This file is indexed.

/usr/include/GeographicLib/PolarStereographic.hpp is in libgeographiclib-dev 1.21-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/**
 * \file PolarStereographic.hpp
 * \brief Header for GeographicLib::PolarStereographic class
 *
 * Copyright (c) Charles Karney (2008-2011) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * http://geographiclib.sourceforge.net/
 **********************************************************************/

#if !defined(GEOGRAPHICLIB_POLARSTEREOGRAPHIC_HPP)
#define GEOGRAPHICLIB_POLARSTEREOGRAPHIC_HPP \
  "$Id: 07add8492c46e42012007a8738060abc902a5504 $"

#include <GeographicLib/Constants.hpp>

namespace GeographicLib {

  /**
   * \brief Polar Stereographic Projection
   *
   * Implementation taken from the report,
   * - J. P. Snyder,
   *   <a href="http://pubs.er.usgs.gov/usgspubs/pp/pp1395"> Map Projections: A
   *   Working Manual</a>, USGS Professional Paper 1395 (1987),
   *   pp. 160&ndash;163.
   *
   * This is a straightforward implementation of the equations in Snyder except
   * that Newton's method is used to invert the projection.
   *
   * Example of use:
   * \include example-PolarStereographic.cpp
   **********************************************************************/
  class GEOGRAPHIC_EXPORT PolarStereographic {
  private:
    typedef Math::real real;
    // _Cx used to be _C but g++ 3.4 has a macro of that name
    real _a, _f, _e2, _e, _e2m, _Cx, _c;
    real _k0;
    static const real tol_;
    static const real overflow_;
    static const int numit_ = 5;
    // tan(x) for x in [-pi/2, pi/2] ensuring that the sign is right
    static inline real tanx(real x) throw() {
      real t = std::tan(x);
      // Write the tests this way to ensure that tanx(NaN()) is NaN()
      return x >= 0 ? (!(t < 0) ? t : overflow_) : (!(t >= 0) ? t : -overflow_);
    }
    // Return e * atanh(e * x) for f >= 0, else return
    // - sqrt(-e2) * atan( sqrt(-e2) * x) for f < 0
    inline real eatanhe(real x) const throw() {
      return _f >= 0 ? _e * Math::atanh(_e * x) : - _e * std::atan(_e * x);
    }
  public:

    /**
     * Constructor for a ellipsoid with
     *
     * @param[in] a equatorial radius (meters).
     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
     *   Negative \e f gives a prolate ellipsoid.  If \e f > 1, set flattening
     *   to 1/\e f.
     * @param[in] k0 central scale factor.
     *
     * An exception is thrown if either of the axes of the ellipsoid is
     * not positive \e a or if \e k0 is not positive.
     **********************************************************************/
    PolarStereographic(real a, real f, real k0);

    /**
     * Set the scale for the projection.
     *
     * @param[in] lat (degrees) assuming \e northp = true.
     * @param[in] k scale at latitude \e lat (default 1).
     *
     * This allows a "latitude of true scale" to be specified.  An exception is
     * thrown if \e k is not positive or if \e lat is not in the range (-90,
     * 90].
     **********************************************************************/
    void SetScale(real lat, real k = real(1));

    /**
     * Forward projection, from geographic to polar stereographic.
     *
     * @param[in] northp the pole which is the center of projection (true means
     *   north, false means south).
     * @param[in] lat latitude of point (degrees).
     * @param[in] lon longitude of point (degrees).
     * @param[out] x easting of point (meters).
     * @param[out] y northing of point (meters).
     * @param[out] gamma meridian convergence at point (degrees).
     * @param[out] k scale of projection at point.
     *
     * No false easting or northing is added.  \e lat should be in the range
     * (-90, 90] for \e northp = true and in the range [-90, 90) for \e northp
     * = false; \e lon should be in the range [-180, 360].
     **********************************************************************/
    void Forward(bool northp, real lat, real lon,
                 real& x, real& y, real& gamma, real& k) const throw();

    /**
     * Reverse projection, from polar stereographic to geographic.
     *
     * @param[in] northp the pole which is the center of projection (true means
     *   north, false means south).
     * @param[in] x easting of point (meters).
     * @param[in] y northing of point (meters).
     * @param[out] lat latitude of point (degrees).
     * @param[out] lon longitude of point (degrees).
     * @param[out] gamma meridian convergence at point (degrees).
     * @param[out] k scale of projection at point.
     *
     * No false easting or northing is added.  The value of \e lon returned is
     * in the range [-180, 180).
     **********************************************************************/
    void Reverse(bool northp, real x, real y,
                 real& lat, real& lon, real& gamma, real& k) const throw();

    /**
     * PolarStereographic::Forward without returning the convergence and scale.
     **********************************************************************/
    void Forward(bool northp, real lat, real lon,
                 real& x, real& y) const throw() {
      real gamma, k;
      Forward(northp, lat, lon, x, y, gamma, k);
    }

    /**
     * PolarStereographic::Reverse without returning the convergence and scale.
     **********************************************************************/
    void Reverse(bool northp, real x, real y,
                 real& lat, real& lon) const throw() {
      real gamma, k;
      Reverse(northp, x, y, lat, lon, gamma, k);
    }

    /** \name Inspector functions
     **********************************************************************/
    ///@{
    /**
     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
     *   the value used in the constructor.
     **********************************************************************/
    Math::real MajorRadius() const throw() { return _a; }

    /**
     * @return \e f the flattening of the ellipsoid.  This is the value used in
     *   the constructor.
     **********************************************************************/
    Math::real Flattening() const throw() { return _f; }

    /// \cond SKIP
    /**
     * <b>DEPRECATED</b>
     * @return \e r the inverse flattening of the ellipsoid.
     **********************************************************************/
    Math::real InverseFlattening() const throw() { return 1/_f; }
    /// \endcond

    /**
     * The central scale for the projection.  This is the value of \e k0 used
     * in the constructor and is the scale at the pole unless overridden by
     * PolarStereographic::SetScale.
     **********************************************************************/
    Math::real CentralScale() const throw() { return _k0; }
    ///@}

    /**
     * A global instantiation of PolarStereographic with the WGS84 ellipsoid
     * and the UPS scale factor.  However, unlike UPS, no false easting or
     * northing is added.
     **********************************************************************/
    static const PolarStereographic UPS;
  };

} // namespace GeographicLib

#endif  // GEOGRAPHICLIB_POLARSTEREOGRAPHIC_HPP