This file is indexed.

/usr/include/GeographicLib/NormalGravity.hpp is in libgeographiclib-dev 1.21-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
/**
 * \file NormalGravity.hpp
 * \brief Header for GeographicLib::NormalGravity class
 *
 * Copyright (c) Charles Karney (2011) <charles@karney.com> and licensed under
 * the MIT/X11 License.  For more information, see
 * http://geographiclib.sourceforge.net/
 **********************************************************************/

#if !defined(GEOGRAPHICLIB_NORMALGRAVITY_HPP)
#define GEOGRAPHICLIB_NORMALGRAVITY_HPP \
  "$Id: e4b65c9c5787d8ee14f476cbb518fd5007006344 $"

#include <GeographicLib/Constants.hpp>
#include <GeographicLib/Geocentric.hpp>

namespace GeographicLib {

  /**
   * \brief The normal gravity of the earth
   *
   * "Normal" gravity refers to an idealization of the earth which is modeled
   * as an rotating ellipsoid.  The eccentricity of the ellipsoid, the rotation
   * speed, and the distribution of mass within the ellipsoid are such that the
   * surface of the ellipsoid is a surface of constant potential (gravitational
   * plus centrifugal).  The acceleration due to gravity is therefore
   * perpendicular to the surface of the ellipsoid.
   *
   * There is a closed solution to this problem which is implemented here.
   * Series "approximations" are only used to evaluate certain combinations of
   * elementary functions where use of the closed expression results in a loss
   * of accuracy for small arguments due to cancellation of the two leading
   * terms.  However these series include sufficient terms to give full machine
   * precision.
   *
   * Definitions:
   * - <i>V</i><sub>0</sub>, the gravitational contribution to the normal
   *   potential;
   * - \e Phi, the rotational contribution to the normal potential;
   * - \e U = <i>V</i><sub>0</sub> + \e Phi, the total
   *   potential;
   * - <b>Gamma</b> = <b>grad</b> <i>V</i><sub>0</sub>, the acceleration due to
   *   mass of the earth;
   * - <b>f</b> = <b>grad</b> \e Phi, the centrifugal acceleration;
   * - <b>gamma</b> = <b>grad</b> \e U = <b>Gamma</b> + <b>f</b>, the normal
   *   acceleration;
   * - \e X, \e Y, \e Z, geocentric coordinates;
   * - \e x, \e y, \e z, local cartesian coordinates used to denote the east,
   *   north and up directions.
   *
   * References:
   * - W. A. Heiskanen and H. Moritz, Physical Geodesy (Freeman, San
   *   Francisco, 1967), Secs. 1-19, 2-7, 2-8 (2-9, 2-10), 6-2 (6-3).
   * - H. Moritz, Geodetic Reference System 1980, J. Geod. 54(3), 395-405
   *   (1980) http://dx.doi.org/10.1007/BF02521480
   *
   * Example of use:
   * \include example-NormalGravity.cpp
   **********************************************************************/

  class GEOGRAPHIC_EXPORT NormalGravity {
  private:
    static const int maxit_ = 10;
    typedef Math::real real;
    friend class GravityModel;
    real _a, _GM, _omega, _f, _J2, _omega2, _aomega2;
    real _e2, _ep2, _b, _E, _U0, _gammae, _gammap, _q0, _m, _k, _fstar;
    Geocentric _earth;
    static Math::real qf(real ep2) throw();
    static Math::real qpf(real ep2) throw();
    Math::real Jn(int n) const throw();
  public:

    /** \name Setting up the normal gravity
     **********************************************************************/
    ///@{
    /**
     * Constructor for the normal gravity.
     *
     * @param[in] a equatorial radius (meters).
     * @param[in] GM mass constant of the ellipsoid
     *   (meters<sup>3</sup>/seconds<sup>2</sup>); this is the product of \e G
     *   the gravitational constant and \e M the mass of the earth (usually
     *   including the mass of the earth's atmosphere).
     * @param[in] omega the angular velocity (rad s<sup>-1</sup>).
     * @param[in] f the flattening of the ellipsoid.
     * @param[in] J2 dynamical form factor.
     *
     * Exactly one of \e f and \e J2 should be positive and this will be used
     * to define the ellipsoid.  The shape of the ellipsoid can be given in one
     * of two ways:
     * - geometrically, the ellipsoid is defined by the flattening \e f =
     *   (\e a - \e b) / \e a, where \e a and \e b are the equatorial radius
     *   and the polar semi-axis.
     * - physically, the ellipsoid is defined by the dynamical form factor
     *   <i>J</i><sub>2</sub> = (\e C - \e A) / <i>Ma</i><sup>2</sup>, where \e
     *   A and \e C are the equatorial and polar moments of inertia and \e M is
     *   the mass of the earth.
     **********************************************************************/
    NormalGravity(real a, real GM, real omega, real f, real J2);

    /**
     * A default constructor for the normal gravity.  This sets up an
     * uninitialized object and is used by GravityModel which constructs this
     * object before it has read in the parameters for the reference ellipsoid.
     **********************************************************************/
    NormalGravity() : _a(-1) {}
    ///@}

    /** \name Compute the gravity
     **********************************************************************/
    ///@{
    /**
     * Evaluate the gravity on the surface of the ellipsoid.
     *
     * @param[in] lat the geographic latitude (degrees).
     * @return \e gamma the acceleration due to gravity, positive downwards
     *   (m s<sup>-2</sup>).
     *
     * Due to the axial symmetry of the ellipsoid, the result is independent of
     * the value of the longitude.  This acceleration is perpendicular to the
     * surface of the ellipsoid.  It includes the effects of the earth's
     * rotation.
     **********************************************************************/
    Math::real SurfaceGravity(real lat) const throw();

    /**
     * Evaluate the gravity at an arbitrary point above (or below) the
     * ellipsoid.
     *
     * @param[in] lat the geographic latitude (degrees).
     * @param[in] h the height above the ellipsoid (meters).
     * @param[out] gammay the northerly component of the acceleration
     *   (m s<sup>-2</sup>).
     * @param[out] gammaz the upward component of the acceleration
     *   (m s<sup>-2</sup>); this is usually negative.
     * @return \e U the corresponding normal potential.
     *
     * Due to the axial symmetry of the ellipsoid, the result is independent of
     * the value of the longitude and the easterly component of the
     * acceleration vanishes, \e gammax = 0.  The function includes the effects
     * of the earth's rotation.  When \e h = 0, this function gives \e gammay =
     * 0 and the returned value matches that of NormalGravity::SurfaceGravity.
     **********************************************************************/
    Math::real Gravity(real lat, real h, real& gammay, real& gammaz)
      const throw();

    /**
     * Evaluate the components of the acceleration due to gravity and the
     * centrifugal acceleration in geocentric coordinates.
     *
     * @param[in] X geocentric coordinate of point (meters).
     * @param[in] Y geocentric coordinate of point (meters).
     * @param[in] Z geocentric coordinate of point (meters).
     * @param[out] gammaX the \e X component of the acceleration
     *   (m s<sup>-2</sup>).
     * @param[out] gammaY the \e Y component of the acceleration
     *   (m s<sup>-2</sup>).
     * @param[out] gammaZ the \e Z component of the acceleration
     *   (m s<sup>-2</sup>).
     * @return \e U = <i>V</i><sub>0</sub> + \e Phi the sum of the
     *   gravitational and centrifugal potentials
     *   (m<sup>2</sup> s<sup>-2</sup>).
     *
     * The acceleration given by <b>gamma</b> = <b>grad</b> \e U = <b>grad</b>
     * <i>V</i><sub>0</sub> + <b>grad</b> \e Phi = <b>Gamma</b> + <b>f</b>.
     **********************************************************************/
    Math::real U(real X, real Y, real Z,
                 real& gammaX, real& gammaY, real& gammaZ) const throw();

    /**
     * Evaluate the components of the acceleration due to gravity alone in
     * geocentric coordinates.
     *
     * @param[in] X geocentric coordinate of point (meters).
     * @param[in] Y geocentric coordinate of point (meters).
     * @param[in] Z geocentric coordinate of point (meters).
     * @param[out] GammaX the \e X component of the acceleration due to gravity
     *   (m s<sup>-2</sup>).
     * @param[out] GammaY the \e Y component of the acceleration due to gravity
     *   (m s<sup>-2</sup>).
     * @param[out] GammaZ the \e Z component of the acceleration due to gravity
     *   (m s<sup>-2</sup>).
     * @return <i>V</i><sub>0</sub> the gravitational potential
     *   (m<sup>2</sup> s<sup>-2</sup>).
     *
     * This function excludes the centrifugal acceleration and is appropriate
     * to use for space applications.  In terrestrial applications, the
     * function NormalGravity::U (which includes this effect) should usually be
     * used.
     **********************************************************************/
    Math::real V0(real X, real Y, real Z,
                  real& GammaX, real& GammaY, real& GammaZ) const throw();

    /**
     * Evaluate the centrifugal acceleration in geocentric coordinates.
     *
     * @param[in] X geocentric coordinate of point (meters).
     * @param[in] Y geocentric coordinate of point (meters).
     * @param[out] fX the \e X component of the centrifugal acceleration
     *   (m s<sup>-2</sup>).
     * @param[out] fY the \e Y component of the centrifugal acceleration
     *   (m s<sup>-2</sup>).
     * @return \e Phi the centrifugal potential (m<sup>2</sup> s<sup>-2</sup>).
     *
     * \e Phi is independent of \e Z, thus \e fZ = 0.  This function
     * NormalGravity::U sums the results of NormalGravity::V0 and
     * NormalGravity::Phi.
     **********************************************************************/
    Math::real Phi(real X, real Y, real& fX, real& fY) const throw();
    ///@}

    /** \name Inspector functions
     **********************************************************************/
    ///@{
    /**
     * @return true if the object has been initialized.
     **********************************************************************/
    bool Init() const throw() { return _a > 0; }

    /**
     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
     *   the value used in the constructor.
     **********************************************************************/
    Math::real MajorRadius() const throw()
    { return Init() ? _a : Math::NaN<real>(); }

    /**
     * @return \e GM the mass constant of the ellipsoid
     *   (m<sup>3</sup> s<sup>-2</sup>).  This is the value used in the
     *   constructor.
     **********************************************************************/
    Math::real MassConstant() const throw()
    { return Init() ? _GM : Math::NaN<real>(); }

    /**
     * @return \e J<sub>n</sub> the dynamical form factors of the ellipsoid.
     *
     * If \e n = 2 (the default), this is the value of <i>J</i><sub>2</sub>
     * used in the constructor.  Otherwise it is the zonal coefficient of the
     * Legendre harmonic sum of the normal gravitational potential.  Note that
     * \e J<sub>n</sub> = 0 if \e is odd.  In most gravity applications, fully
     * normalized Legendre functions are used and the corresponding coefficient
     * is <i>C</i><sub><i>n</i>0</sub> = -\e J<sub>n</sub> / sqrt(2 \e n + 1).
     **********************************************************************/
    Math::real DynamicalFormFactor(int n = 2) const throw()
    { return Init() ? ( n == 2 ? _J2 : Jn(n)) : Math::NaN<real>(); }

    /**
     * @return \e omega the angular velocity of the ellipsoid
     *   (rad s<sup>-1</sup>).  This is the value used in the constructor.
     **********************************************************************/
    Math::real AngularVelocity() const throw()
    { return Init() ? _omega : Math::NaN<real>(); }

    /**
     * @return <i>f</i> the flattening of the ellipsoid (\e a - \e b)/\e a.
     **********************************************************************/
    Math::real Flattening() const throw()
    { return Init() ? _f : Math::NaN<real>(); }

    /**
     * @return <i>gamma</i><sub>e</sub> the normal gravity at equator
     *   (m s<sup>-2</sup>).
     **********************************************************************/
    Math::real EquatorialGravity() const throw()
    { return Init() ? _gammae : Math::NaN<real>(); }

    /**
     * @return <i>gamma</i><sub>p</sub> the normal gravity at poles
     *   (m s<sup>-2</sup>).
     **********************************************************************/
    Math::real PolarGravity() const throw()
    { return Init() ? _gammap : Math::NaN<real>(); }

    /**
     * @return <i>f*</i> the gravity flattening
     *   (<i>gamma</i><sub>p</sub> - <i>gamma</i><sub>e</sub>) /
     *   <i>gamma</i><sub>e</sub>.
     **********************************************************************/
    Math::real GravityFlattening() const throw()
    { return Init() ? _fstar : Math::NaN<real>(); }

    /**
     * @return <i>U</i><sub>0</sub> the constant normal potential for the
     *   surface of the ellipsoid (m<sup>2</sup> s<sup>-2</sup>).
     **********************************************************************/
    Math::real SurfacePotential() const throw()
    { return Init() ? _U0 : Math::NaN<real>(); }

    /**
     * @return the Geocentric object used by this instance.
     **********************************************************************/
    const Geocentric& Earth() const throw() { return _earth; }
    ///@}

    /**
     * A global instantiation of NormalGravity for the WGS84 ellipsoid.
     **********************************************************************/
    static const NormalGravity WGS84;

    /**
     * A global instantiation of NormalGravity for the GRS80 ellipsoid.
     **********************************************************************/
    static const NormalGravity GRS80;
  };

} // namespace GeographicLib

#endif  // GEOGRAPHICLIB_NORMALGRAVITY_HPP