/usr/include/gecode/int/gcc/bnd.hpp is in libgecode-dev 4.2.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 | /* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Patrick Pekczynski <pekczynski@ps.uni-sb.de>
*
* Contributing authors:
* Christian Schulte <schulte@gecode.org>
* Guido Tack <tack@gecode.org>
*
* Copyright:
* Patrick Pekczynski, 2004/2005
* Christian Schulte, 2009
* Guido Tack, 2009
*
* Last modified:
* $Date: 2012-09-07 17:31:22 +0200 (Fri, 07 Sep 2012) $ by $Author: schulte $
* $Revision: 13068 $
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
namespace Gecode { namespace Int { namespace GCC {
template<class Card>
forceinline
Bnd<Card>::
Bnd(Home home, ViewArray<IntView>& x0, ViewArray<Card>& k0,
bool cf, bool nolbc) :
Propagator(home), x(x0), y(home, x0), k(k0),
card_fixed(cf), skip_lbc(nolbc) {
y.subscribe(home, *this, PC_INT_BND);
k.subscribe(home, *this, PC_INT_BND);
}
template<class Card>
forceinline
Bnd<Card>::
Bnd(Space& home, bool share, Bnd<Card>& p)
: Propagator(home, share, p),
card_fixed(p.card_fixed), skip_lbc(p.skip_lbc) {
x.update(home, share, p.x);
y.update(home, share, p.y);
k.update(home, share, p.k);
}
template<class Card>
forceinline size_t
Bnd<Card>::dispose(Space& home) {
y.cancel(home,*this, PC_INT_BND);
k.cancel(home,*this, PC_INT_BND);
(void) Propagator::dispose(home);
return sizeof(*this);
}
template<class Card>
Actor*
Bnd<Card>::copy(Space& home, bool share) {
return new (home) Bnd<Card>(home,share,*this);
}
template<class Card>
PropCost
Bnd<Card>::cost(const Space&,
const ModEventDelta& med) const {
int n_k = Card::propagate ? k.size() : 0;
if (IntView::me(med) == ME_INT_VAL)
return PropCost::linear(PropCost::LO, y.size() + n_k);
else
return PropCost::quadratic(PropCost::LO, x.size() + n_k);
}
template<class Card>
forceinline ExecStatus
Bnd<Card>::lbc(Space& home, int& nb,
HallInfo hall[], Rank rank[], int mu[], int nu[]) {
int n = x.size();
/*
* Let I(S) denote the number of variables whose domain intersects
* the set S and C(S) the number of variables whose domain is containded
* in S. Let further min_cap(S) be the minimal number of variables
* that must be assigned to values, that is
* min_cap(S) is the sum over all l[i] for a value v_i that is an
* element of S.
*
* A failure set is a set F if
* I(F) < min_cap(F)
* An unstable set is a set U if
* I(U) = min_cap(U)
* A stable set is a set S if
* C(S) > min_cap(S) and S intersetcs nor
* any failure set nor any unstable set
* forall unstable and failure sets
*
* failure sets determine the satisfiability of the LBC
* unstable sets have to be pruned
* stable set do not have to be pruned
*
* hall[].ps ~ stores the unstable
* sets that have to be pruned
* hall[].s ~ stores sets that must not be pruned
* hall[].h ~ contains stable and unstable sets
* hall[].d ~ contains the difference between interval bounds, i.e.
* the minimal capacity of the interval
* hall[].t ~ contains the critical capacity pointer, pointing to the
* values
*/
// LBC lower bounds
int i = 0;
int j = 0;
int w = 0;
int z = 0;
int v = 0;
//initialization of the tree structure
int rightmost = nb + 1; // rightmost accesible value in bounds
int bsize = nb + 2;
w = rightmost;
// test
// unused but uninitialized
hall[0].d = 0;
hall[0].s = 0;
hall[0].ps = 0;
for (i = bsize; --i; ) { // i must not be zero
int pred = i - 1;
hall[i].s = pred;
hall[i].ps = pred;
hall[i].d = lps.sumup(hall[pred].bounds, hall[i].bounds - 1);
/* Let [hall[i].bounds,hall[i-1].bounds]=:I
* If the capacity is zero => min_cap(I) = 0
* => I cannot be a failure set
* => I is an unstable set
*/
if (hall[i].d == 0) {
hall[pred].h = w;
} else {
hall[w].h = pred;
w = pred;
}
}
w = rightmost;
for (i = bsize; i--; ) { // i can be zero
hall[i].t = i - 1;
if (hall[i].d == 0) {
hall[i].t = w;
} else {
hall[w].t = i;
w = i;
}
}
/*
* The algorithm assigns to each value v in bounds
* empty buckets corresponding to the minimal capacity l[i] to be
* filled for v. (the buckets correspond to hall[].d containing the
* difference between the interval bounds) Processing it
* searches for the smallest value v in dom(x_i) that has an
* empty bucket, i.e. if all buckets are filled it is guaranteed
* that there are at least l[i] variables that will be
* instantiated to v. Since the buckets are initially empty,
* they are considered as FAILURE SETS
*/
for (i = 0; i < n; i++) {
// visit intervals in increasing max order
int x0 = rank[mu[i]].min;
int y = rank[mu[i]].max;
int succ = x0 + 1;
z = pathmax_t(hall, succ);
j = hall[z].t;
/*
* POTENTIALLY STABLE SET:
* z \neq succ \Leftrigharrow z>succ, i.e.
* min(D_{\mu(i)}) is guaranteed to occur min(K_i) times
* \Rightarrow [x0, min(y,z)] is potentially stable
*/
if (z != succ) {
w = pathmax_ps(hall, succ);
v = hall[w].ps;
pathset_ps(hall, succ, w, w);
w = std::min(y, z);
pathset_ps(hall, hall[w].ps, v, w);
hall[w].ps = v;
}
/*
* STABLE SET:
* being stable implies being potentially stable, i.e.
* [hall[y].ps, hall[y].bounds-1] is the largest stable subset of
* [hall[j].bounds, hall[y].bounds-1].
*/
if (hall[z].d <= lps.sumup(hall[y].bounds, hall[z].bounds - 1)) {
w = pathmax_s(hall, hall[y].ps);
pathset_s(hall, hall[y].ps, w, w);
// Path compression
v = hall[w].s;
pathset_s(hall, hall[y].s, v, y);
hall[y].s = v;
} else {
/*
* FAILURE SET:
* If the considered interval [x0,y] is neither POTENTIALLY STABLE
* nor STABLE there are still buckets that can be filled,
* therefore d can be decreased. If d equals zero the intervals
* minimum capacity is met and thepath can be compressed to the
* next value having an empty bucket.
* see DOMINATION in "ubc"
*/
if (--hall[z].d == 0) {
hall[z].t = z + 1;
z = pathmax_t(hall, hall[z].t);
hall[z].t = j;
}
/*
* FINDING NEW LOWER BOUND:
* If the lower bound belongs to an unstable or a stable set,
* remind the new value we might assigned to the lower bound
* in case the variable doesn't belong to a stable set.
*/
if (hall[x0].h > x0) {
hall[i].newBound = pathmax_h(hall, x0);
w = hall[i].newBound;
pathset_h(hall, x0, w, w); // path compression
} else {
// Do not shrink the variable: take old min as new min
hall[i].newBound = x0;
}
/* UNSTABLE SET
* If an unstable set is discovered
* the difference between the interval bounds is equal to the
* number of variables whose domain intersect the interval
* (see ZEROTEST in "gcc")
*/
// CLEARLY THIS WAS NOT STABLE == UNSTABLE
if (hall[z].d == lps.sumup(hall[y].bounds, hall[z].bounds - 1)) {
if (hall[y].h > y)
/*
* y is not the end of the potentially stable set
* thus ensure that the potentially stable superset is marked
*/
y = hall[y].h;
// Equivalent to pathmax since the path is fully compressed
pathset_h(hall, hall[y].h, j-1, y);
// mark the new unstable set [j,y]
hall[y].h = j-1;
}
}
pathset_t(hall, succ, z, z); // path compression
}
/* If there is a FAILURE SET left the minimum occurences of the values
* are not guaranteed. In order to satisfy the LBC the last value
* in the stable and unstable datastructure hall[].h must point to
* the sentinel at the beginning of bounds.
*/
if (hall[nb].h != 0)
return ES_FAILED;
// Perform path compression over all elements in
// the stable interval data structure. This data
// structure will no longer be modified and will be
// accessed n or 2n times. Therefore, we can afford
// a linear time compression.
for (i = bsize; --i;)
if (hall[i].s > i)
hall[i].s = w;
else
w = i;
/*
* UPDATING LOWER BOUND:
* For all variables that are not a subset of a stable set,
* shrink the lower bound, i.e. forall stable sets S we have:
* x0 < S_min <= y <=S_max or S_min <= x0 <= S_max < y
* that is [x0,y] is NOT a proper subset of any stable set S
*/
for (i = n; i--; ) {
int x0 = rank[mu[i]].min;
int y = rank[mu[i]].max;
// update only those variables that are not contained in a stable set
if ((hall[x0].s <= x0) || (y > hall[x0].s)) {
// still have to check this out, how skipping works (consider dominated indices)
int m = lps.skipNonNullElementsRight(hall[hall[i].newBound].bounds);
GECODE_ME_CHECK(x[mu[i]].gq(home, m));
}
}
// LBC narrow upper bounds
w = 0;
for (i = 0; i <= nb; i++) {
hall[i].d = lps.sumup(hall[i].bounds, hall[i + 1].bounds - 1);
if (hall[i].d == 0) {
hall[i].t = w;
} else {
hall[w].t = i;
w = i;
}
}
hall[w].t = i;
w = 0;
for (i = 1; i <= nb; i++)
if (hall[i - 1].d == 0) {
hall[i].h = w;
} else {
hall[w].h = i;
w = i;
}
hall[w].h = i;
for (i = n; i--; ) {
// visit intervals in decreasing min order
// i.e. minsorted from right to left
int x0 = rank[nu[i]].max;
int y = rank[nu[i]].min;
int pred = x0 - 1; // predecessor of x0 in the indices
z = pathmin_t(hall, pred);
j = hall[z].t;
/* If the variable is not in a discovered stable set
* (see above condition for STABLE SET)
*/
if (hall[z].d > lps.sumup(hall[z].bounds, hall[y].bounds - 1)) {
// FAILURE SET
if (--hall[z].d == 0) {
hall[z].t = z - 1;
z = pathmin_t(hall, hall[z].t);
hall[z].t = j;
}
// FINDING NEW UPPER BOUND
if (hall[x0].h < x0) {
w = pathmin_h(hall, hall[x0].h);
hall[i].newBound = w;
pathset_h(hall, x0, w, w); // path compression
} else {
hall[i].newBound = x0;
}
// UNSTABLE SET
if (hall[z].d == lps.sumup(hall[z].bounds, hall[y].bounds - 1)) {
if (hall[y].h < y) {
y = hall[y].h;
}
int succj = j + 1;
// mark new unstable set [y,j]
pathset_h(hall, hall[y].h, succj, y);
hall[y].h = succj;
}
}
pathset_t(hall, pred, z, z);
}
// UPDATING UPPER BOUND
for (i = n; i--; ) {
int x0 = rank[nu[i]].min;
int y = rank[nu[i]].max;
if ((hall[x0].s <= x0) || (y > hall[x0].s)) {
int m = lps.skipNonNullElementsLeft(hall[hall[i].newBound].bounds - 1);
GECODE_ME_CHECK(x[nu[i]].lq(home, m));
}
}
return ES_OK;
}
template<class Card>
forceinline ExecStatus
Bnd<Card>::ubc(Space& home, int& nb,
HallInfo hall[], Rank rank[], int mu[], int nu[]) {
int rightmost = nb + 1; // rightmost accesible value in bounds
int bsize = nb + 2; // number of unique bounds including sentinels
//Narrow lower bounds (UBC)
/*
* Initializing tree structure with the values from bounds
* and the interval capacities of neighboured values
* from left to right
*/
hall[0].h = 0;
hall[0].t = 0;
hall[0].d = 0;
for (int i = bsize; --i; ) {
hall[i].h = hall[i].t = i-1;
hall[i].d = ups.sumup(hall[i-1].bounds, hall[i].bounds - 1);
}
int n = x.size();
for (int i = 0; i < n; i++) {
// visit intervals in increasing max order
int x0 = rank[mu[i]].min;
int succ = x0 + 1;
int y = rank[mu[i]].max;
int z = pathmax_t(hall, succ);
int j = hall[z].t;
/* DOMINATION:
* v^i_j denotes
* unused values in the current interval. If the difference d
* between to critical capacities v^i_j and v^i_z
* is equal to zero, j dominates z
*
* i.e. [hall[l].bounds, hall[nb+1].bounds] is not left-maximal and
* [hall[j].bounds, hall[l].bounds] is a Hall set iff
* [hall[j].bounds, hall[l].bounds] processing a variable x_i uses up a value in the interval
* [hall[z].bounds,hall[z+1].bounds] according to the intervals
* capacity. Therefore, if d = 0
* the considered value has already been used by processed variables
* m-times, where m = u[i] for value v_i. Since this value must not
* be reconsidered the path can be compressed
*/
if (--hall[z].d == 0) {
hall[z].t = z + 1;
z = pathmax_t(hall, hall[z].t);
if (z >= bsize)
z--;
hall[z].t = j;
}
pathset_t(hall, succ, z, z); // path compression
/* NEGATIVE CAPACITY:
* A negative capacity results in a failure.Since a
* negative capacity signals that the number of variables
* whose domain is contained in the set S is larger than
* the maximum capacity of S => UBC is not satisfiable,
* i.e. there are more variables than values to instantiate them
*/
if (hall[z].d < ups.sumup(hall[y].bounds, hall[z].bounds - 1))
return ES_FAILED;
/* UPDATING LOWER BOUND:
* If the lower bound min_i lies inside a Hall interval [a,b]
* i.e. a <= min_i <=b <= max_i
* min_i is set to min_i := b+1
*/
if (hall[x0].h > x0) {
int w = pathmax_h(hall, hall[x0].h);
int m = hall[w].bounds;
GECODE_ME_CHECK(x[mu[i]].gq(home, m));
pathset_h(hall, x0, w, w); // path compression
}
/* ZEROTEST:
* (using the difference between capacity pointers)
* zero capacity => the difference between critical capacity
* pointers is equal to the maximum capacity of the interval,i.e.
* the number of variables whose domain is contained in the
* interval is equal to the sum over all u[i] for a value v_i that
* lies in the Hall-Intervall which can also be thought of as a
* Hall-Set
*
* ZeroTestLemma: Let k and l be succesive critical indices.
* v^i_k=0 => v^i_k = max_i+1-l+d
* <=> v^i_k = y + 1 - z + d
* <=> d = z-1-y
* if this equation holds the interval [j,z-1] is a hall intervall
*/
if (hall[z].d == ups.sumup(hall[y].bounds, hall[z].bounds - 1)) {
/*
*mark hall interval [j,z-1]
* hall pointers form a path to the upper bound of the interval
*/
int predj = j - 1;
pathset_h(hall, hall[y].h, predj, y);
hall[y].h = predj;
}
}
/* Narrow upper bounds (UBC)
* symmetric to the narrowing of the lower bounds
*/
for (int i = 0; i < rightmost; i++) {
hall[i].h = hall[i].t = i+1;
hall[i].d = ups.sumup(hall[i].bounds, hall[i+1].bounds - 1);
}
for (int i = n; i--; ) {
// visit intervals in decreasing min order
int x0 = rank[nu[i]].max;
int pred = x0 - 1;
int y = rank[nu[i]].min;
int z = pathmin_t(hall, pred);
int j = hall[z].t;
// DOMINATION:
if (--hall[z].d == 0) {
hall[z].t = z - 1;
z = pathmin_t(hall, hall[z].t);
hall[z].t = j;
}
pathset_t(hall, pred, z, z);
// NEGATIVE CAPACITY:
if (hall[z].d < ups.sumup(hall[z].bounds,hall[y].bounds-1))
return ES_FAILED;
/* UPDATING UPPER BOUND:
* If the upper bound max_i lies inside a Hall interval [a,b]
* i.e. min_i <= a <= max_i < b
* max_i is set to max_i := a-1
*/
if (hall[x0].h < x0) {
int w = pathmin_h(hall, hall[x0].h);
int m = hall[w].bounds - 1;
GECODE_ME_CHECK(x[nu[i]].lq(home, m));
pathset_h(hall, x0, w, w);
}
// ZEROTEST
if (hall[z].d == ups.sumup(hall[z].bounds, hall[y].bounds - 1)) {
//mark hall interval [y,j]
pathset_h(hall, hall[y].h, j+1, y);
hall[y].h = j+1;
}
}
return ES_OK;
}
template<class Card>
ExecStatus
Bnd<Card>::pruneCards(Space& home) {
// Remove all values with 0 max occurrence
// and remove corresponding occurrence variables from k
// The number of zeroes
int n_z = 0;
for (int i=k.size(); i--;)
if (k[i].max() == 0)
n_z++;
if (n_z > 0) {
Region r(home);
int* z = r.alloc<int>(n_z);
n_z = 0;
int n_k = 0;
for (int i=0; i<k.size(); i++)
if (k[i].max() == 0) {
z[n_z++] = k[i].card();
} else {
k[n_k++] = k[i];
}
k.size(n_k);
Support::quicksort(z,n_z);
for (int i=x.size(); i--;) {
Iter::Values::Array zi(z,n_z);
GECODE_ME_CHECK(x[i].minus_v(home,zi,false));
}
lps.reinit(); ups.reinit();
}
return ES_OK;
}
template<class Card>
ExecStatus
Bnd<Card>::propagate(Space& home, const ModEventDelta& med) {
if (IntView::me(med) == ME_INT_VAL) {
GECODE_ES_CHECK(prop_val<Card>(home,*this,y,k));
return home.ES_NOFIX_PARTIAL(*this,IntView::med(ME_INT_BND));
}
if (Card::propagate)
GECODE_ES_CHECK(pruneCards(home));
Region r(home);
int* count = r.alloc<int>(k.size());
for (int i = k.size(); i--; )
count[i] = 0;
bool all_assigned = true;
int noa = 0;
for (int i = x.size(); i--; ) {
if (x[i].assigned()) {
noa++;
int idx;
// reduction is essential for order on value nodes in dom
// hence introduce test for failed lookup
if (!lookupValue(k,x[i].val(),idx))
return ES_FAILED;
count[idx]++;
} else {
all_assigned = false;
// We only need the counts in the view case or when all
// x are assigned
if (!Card::propagate)
break;
}
}
if (Card::propagate) {
// before propagation performs inferences on cardinality variables:
if (noa > 0)
for (int i = k.size(); i--; )
if (!k[i].assigned()) {
GECODE_ME_CHECK(k[i].lq(home, x.size() - (noa - count[i])));
GECODE_ME_CHECK(k[i].gq(home, count[i]));
}
if (!card_consistent<Card>(x, k))
return ES_FAILED;
GECODE_ES_CHECK(prop_card<Card>(home, x, k));
// Cardinalities may have been modified, so recompute
// count and all_assigned
for (int i = k.size(); i--; )
count[i] = 0;
all_assigned = true;
for (int i = x.size(); i--; ) {
if (x[i].assigned()) {
int idx;
// reduction is essential for order on value nodes in dom
// hence introduce test for failed lookup
if (!lookupValue(k,x[i].val(),idx))
return ES_FAILED;
count[idx]++;
} else {
// We won't need the remaining counts, they're only used when
// all x are assigned
all_assigned = false;
break;
}
}
}
if (all_assigned) {
for (int i = k.size(); i--; )
GECODE_ME_CHECK(k[i].eq(home, count[i]));
return home.ES_SUBSUMED(*this);
}
if (Card::propagate)
GECODE_ES_CHECK(pruneCards(home));
int n = x.size();
int* mu = r.alloc<int>(n);
int* nu = r.alloc<int>(n);
for (int i = n; i--; )
nu[i] = mu[i] = i;
// Create sorting permutation mu according to the variables upper bounds
MaxInc<IntView> max_inc(x);
Support::quicksort<int, MaxInc<IntView> >(mu, n, max_inc);
// Create sorting permutation nu according to the variables lower bounds
MinInc<IntView> min_inc(x);
Support::quicksort<int, MinInc<IntView> >(nu, n, min_inc);
// Sort the cardinality bounds by index
MinIdx<Card> min_idx;
Support::quicksort<Card, MinIdx<Card> >(&k[0], k.size(), min_idx);
if (!lps.initialized()) {
assert (!ups.initialized());
lps.init(home, k, false);
ups.init(home, k, true);
} else if (Card::propagate) {
// if there has been a change to the cardinality variables
// reconstruction of the partial sum structure is necessary
if (lps.check_update_min(k))
lps.init(home, k, false);
if (ups.check_update_max(k))
ups.init(home, k, true);
}
// assert that the minimal value of the partial sum structure for
// LBC is consistent with the smallest value a variable can take
assert(lps.minValue() <= x[nu[0]].min());
// assert that the maximal value of the partial sum structure for
// UBC is consistent with the largest value a variable can take
/*
* Setup rank and bounds info
* Since this implementation is based on the theory of Hall Intervals
* additional datastructures are needed in order to represent these
* intervals and the "partial-sum" data structure (cf."gcc/bnd-sup.hpp")
*
*/
HallInfo* hall = r.alloc<HallInfo>(2 * n + 2);
Rank* rank = r.alloc<Rank>(n);
int nb = 0;
// setup bounds and rank
int min = x[nu[0]].min();
int max = x[mu[0]].max() + 1;
int last = lps.firstValue + 1; //equivalent to last = min -2
hall[0].bounds = last;
/*
* First the algorithm merges the arrays minsorted and maxsorted
* into bounds i.e. hall[].bounds contains the ordered union
* of the lower and upper domain bounds including two sentinels
* at the beginning and at the end of the set
* ( the upper variable bounds in this union are increased by 1 )
*/
{
int i = 0;
int j = 0;
while (true) {
if (i < n && min < max) {
if (min != last) {
last = min;
hall[++nb].bounds = last;
}
rank[nu[i]].min = nb;
if (++i < n)
min = x[nu[i]].min();
} else {
if (max != last) {
last = max;
hall[++nb].bounds = last;
}
rank[mu[j]].max = nb;
if (++j == n)
break;
max = x[mu[j]].max() + 1;
}
}
}
int rightmost = nb + 1; // rightmost accesible value in bounds
hall[rightmost].bounds = ups.lastValue + 1 ;
if (Card::propagate) {
skip_lbc = true;
for (int i = k.size(); i--; )
if (k[i].min() != 0) {
skip_lbc = false;
break;
}
}
if (!card_fixed && !skip_lbc)
GECODE_ES_CHECK((lbc(home, nb, hall, rank, mu, nu)));
GECODE_ES_CHECK((ubc(home, nb, hall, rank, mu, nu)));
if (Card::propagate)
GECODE_ES_CHECK(prop_card<Card>(home, x, k));
for (int i = k.size(); i--; )
count[i] = 0;
for (int i = x.size(); i--; )
if (x[i].assigned()) {
int idx;
if (!lookupValue(k,x[i].val(),idx))
return ES_FAILED;
count[idx]++;
} else {
// We won't need the remaining counts, they're only used when
// all x are assigned
return ES_NOFIX;
}
for (int i = k.size(); i--; )
GECODE_ME_CHECK(k[i].eq(home, count[i]));
return home.ES_SUBSUMED(*this);
}
template<class Card>
ExecStatus
Bnd<Card>::post(Home home,
ViewArray<IntView>& x, ViewArray<Card>& k) {
bool cardfix = true;
for (int i=k.size(); i--; )
if (!k[i].assigned()) {
cardfix = false; break;
}
bool nolbc = true;
for (int i=k.size(); i--; )
if (k[i].min() != 0) {
nolbc = false; break;
}
GECODE_ES_CHECK(postSideConstraints<Card>(home, x, k));
if (isDistinct<Card>(home,x,k))
return Distinct::Bnd<IntView>::post(home,x);
(void) new (home) Bnd<Card>(home,x,k,cardfix,nolbc);
return ES_OK;
}
}}}
// STATISTICS: int-prop
|