursky <tomas.ligursky@gmail.com>
    @author Yves Renard <Yves.Renard@insa-lyon.fr>
    @date October 17, 2011.
    @brief inexact Moore-Penrose continuation method.
*/
#ifndef GETFEM_CONTINUATION_H__
#define GETFEM_CONTINUATION_H__

#include <getfem/getfem_model_solvers.h>

namespace getfem {


  //=========================================================================
  // Abstract Moore-Penrose continuation method
  //=========================================================================

  const double tau_init = 1.e6;
  enum build_data { BUILD_F = 1, BUILD_F_x = 2, BUILD_ALL = 3 };

  /* Compute a unit tangent at (x, gamma) that is accute to the incoming
     vector. */
  template <typename CONT_S, typename VECT>
  void compute_tangent(CONT_S &S, const VECT &x, double gamma,
		       VECT &t_x, double &t_gamma) {
    double r;
    VECT g(x), y(x);
    S.F_gamma(x, gamma, g);
    S.solve_grad(x, gamma, y, g);
    t_gamma = 1. / (t_gamma - S.w_sp(t_x, y));
    S.scale(y, -t_gamma); S.copy(y, t_x);
    
    double no = S.w_norm(t_x, t_gamma);
    S.scale(t_x, 1./no); t_gamma /= no;

    S.mult_grad(x, gamma, t_x, y); S.scaled_add(y, g, t_gamma, y);
    r = S.norm(y);
    if (r > 1.e-10)
      GMM_WARNING1("Tangent computed with the residual " << r);
  }

  /* Calculate a tangent vector at (x, gamma) + h * (T_x, T_gamma) and test
     whether it is close to (T_x, T_gamma). Informatively, compare it with
     (t_x, t_gamma), as well. */
  template <typename CONT_S, typename VECT>
  bool test_tangent(CONT_S &S, const VECT &x, double gamma,
		    const VECT &T_x, double T_gamma,
		    const VECT &t_x, double t_gamma, double h) {
    bool res = false;
    double Gamma, T_Gamma = T_gamma, cang;
    VECT X(x), T_X(T_x);
    
    S.scaled_add(x, T_x, h, X); Gamma = gamma + h * T_gamma;
    S.set_build(BUILD_ALL);
    compute_tangent(S, X, Gamma, T_X, T_Gamma);
    
    cang = S.cosang(T_X, T_x, T_Gamma, T_gamma);
    if (S.noisy() > 1)
      cout << "cos of the angle with the tested tangent " << cang << endl;
    if (cang >= S.mincos()) res = true;
    else {    
      cang = S.cosang(T_X, t_x, T_Gamma, t_gamma);
      if (S.noisy() > 1)
	cout << "cos of the angle with the initial tangent " << cang << endl;
    }
    return res;
  }

  /* Simple tangent switch. */
  template <typename CONT_S, typename VECT>
  bool switch_tangent(CONT_S &S, const VECT &x, double gamma,
		      VECT &t_x, double &t_gamma, double &h) {    
    bool accepted;
    double t_gamma0 = t_gamma, T_gamma = t_gamma, Gamma;
    VECT t_x0(t_x), T_x(t_x), X(x);

    if (S.noisy() > 0) cout  << "trying simple tangent switch" << endl;
    if (S.noisy() > 0) cout << "starting computing a new tangent" << endl;
    h *= 1.5;
    S.scaled_add(x, T_x, h, X); Gamma = gamma + h * T_gamma;
    S.set_build(BUILD_ALL);
    compute_tangent(S, X, Gamma, T_x, T_gamma);
    // One can test the cosine of the angle between (T_x, T_gamma) and
    // (t_x, t_gamma), for sure, and increase h_min if it were greater or
    // equal to S.mincos(). However, this seems to be superfluous.
    
    if (S.noisy() > 0)
      cout << "starting testing the computed tangent" << endl;
    double h_test = (-0.9) * S.h_min();
    do {
      h_test = -h_test
	+ pow(10., floor(log10(-h_test / S.h_min()))) * S.h_min();
      accepted = test_tangent(S, x, gamma, T_x, T_gamma,
			      t_x, t_gamma, h_test);
      if (!accepted) {
	h_test *= -1.;
	accepted = test_tangent(S, x, gamma, T_x, T_gamma,
				t_x, t_gamma, h_test);
      }
    } while (!accepted && (h_test > -S.h_max()));
    
    if (accepted) {
      S.copy(T_x, t_x); t_gamma = T_gamma;
      if (h_test < 0) { 
	S.scale(t_x, -1.); t_gamma *= -1.; h_test *= -1.;
      }
      if (S.noisy() > 0)
	cout << "tangent direction switched, "
	     << "starting computing a suitable step size" << endl;
      bool h_adapted = false; h = S.h_init();
      while (!h_adapted && (h > h_test)) {
	h_adapted = test_tangent(S, x, gamma, t_x, t_gamma,
				 t_x0, t_gamma0, h);
	h *= S.h_dec();
      }
      h = (h_adapted) ? h / S.h_dec() : h_test;
    } else
      if (S.noisy() > 0) cout << "simple tangent switch has failed" << endl;
    
    return accepted;
  }


  /* Test function for bifurcation points for a given matrix. The first part
     of the solution of the augmented system is passed in
     (v_x, v_gamma). */
  template <typename CONT_S, typename MAT, typename VECT>
  double test_function(CONT_S &S, const MAT &A, const VECT &g,
		       const VECT &t_x, double t_gamma,
		       VECT &v_x, double &v_gamma) {
    double q, r, tau;
    VECT y(g), z(g);

    S.solve(A, y, z, g, S.b_x());
    v_gamma = (S.b_gamma() - S.sp(t_x, z)) / (t_gamma - S.sp(t_x, y));
    S.scaled_add(z, y, -v_gamma, v_x);
    tau = 1. / (S.d() - S.sp(S.c_x(), v_x) - S.c_gamma() * v_gamma);
    S.scale(v_x, -tau); v_gamma *= -tau;

    // control of the norm of the residual
    S.mult(A, v_x, y);
    S.scaled_add(y, g, v_gamma, y); S.scaled_add(y, S.b_x(), tau, y); 
    r = S.sp(y, y);
    q = S.sp(t_x, v_x) + t_gamma * v_gamma + S.b_gamma() * tau; r += q * q;
    q = S.sp(S.c_x(), v_x) + S.c_gamma() * v_gamma + S.d() * tau - 1.;
    r += q * q; r = sqrt(r);
    if (r > 1.e-10)
      GMM_WARNING1("Test function evaluated with the residual " << r);

    return tau;
  }

  template <typename CONT_S, typename MAT, typename VECT>
  double test_function(CONT_S &S, const MAT &A, const VECT &g,
		       const VECT &t_x, double t_gamma) {
    VECT v_x(g); double v_gamma;
    return test_function(S, A, g, t_x, t_gamma, v_x, v_gamma);
  }

  /* Test function for bifurcation points for the gradient computed at
     (x, gamma). */
  template <typename CONT_S, typename VECT>
  double test_function(CONT_S &S, const VECT &x, double gamma,
		       const VECT &t_x, double t_gamma,
		       VECT &v_x, double &v_gamma) {
    typename CONT_S::MAT A; S.F_x(x, gamma, A);
    VECT g(x); S.F_gamma(x, gamma, g);
    return test_function(S, A, g, t_x, t_gamma, v_x, v_gamma);
  }

  template <typename CONT_S, typename VECT>
  double test_function(CONT_S &S, const VECT &x, double gamma,
		       const VECT &t_x, double t_gamma) {
    VECT v_x(x); double v_gamma;
    return test_function(S, x, gamma, t_x, t_gamma, v_x, v_gamma);
  }

  /* Test for smooth bifurcation points. */
  template <typename CONT_S, typename VECT>
  bool test_smooth_bifurcation(CONT_S &S, const VECT &x, double gamma,
			       const VECT &t_x, double t_gamma) {
    double tau0 = S.get_tau1(), tau1 = S.get_tau2(),
      tau2 = test_function(S, x, gamma, t_x, t_gamma);
    S.set_tau1(tau1); S.set_tau2(tau2);
    return (tau2 * tau1 < 0) && (S.abs(tau1) < S.abs(tau0));
  }

  /* Test for non-smooth bifurcation points. */
  template <typename CONT_S, typename VECT>
  bool test_nonsmooth_bifurcation (CONT_S &S, const VECT &x1, double gamma1,
				   const VECT &t_x1, double t_gamma1,
				   const VECT &x2, double gamma2,
				   const VECT &t_x2, double t_gamma2) {
    unsigned long nb_changes = 0;
    double alpha = 0., delta = S.delta_min(),
      tau0 = tau_init, tau1= S.get_tau2(),tau2, tau_var_ref, t_gamma;
    VECT g1(x1), g2(x1), g(x1), t_x(x1);

    // compute gradients at the two given points
    typename CONT_S::MAT A1, A2, A;
    S.F_x(x2, gamma2, A2); S.F_x(x2, gamma2, A); S.F_gamma(x2, gamma2, g2);
    S.F_x(x1, gamma1, A1); S.F_gamma(x1, gamma1, g1);
    S.init_tau_graph();
    tau2 = test_function(S, A2, g2, t_x2, t_gamma2);
    tau_var_ref = std::max(S.abs(tau2 - tau1),
			   (S.abs(tau1) + S.abs(tau2)) / 200);

    // monitor sign changes of the test function on the convex combination
    do {
      alpha = std::min(alpha + delta, 1.);
      S.scaled_add(A1, 1. - alpha, A2, alpha, A);
      S.scaled_add(g1, 1. - alpha, g2, alpha, g);
      S.scaled_add(t_x1, 1. - alpha, t_x2, alpha, t_x);
      t_gamma = (1. - alpha) * t_gamma1 + alpha * t_gamma2;
      
      tau2 = test_function(S, A, g, t_x, t_gamma);
      if ((tau2 * tau1 < 0) && (S.abs(tau1) < S.abs(tau0))) ++nb_changes;
      S.insert_tau_graph(alpha, tau2);

      if (S.abs(tau2 - tau1) < 0.5 * S.thrvar() * tau_var_ref)
	delta = std::min(2 * delta, S.delta_max());
      else if (S.abs(tau2 - tau1) > S.thrvar() * tau_var_ref) 
	delta = std::max(0.1 * delta, S.delta_min());
      tau0 = tau1; tau1 = tau2; 
    } while (alpha < 1.);
    
    S.set_tau1(tau_init); S.set_tau2(tau2);
    return nb_changes % 2;
  }
  
  /* Newton-type corrections for the couple ((X, Gamma), (T_x, T_gamma)).
     The current direction of (T_x, T_gamma) is informatively compared with
     (t_x, t_gamma). */
  template <typename CONT_S, typename VECT>
  bool newton_corr(CONT_S &S, VECT &X, double &Gamma, VECT &T_x,
		   double &T_gamma, const VECT &t_x, double t_gamma,
		   unsigned long &it) {
    bool converged = false;
    double Delta_Gamma, no, res, diff;
    VECT F(X), g(X), Delta_X(X), y(X);

    if (S.noisy() > 0) cout << "starting correction " << endl;
    it = 0;
    S.F(X, Gamma, F);
    
    do {
      S.F_gamma(X, Gamma, g);
      S.solve_grad(X, Gamma, Delta_X, y, F, g);
      
      Delta_Gamma = S.sp(T_x, Delta_X) / (S.sp(T_x, y) - T_gamma);
      S.scaled_add(Delta_X, y, -Delta_Gamma, Delta_X);
      S.scaled_add(X, Delta_X, -1., X); Gamma -= Delta_Gamma;
      S.set_build(BUILD_ALL);
      
      T_gamma = 1. / (T_gamma - S.w_sp(T_x, y));
      S.scale(y, -T_gamma); S.copy(y, T_x);
      no = S.w_norm(T_x, T_gamma);
      S.scale(T_x, 1./no); T_gamma /= no;

      S.F(X, Gamma, F); res = S.norm(F); 
      diff = S.w_norm(Delta_X, Delta_Gamma);
      if (S.noisy() > 1)
	cout << " iter " << it << " residual " << res
	     << " difference " << diff 
	     << " cosang " << S.cosang(T_x, t_x, T_gamma, t_gamma) << endl;

      if (res <= S.maxres() && diff <= S.maxdiff()) {
	converged = true;
	// recalculate the final tangent, for sure
	compute_tangent(S, X, Gamma, T_x, T_gamma);
	break;
      }

      it++;      
    } while (it < S.maxit() && res < 1.e8);
    return converged;
  }
  
  template <typename CONT_S, typename VECT>
  bool newton_corr(CONT_S &S, VECT &X, double &Gamma, VECT &T_x,
		   double &T_gamma, const VECT &t_x, double t_gamma) {
    unsigned long it;
    return newton_corr(S, X, Gamma, T_x, T_gamma, t_x, t_gamma, it);
  }

  /* Try to perform one predictor-corrector step starting from the couple
     ((x, gamma), (t_x, t_gamma)). Return the resulting couple in the case of
     convergence. */
  template <typename CONT_S, typename VECT>
  bool test_predict_dir(CONT_S &S, VECT &x, double &gamma,
			VECT &t_x, double &t_gamma) {
    bool converged = false;
    double h =  S.h_init(), Gamma, T_gamma;
    VECT X(x), T_x(x);
    do { //step control
      
      // prediction
      if (S.noisy() > 0) cout << "prediction with h = " << h << endl;
      S.scaled_add(x, t_x, h, X); Gamma = gamma + h * t_gamma;
      S.set_build(BUILD_ALL);
      S.copy(t_x, T_x); T_gamma = t_gamma;

      //correction
      converged = newton_corr(S, X, Gamma, T_x, T_gamma, t_x, t_gamma);
      
      if (converged) {
	// check the direction of the tangent found
	S.scaled_add(X, x, -1., t_x); t_gamma = Gamma - gamma;
	if (S.sp(T_x, t_x, T_gamma, t_gamma) < 0)
	  { S.scale(T_x, -1.); T_gamma *= -1.; }
	S.copy(X, x); gamma = Gamma;
	S.copy(T_x, t_x); t_gamma = T_gamma;
      }
      else if (h > S.h_min())
	  h = (0.199 * S.h_dec() * h > S.h_min()) ?
	    0.199 * S.h_dec() * h : S.h_min();
      else break;

    } while(!converged);
    return converged;
  }

  /* A tool for approximating a smooth bifurcation point close to (x, gamma)
     and locating the two branches emanating from there. */
  template <typename CONT_S, typename VECT>
  void treat_smooth_bif_point(CONT_S &S, const VECT &x, double gamma,
			      const VECT &t_x, double t_gamma, double h) {
    unsigned long i = 0;
    double tau0 = S.get_tau1(), tau1 = S.get_tau2(),
      gamma0 = gamma, Gamma, t_gamma0 = t_gamma, T_gamma = t_gamma, v_gamma;
    VECT x0(x), X(x), t_x0(t_x), T_x(t_x), v_x(t_x);
    
    if (S.noisy() > 0)
      cout  << "starting locating the bifurcation point" << endl;

    // predictor-corrector steps with a secant-type step-length adaptation
    h *= tau1 / (tau0 - tau1);
    while ((S.abs(h) >= S.h_min()) && i < 10) {
      if (S.noisy() > 0) cout << "prediction with h = " << h << endl;
      S.scaled_add(x0, t_x0, h, X); Gamma = gamma0 + h * t_gamma0;
      S.set_build(BUILD_ALL);
      if (newton_corr(S, X, Gamma, T_x, T_gamma, t_x0, t_gamma0)) {
	S.copy(X, x0); gamma0 = Gamma;
	if (S.cosang(T_x, t_x0, T_gamma, t_gamma0) >= S.mincos())
	  { S.copy(T_x, t_x0); t_gamma0 = T_gamma; }
	tau0 = tau1;
	tau1 = test_function(S, X, Gamma, t_x0, t_gamma0, v_x, v_gamma);
	h *= tau1 / (tau0 - tau1);
      }	else {
	S.scaled_add(x0, t_x0, h, x0); gamma0 += h * t_gamma0;
	test_function(S, x0, gamma0, t_x0, t_gamma0, v_x, v_gamma);
	break;
      }
      ++i;
    }
    S.set_sing_point(x0, gamma0);
    S.insert_tangent_sing(t_x0, t_gamma0);

    if (S.noisy() > 0)
      cout  << "starting searching for the second branch" << endl;
    double no = S.w_norm(v_x, v_gamma);
    S.scale(v_x, 1./no); v_gamma /= no;
    if (test_predict_dir(S, x0, gamma0, v_x, v_gamma)
	&& S.insert_tangent_sing(v_x, v_gamma))
      { if (S.noisy() > 0) cout << "second branch found" << endl; }
    else if (S.noisy() > 0) cout << "Second branch not found!" << endl;
  }
  
  /* A tool for approximating a non-smooth point close to (x, gamma) and
     locating (preferably) all smooth one-sided solution branches emanating
     from there. It is supposed that (x, gamma) is a point on the previously
     traversed smooth solution branch within the distance of S.h_min() from
     the end point of this branch and (t_x, t_gamma) is the corresponding
     tangent that is directed towards the end point. */
  template <typename CONT_S, typename VECT>
  void treat_nonsmooth_point(CONT_S &S, const VECT &x, double gamma,
			     const VECT &t_x, double t_gamma, int version) {
    double gamma_end = gamma, Gamma, t_gamma0 = t_gamma, T_gamma = t_gamma,
      h = S.h_min(), cang, mcos = S.mincos();
    VECT x_end(x), X(x), t_x0(t_x), T_x(t_x);

    // approximate the non-smooth point by a bisection-like algorithm
    if (S.noisy() > 0)
      cout  << "starting locating a non-smooth point" << endl;
    S.scaled_add(x, t_x, h, X); Gamma = gamma + h * t_gamma;
    S.set_build(BUILD_ALL);
    if (newton_corr(S, X, Gamma, T_x, T_gamma, t_x0, t_gamma0)) {
      cang = S.cosang(T_x, t_x0, T_gamma, t_gamma0);
      if (cang >= mcos) mcos = (cang + 1.) / 2.;
    }

    S.copy(t_x0, T_x); T_gamma = t_gamma0;
    h /= 2.;
    for (unsigned long i = 0; i < 15; i++) {
      if (S.noisy() > 0) cout << "prediction with h = " << h << endl;
      S.scaled_add(x_end, t_x0, h, X); Gamma = gamma_end + h * t_gamma0;
      S.set_build(BUILD_ALL);
      if (newton_corr(S, X, Gamma, T_x, T_gamma, t_x0, t_gamma0)
	  && (S.cosang(T_x, t_x, T_gamma, t_gamma) >= mcos)) {
	S.copy(X, x_end); gamma_end = Gamma;
	S.copy(T_x, t_x0); t_gamma0 = T_gamma;
      } else {
	S.copy(t_x0, T_x); T_gamma = t_gamma0;
      }
      h /= 2.;
    }
    S.scaled_add(x_end, t_x0, h, x_end); gamma_end += h * t_gamma0;
    S.set_sing_point(x_end, gamma_end);

    // take two vectors to span a subspace of perturbations for the
    // non-smooth point
    if (S.noisy() > 0)
      cout  << "starting a thorough search for other branches" << endl;
    double t_gamma1 = t_gamma0, t_gamma2 = t_gamma0;
    VECT t_x1(t_x0), t_x2(t_x0);
    S.scale(t_x1, -1.); t_gamma1 *= -1.;
    S.insert_tangent_sing(t_x1, t_gamma1);

    h = S.h_min();
    S.scaled_add(x_end, t_x0, h, X); Gamma = gamma_end + h * t_gamma0;
    S.set_build(BUILD_ALL);
    compute_tangent(S, X, Gamma, t_x2, t_gamma2);

    // perturb the non-smooth point systematically to find new tangent
    // predictions
    unsigned long i1 = 0, i2 = 0, ncomb = 0;
    double a, a1, a2, no;
    S.clear(t_x0); t_gamma0 = 0.;

    do {
      for (unsigned long i = 0; i < S.nbdir(); i++) {
	a = (2 * M_PI * double(i)) / double(S.nbdir());
	a1 = h * sin(a); a2 = h * cos(a);
	S.scaled_add(x_end, t_x1, a1, X); Gamma = gamma_end + a1 * t_gamma1;
	S.scaled_add(X, t_x2, a2, X); Gamma += a2 * t_gamma2;
	S.set_build(BUILD_ALL);
	compute_tangent(S, X, Gamma, T_x, T_gamma);

	if (S.abs(S.cosang(T_x, t_x0, T_gamma, t_gamma0)) < S.mincos()) {
	  S.copy(T_x, t_x0); t_gamma0 = T_gamma;
	  if (S.insert_tangent_predict(T_x, T_gamma)) {
	    if (S.noisy() > 0)
	      cout << "new potential tangent vector found, "
		   << "trying one predictor-corrector step" << endl;
	    S.copy(x_end, X); Gamma = gamma_end;
	    
	    if (test_predict_dir(S, X, Gamma, T_x, T_gamma)) {
	      if (S.insert_tangent_sing(T_x, T_gamma)) {
		if ((a == 0) && (ncomb == 0)
		    && (S.abs(S.cosang(T_x, t_x0, T_gamma, t_gamma0))
			>= S.mincos())) { i2 = 1; ncomb = 1; }
		if (version) S.set_next_point(X, Gamma);
	      }
	      S.copy(x_end, X); Gamma = gamma_end;
	      S.copy(t_x0, T_x); T_gamma = t_gamma0;
	    }
	    
	    S.scale(T_x, -1.); T_gamma *= -1.;
	    if (test_predict_dir(S, X, Gamma, T_x, T_gamma)
		&& S.insert_tangent_sing(T_x, T_gamma) && version)
	      S.set_next_point(X, Gamma);
	  }
	}
      }
      
      // heuristics for varying the spanning vectors
      bool index_changed;
      if (i1 + 1 < i2) { ++i1; index_changed = true; }
      else if(i2 + 1 < S.nb_tangent_sing())
	{ ++i2; i1 = 0; index_changed = true; }
      else index_changed = false;
      if (index_changed) {
	S.copy(S.get_t_x_sing(i1), t_x1); t_gamma1 = S.get_t_gamma_sing(i1);
	S.copy(S.get_t_x_sing(i2), t_x2); t_gamma2 = S.get_t_gamma_sing(i2);
      } else {
	S.fill_random(T_x); T_gamma = S.random();
	no = S.w_norm(T_x, T_gamma);
	S.scaled_add(t_x2, T_x, 0.1/no, t_x2);
	t_gamma2 += 0.1/no * T_gamma;
	S.scaled_add(x_end, t_x2, h, X); Gamma = gamma_end + h * t_gamma2;
	S.set_build(BUILD_ALL);
	compute_tangent(S, X, Gamma, t_x2, t_gamma2);
      }
    } while (++ncomb < S.nbcomb());

    if (S.noisy() > 0)
      cout << "located branches " << S.nb_tangent_sing() << endl;
  }


  template <typename CONT_S, typename VECT>
  void init_test_function(CONT_S &S, const VECT &x, double gamma,
			  const VECT &t_x, double t_gamma) {
    if (S.noisy() > 0) cout << "starting computing an initial value of a "
			    << "test function for bifurcations" << endl;
    S.set_build(BUILD_ALL);
    double tau = test_function(S, x, gamma, t_x, t_gamma); S.set_tau2(tau);
  }

  template <typename CONT_S, typename VECT>
  void init_Moore_Penrose_continuation(CONT_S &S, const VECT &x,
				       double gamma, VECT &t_x,
				       double &t_gamma, double &h) {
    S.set_build(BUILD_ALL);
    S.clear(t_x); t_gamma = (t_gamma >= 0) ? 1. : -1.;
    if (S.noisy() > 0)
      cout << "starting computing an initial tangent" << endl;
    compute_tangent(S, x, gamma, t_x, t_gamma);
    h = S.h_init();
    if (S.bifurcations()) init_test_function(S, x, gamma, t_x, t_gamma);
  }

  
  /* Perform one step of the (non-smooth) Moore-Penrose continuation.
     NOTE: The new point need not to be saved in the model in the end! */
  template <typename CONT_S, typename VECT>
    void Moore_Penrose_continuation(CONT_S &S, VECT &x, double &gamma,
				    VECT &t_x, double &t_gamma, double &h) {
    bool converged, new_point = false, tangent_switched = false;
    unsigned long it, step_dec = 0;
    double t_gamma0 = t_gamma, Gamma, T_gamma;
    VECT t_x0(t_x), X(x), T_x(x);

    S.clear_tau_currentstep(); S.clear_sing_data();

    do {
      // prediction
      if (S.noisy() > 0) cout << "prediction with h = " << h << endl;
      S.scaled_add(x, t_x, h, X); Gamma = gamma + h * t_gamma;
      S.set_build(BUILD_ALL);
      S.copy(t_x, T_x); T_gamma = t_gamma;
      
      // correction
      converged = newton_corr(S, X, Gamma, T_x, T_gamma, t_x, t_gamma, it);

      if (converged
	  && (S.cosang(T_x, t_x, T_gamma, t_gamma) >= S.mincos())) {
	new_point = true;
	if (S.bifurcations()) {
	  if (S.noisy() > 0)
	    cout << "new point found, starting computing a test function "
		 << "for bifurcations" << endl;
	  if (!tangent_switched) {
	    if(test_smooth_bifurcation(S, X, Gamma, T_x, T_gamma)) {
	      S.set_sing_label("smooth bifurcation point");
	      if (S.noisy() > 0)
		cout << "Smooth bifurcation point detected!" << endl;
	      treat_smooth_bif_point(S, X, Gamma, T_x, T_gamma, h);
	    }
	  } else if (test_nonsmooth_bifurcation(S, x, gamma, t_x0, t_gamma0,
						X, Gamma, T_x, T_gamma)) {
	    S.set_sing_label("non-smooth bifurcation point");
	    if (S.noisy() > 0)
	      cout << "Non-smooth bifurcation point detected!" << endl;
	    treat_nonsmooth_point(S, x, gamma, t_x0, t_gamma0, 0);
	  }
	}
	
	if (step_dec == 0 && it < S.thrit())
	  h = (S.h_inc() * h < S.h_max()) ? S.h_inc() * h : S.h_max();
      } else if (h > S.h_min()) {
	h = (S.h_dec() * h > S.h_min()) ? S.h_dec() * h : S.h_min();
	step_dec++;
      } else if (S.non_smooth() && !tangent_switched) {
	if (S.noisy() > 0)
	  cout << "classical continuation has failed" << endl;
	if (switch_tangent(S, x, gamma, t_x, t_gamma, h)) {
	  tangent_switched = true;
	  step_dec = (h >= S.h_init()) ? 0 : 1;
	  if (S.noisy() > 0)
	    cout << "restarting the classical continuation" << endl;
	} else break;
      } else break;
    } while (!new_point);

    if (new_point) {
      S.copy(X, x); gamma = Gamma;
      S.copy(T_x, t_x); t_gamma = T_gamma;
    } else if (S.non_smooth()) {
      treat_nonsmooth_point(S, x, gamma, t_x0, t_gamma0, 1);
      if (S.next_point()) {
	if (S.bifurcations()) {
	  if (S.noisy() > 0)
	    cout << "starting computing a test function for bifurcations"
		 << endl;
	  S.set_build(BUILD_ALL);
	  bool bifurcation_detected = (S.nb_tangent_sing() > 2);
	  if (bifurcation_detected) {
	    // update the stored values of the test function only
	    S.set_tau1(tau_init);
	    S.set_tau2(test_function(S, S.get_x_next(), S.get_gamma_next(),
				     S.get_t_x_sing(1),
				     S.get_t_gamma_sing(1)));
	  } else
	    bifurcation_detected
	      = test_nonsmooth_bifurcation(S, x, gamma, t_x, t_gamma,
					   S.get_x_next(),
					   S.get_gamma_next(),
					   S.get_t_x_sing(1),
					   S.get_t_gamma_sing(1));
	  if (bifurcation_detected) {
	    S.set_sing_label("non-smooth bifurcation point");
	    if (S.noisy() > 0)
	      cout << "Non-smooth bifurcation point detected!" << endl;
	  }
	}
	
	S.copy(S.get_x_next(), x); gamma = S.get_gamma_next();
	S.copy(S.get_t_x_sing(1), t_x); t_gamma = S.get_t_gamma_sing(1);
	h = S.h_init();
	new_point = true;
      }
    }
    
    if (!new_point) {
      cout << "Continuation has failed!" << endl;
      h = 0;
    }
  }
  

  //=========================================================================
  // Moore-Penrose continuation method for Getfem models
  //=========================================================================


#ifdef GETFEM_MODELS_H__
 
  struct cont_struct_getfem_model {
    
    typedef base_vector VECT;
    typedef model_real_sparse_matrix MAT;
    
  private:
    model *md;
    bool bifurcations_, nonsmooth;
    std::string parameter_name_;
    bool with_parametrised_data;
    std::string initdata_name_, finaldata_name_, currentdata_name_;
    double scfac_;
    rmodel_plsolver_type lsolver;
    double h_init_, h_max_, h_min_, h_inc_, h_dec_;
    unsigned long maxit_, thrit_;
    double maxres_, maxdiff_, mincos_, maxres_solve_, delta_max_, delta_min_,
      thrvar_;
    unsigned long nbdir_, nbcomb_;
    int noisy_;
    VECT b_x_, c_x_;
    double b_gamma_, c_gamma_, d_;
    double tau1, tau2;
    VECT alpha_hist, tau_hist;
    std::map<double, double> tau_graph;
    std::string sing_label;
    VECT x_sing, x_next;
    double gamma_sing, gamma_next;
    std::vector<VECT> t_x_sing, t_x_predict;
    std::vector<double> t_gamma_sing, t_gamma_predict;
    build_data build;

  public:
    void init_border(void) {
      srand(unsigned(time(NULL)));
      unsigned long nbdof = md->nb_dof();
      gmm::resize(b_x_, nbdof); gmm::fill_random(b_x_);
      gmm::resize(c_x_, nbdof); gmm::fill_random(c_x_);
      b_gamma_ = gmm::random(1.); c_gamma_ = gmm::random(1.);
      d_ = gmm::random(1.);
    }

    cont_struct_getfem_model
    (model &m, const std::string &pn, double sfac, rmodel_plsolver_type ls,
     bool bif = false, double hin = 1.e-2, double hmax = 1.e-1,
     double hmin = 1.e-5, double hinc = 1.3, double hdec = 0.5,
     unsigned long mit = 10, unsigned long tit = 4, double mres = 1.e-6,
     double mdiff = 1.e-6, double mcos = 0.9, double mress = 1.e-8,
     int noi = 0, bool nonsm = false, double dmax = 0.005,
     double dmin = 0.00012, double tvar = 0.02, unsigned long ndir = 40,
     unsigned long ncomb = 1)
      : md(&m), bifurcations_(bif), nonsmooth(nonsm), parameter_name_(pn),
	with_parametrised_data(false), scfac_(sfac), lsolver(ls),
	h_init_(hin), h_max_(hmax), h_min_(hmin), h_inc_(hinc), h_dec_(hdec),
	maxit_(mit), thrit_(tit), maxres_(mres), maxdiff_(mdiff),
	mincos_(mcos), maxres_solve_(mress), delta_max_(dmax),
	delta_min_(dmin), thrvar_(tvar), nbdir_(ndir), nbcomb_(ncomb),
	noisy_(noi), tau1(tau_init), tau2(tau_init), gamma_sing(0.),
	gamma_next(0.), build(BUILD_ALL)
    { GMM_ASSERT1(!md->is_complex(),
		  "Continuation has only a real version, sorry.");
      if (bifurcations_) init_border(); }
    
    cont_struct_getfem_model
    (model &m, const std::string &pn, const std::string &in,
     const std::string &fn, const std::string &cn, double sfac,
     rmodel_plsolver_type ls, bool bif = false, double hin = 1.e-2,
     double hmax = 1.e-1, double hmin = 1.e-5, double hinc = 1.3,
     double hdec = 0.5, unsigned long mit = 10, unsigned long tit = 4,
     double mres = 1.e-6, double mdiff = 1.e-6, double mcos = 0.9,
     double mress = 1.e-8, int noi = 0, bool nonsm = false,
     double dmax = 0.005, double dmin = 0.00012, double tvar = 0.02,
     unsigned long ndir = 40, unsigned long ncomb = 1)
      : md(&m), bifurcations_(bif), nonsmooth(nonsm), parameter_name_(pn),
	with_parametrised_data(true), initdata_name_(in),
	finaldata_name_(fn), currentdata_name_(cn), scfac_(sfac),
	lsolver(ls), h_init_(hin), h_max_(hmax), h_min_(hmin), h_inc_(hinc),
	h_dec_(hdec), maxit_(mit), thrit_(tit), maxres_(mres),
	maxdiff_(mdiff), mincos_(mcos), maxres_solve_(mress),
	delta_max_(dmax), delta_min_(dmin), thrvar_(tvar), nbdir_(ndir),
	nbcomb_(ncomb), noisy_(noi), tau1(tau_init), tau2(tau_init),
	gamma_sing(0.), gamma_next(0.), build(BUILD_ALL)
    { GMM_ASSERT1(!md->is_complex(),
		  "Continuation has only a real version, sorry.");
      if (bifurcations_) init_border(); }

    cont_struct_getfem_model(void) {}
    

    // Linear algebra functions
    double abs(double a) { return gmm::abs(a); }
    void clear(VECT &v) { gmm::clear(v); }
    void copy(const VECT &v1, VECT &v) { gmm::copy(v1, v); }
    void scale(VECT &v, double a) { gmm::scale(v, a); }
    void scaled_add(const VECT &v1, const VECT &v2, double a, VECT &v)
    { gmm::add(v1, gmm::scaled(v2, a), v); }
    void scaled_add(const VECT &v1, double a1,
		    const VECT &v2, double a2, VECT &v)
    { gmm::add(gmm::scaled(v1, a1), gmm::scaled(v2, a2), v); }
    void scaled_add(const MAT &M1, double a1,
		    const MAT &M2, double a2, MAT &M)
    { gmm::add(gmm::scaled(M1, a1), gmm::scaled(M2, a2), M); }    
    void mult(const MAT &A, const VECT &v1, VECT &v)
    { gmm::mult(A, v1, v); }

    double sp(const VECT &v1, const VECT &v2)
    { return gmm::vect_sp(v1, v2); }
    double norm(const VECT &v)
    { return gmm::vect_norm2(v); }
    double w_sp(const VECT &v1, const VECT &v2)
    { return scfac_ * gmm::vect_sp(v1, v2); }
    double sp(const VECT &v1, const VECT &v2, double w1, double w2)
    { return sp(v1, v2) + w1 * w2; }
    double w_norm(const VECT &v, double w)
    { return sqrt(w_sp(v, v) + w * w); }
    double cosang(const VECT &v1, const VECT &v2, double w1, double w2) {
      double no = sqrt(sp(v1, v1, w1, w1) * sp(v2, v2, w2, w2)); 
      return ((no == 0) ? 0. : sp(v1, v2, w1, w2) / no);
    }
    
    double random(void) { return gmm::random(1.); }
    void fill_random(VECT &v) { gmm::fill_random(v); }

    void solve(const MAT &A, VECT &g, const VECT &L) { /* A * g = L */
      if (noisy_ > 2) cout << "starting linear solver" << endl;
      gmm::iteration iter(maxres_solve_, (noisy_ >= 2) ? noisy_ - 2 : 0,
			  40000);
      (*lsolver)(A, g, L, iter);
      if (noisy_ > 2) cout << "linear solver done" << endl;
    }

    void solve(const MAT &A, VECT &g1, VECT &g2,
	       const VECT &L1, const VECT &L2) { /* A * (g1|g2) = (L1|L2) */
      if (noisy_ > 2) cout << "starting linear solver" << endl;
      gmm::iteration iter(maxres_solve_, (noisy_ >= 2) ? noisy_ - 2 : 0,
			  40000);
      (*lsolver)(A, g1, L1, iter);
      iter.init(); (*lsolver)(A, g2, L2, iter); // (can be optimised)
      if (noisy_ > 2) cout << "linear solver done" << endl;
    }


    // Evaluation of  ...
    void set_variables(const VECT &x, double gamma) {
      md->set_real_variable(parameter_name_)[0] = gamma;
      if (with_parametrised_data) {
	gmm::add(gmm::scaled(md->real_variable(initdata_name_), 1. - gamma),
		 gmm::scaled(md->real_variable(finaldata_name_), gamma),
		 md->set_real_variable(currentdata_name_));
      }
      md->to_variables(x);
    }

    // F(x, gamma) --> f
    void F(const VECT &x, double gamma, VECT &f) {
      if (build == BUILD_ALL) set_variables(x, gamma);
      if (build & BUILD_F) {
	md->assembly(model::BUILD_RHS);
	build = build_data(build ^ BUILD_F);
      }
      gmm::copy(gmm::scaled(md->real_rhs(), -1.), f);
    }
    
    // (F(x, gamma + eps) - F(x, gamma)) / eps --> g
    void F_gamma(const VECT &x, double gamma, VECT &g) {
      const double eps = 1.e-8;
      VECT F0(x), F1(x);
      F(x, gamma, F0);
      build = BUILD_ALL; F(x, gamma + eps, F1); build = BUILD_ALL;
      gmm::add(F1, gmm::scaled(F0, -1.), g);
      gmm::scale(g, 1./eps);
    }

    void update_matrix(const VECT &x, double gamma) {
      if (build == BUILD_ALL) set_variables(x, gamma);
      if (build & BUILD_F_x) {
	if (noisy_ > 2) cout << "starting computing tangent matrix" << endl;
	md->assembly(model::BUILD_MATRIX);
	build = build_data(build ^ BUILD_F_x);
      }
    }
    // F_x(x, gamma) --> A
    void F_x(const VECT &x, double gamma, MAT &A) {
      update_matrix(x, gamma);
      unsigned long nbdof = md->nb_dof();
      gmm::resize(A, nbdof, nbdof);
      gmm::copy(md->real_tangent_matrix(), A);
    }

    // solve F_x(x, gamma) * g = L
    void solve_grad(const VECT &x, double gamma,
		    VECT &g, const VECT &L) {
      update_matrix(x, gamma);
      solve(md->real_tangent_matrix(), g, L);
    }

    // solve F_x(x, gamma) * (g1|g2) = (L1|L2)
    void solve_grad(const VECT &x, double gamma, VECT &g1,VECT &g2,
		    const VECT &L1, const VECT &L2) {
      update_matrix(x, gamma);
      solve(md->real_tangent_matrix(), g1, g2, L1, L2);
    }

    // F_x(x, gamma) * w --> y
    void mult_grad(const VECT &x, double gamma,
			const VECT &w, VECT &y) {
      update_matrix(x, gamma);
      mult(md->real_tangent_matrix(), w, y);
    }

    
    // Misc. for accessing private data
    model &linked_model(void) { return *md; }
    bool bifurcations(void) { return bifurcations_; }
    bool non_smooth(void) { return nonsmooth; }
    std::string parameter_name(void) { return parameter_name_; }
    double scfac(void) { return scfac_; }
    double h_init(void) { return h_init_; }
    double h_min(void) { return h_min_; }
    double h_max(void) { return h_max_; }
    double h_dec(void) { return h_dec_; }
    double h_inc(void) { return h_inc_; }
    unsigned long maxit(void) { return maxit_; }
    unsigned long thrit(void) { return thrit_; }
    double maxres(void) { return maxres_; }
    double maxdiff(void) { return maxdiff_; }
    double mincos(void) { return mincos_; }
    double delta_max(void) { return delta_max_; }
    double delta_min(void) { return delta_min_; }
    double thrvar(void) { return thrvar_; }
    unsigned long nbdir(void) { return nbdir_; }
    unsigned long nbcomb(void) { return nbcomb_; }
    int noisy(void) { return noisy_; }
    VECT &b_x(void) { return b_x_; }
    VECT &c_x(void) { return c_x_; }
    double b_gamma(void) { return b_gamma_; }
    double c_gamma(void) { return c_gamma_; }
    double d(void) { return d_; }

    void set_tau1(double tau) { tau1 = tau; }
    double get_tau1(void) { return tau1; }
    void set_tau2(double tau) { tau2 = tau; }
    double get_tau2(void) { return tau2; }
    void clear_tau_currentstep(void) {
      tau_graph.clear();
      gmm::resize(alpha_hist, 0); gmm::resize(tau_hist, 0);
    }
    void init_tau_graph(void) { tau_graph[0.] = tau2; }
    void insert_tau_graph(double alpha, double tau) {
      tau_graph[alpha] = tau;
    }
    VECT &get_alpha_hist(void) {
      unsigned long i = 0;
      gmm::resize(alpha_hist, tau_graph.size());
      for (std::map<double, double>::iterator it = tau_graph.begin();
	   it != tau_graph.end(); it++) {
	alpha_hist[i] = (*it).first; i++;
      }	
      return alpha_hist;
    }
    VECT &get_tau_hist(void) {
      unsigned long i = 0;
      gmm::resize(tau_hist, tau_graph.size());
      for (std::map<double, double>::iterator it = tau_graph.begin();
	   it != tau_graph.end(); it++) {
	tau_hist[i] = (*it).second; i++; 
      }	
      return tau_hist;
    }

    void clear_sing_data(void) {
      sing_label = "";
      gmm::resize(x_sing, 0); gmm::resize(x_next, 0);
      t_x_sing.clear(); t_gamma_sing.clear();
      t_x_predict.clear(); t_gamma_predict.clear();
    }
    void set_sing_label(std::string label) { sing_label = label; }
    std::string get_sing_label(void) { return sing_label; }
    void set_sing_point(const VECT &x, double gamma) {
      gmm::resize(x_sing, gmm::vect_size(x)); gmm::copy(x, x_sing);
      gamma_sing = gamma;
    }
    VECT &get_x_sing(void) { return x_sing; }
    double get_gamma_sing(void) { return gamma_sing; }
    unsigned long nb_tangent_sing(void) { return t_x_sing.size(); }
    bool insert_tangent_sing(const VECT &t_x, double t_gamma){
      bool is_included = false;
      unsigned long i = 0;
      double cang;
      while ((i < t_x_sing.size()) && (!is_included)){
	cang = cosang(t_x_sing[i], t_x, t_gamma_sing[i], t_gamma);
	is_included = (cang >= mincos_);
	++i;
      }
      if (!is_included) {
	t_x_sing.push_back(t_x); t_gamma_sing.push_back(t_gamma);
      }
      return !is_included;
    }
    VECT &get_t_x_sing(unsigned long i) { return t_x_sing[i]; }
    double get_t_gamma_sing(unsigned long i) { return t_gamma_sing[i]; }
    std::vector<VECT> &get_t_x_sing(void) { return t_x_sing; }
    std::vector<double> &get_t_gamma_sing(void) { return t_gamma_sing; }

    bool next_point(void) { return gmm::vect_size(x_next) > 0; }
    void set_next_point(const VECT &x, double gamma) {
      if (gmm::vect_size(x_next) == 0) {
	gmm::resize(x_next, gmm::vect_size(x)); gmm::copy(x, x_next);
	gamma_next = gamma;
      }
    }
    VECT &get_x_next(void) { return x_next; }
    double get_gamma_next(void) { return gamma_next; }

    bool insert_tangent_predict(const VECT &t_x, double t_gamma){
      bool is_included = false;
      unsigned long i = 0;
      double cang;
      while ((i < t_x_predict.size()) && (!is_included)){
	cang = gmm::abs(cosang(t_x_predict[i], t_x,
			       t_gamma_predict[i], t_gamma));
	is_included = (cang >= mincos_);
	++i;
      }
      if (!is_included) {
	t_x_predict.push_back(t_x); t_gamma_predict.push_back(t_gamma);
      }
      return !is_included;
    }

    void set_build(build_data build_) { build = build_; }
  };

#endif


}  /* end of namespace getfem.                                             */


#endif /* GETFEM_CONTINUATION_H__ */