This file is indexed.

/usr/include/gecode/int/gcc/bnd.hpp is in libgecode-dev 4.2.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
 *  Main authors:
 *     Patrick Pekczynski <pekczynski@ps.uni-sb.de>
 *
 *  Contributing authors:
 *     Christian Schulte <schulte@gecode.org>
 *     Guido Tack <tack@gecode.org>
 *
 *  Copyright:
 *     Patrick Pekczynski, 2004/2005
 *     Christian Schulte, 2009
 *     Guido Tack, 2009
 *
 *  Last modified:
 *     $Date: 2012-09-07 17:31:22 +0200 (Fri, 07 Sep 2012) $ by $Author: schulte $
 *     $Revision: 13068 $
 *
 *  This file is part of Gecode, the generic constraint
 *  development environment:
 *     http://www.gecode.org
 *
 *  Permission is hereby granted, free of charge, to any person obtaining
 *  a copy of this software and associated documentation files (the
 *  "Software"), to deal in the Software without restriction, including
 *  without limitation the rights to use, copy, modify, merge, publish,
 *  distribute, sublicense, and/or sell copies of the Software, and to
 *  permit persons to whom the Software is furnished to do so, subject to
 *  the following conditions:
 *
 *  The above copyright notice and this permission notice shall be
 *  included in all copies or substantial portions of the Software.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 *  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 *  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 *  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 *  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 *  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

namespace Gecode { namespace Int { namespace GCC {

  template<class Card>
  forceinline
  Bnd<Card>::
  Bnd(Home home, ViewArray<IntView>& x0, ViewArray<Card>& k0,
         bool cf, bool nolbc) :
    Propagator(home), x(x0), y(home, x0), k(k0),
    card_fixed(cf), skip_lbc(nolbc) {
    y.subscribe(home, *this, PC_INT_BND);
    k.subscribe(home, *this, PC_INT_BND);
  }

  template<class Card>
  forceinline
  Bnd<Card>::
  Bnd(Space& home, bool share, Bnd<Card>& p)
    : Propagator(home, share, p),
      card_fixed(p.card_fixed), skip_lbc(p.skip_lbc) {
    x.update(home, share, p.x);
    y.update(home, share, p.y);
    k.update(home, share, p.k);
  }

  template<class Card>
  forceinline size_t
  Bnd<Card>::dispose(Space& home) {
    y.cancel(home,*this, PC_INT_BND);
    k.cancel(home,*this, PC_INT_BND);
    (void) Propagator::dispose(home);
    return sizeof(*this);
  }

  template<class Card>
  Actor*
  Bnd<Card>::copy(Space& home, bool share) {
    return new (home) Bnd<Card>(home,share,*this);
  }

  template<class Card>
  PropCost
  Bnd<Card>::cost(const Space&,
                            const ModEventDelta& med) const {
    int n_k = Card::propagate ? k.size() : 0;
    if (IntView::me(med) == ME_INT_VAL)
      return PropCost::linear(PropCost::LO, y.size() + n_k);
    else
      return PropCost::quadratic(PropCost::LO, x.size() + n_k);
  }


  template<class Card>
  forceinline ExecStatus
  Bnd<Card>::lbc(Space& home, int& nb,
                           HallInfo hall[], Rank rank[], int mu[], int nu[]) {
    int n = x.size();

    /*
     *  Let I(S) denote the number of variables whose domain intersects
     *  the set S and C(S) the number of variables whose domain is containded
     *  in S. Let further  min_cap(S) be the minimal number of variables
     *  that must be assigned to values, that is
     *  min_cap(S) is the sum over all l[i] for a value v_i that is an
     *  element of S.
     *
     *  A failure set is a set F if
     *       I(F) < min_cap(F)
     *  An unstable set is a set U if
     *       I(U) = min_cap(U)
     *  A stable set is a set S if
     *      C(S) > min_cap(S) and S intersetcs nor
     *      any failure set nor any unstable set
     *      forall unstable and failure sets
     *
     *  failure sets determine the satisfiability of the LBC
     *  unstable sets have to be pruned
     *  stable set do not have to be pruned
     *
     * hall[].ps ~ stores the unstable
     *             sets that have to be pruned
     * hall[].s  ~ stores sets that must not be pruned
     * hall[].h  ~ contains stable and unstable sets
     * hall[].d  ~ contains the difference between interval bounds, i.e.
     *             the minimal capacity of the interval
     * hall[].t  ~ contains the critical capacity pointer, pointing to the
     *             values
     */

    // LBC lower bounds

    int i = 0;
    int j = 0;
    int w = 0;
    int z = 0;
    int v = 0;

    //initialization of the tree structure
    int rightmost = nb + 1; // rightmost accesible value in bounds
    int bsize     = nb + 2;
    w = rightmost;

    // test
    // unused but uninitialized
    hall[0].d = 0;
    hall[0].s = 0;
    hall[0].ps = 0;

    for (i = bsize; --i; ) { // i must not be zero
      int pred = i - 1;
      hall[i].s = pred;
      hall[i].ps = pred;
      hall[i].d = lps.sumup(hall[pred].bounds, hall[i].bounds - 1);

      /* Let [hall[i].bounds,hall[i-1].bounds]=:I
       * If the capacity is zero => min_cap(I) = 0
       * => I cannot be a failure set
       * => I is an unstable set
       */
      if (hall[i].d == 0) {
        hall[pred].h = w;
      } else {
        hall[w].h = pred;
        w = pred;
      }
    }

    w = rightmost;
    for (i = bsize; i--; ) { // i can be zero
      hall[i].t = i - 1;
      if (hall[i].d == 0) {
        hall[i].t = w;
      } else {
        hall[w].t = i;
        w = i;
      }
    }

    /*
     * The algorithm assigns to each value v in bounds
     * empty buckets corresponding to the minimal capacity l[i] to be
     * filled for v. (the buckets correspond to hall[].d containing the
     * difference between the interval bounds) Processing it
     * searches for the smallest value v in dom(x_i) that has an
     * empty bucket, i.e. if all buckets are filled it is guaranteed
     * that there are at least l[i] variables that will be
     * instantiated to v. Since the buckets are initially empty,
     * they are considered as FAILURE SETS
     */

    for (i = 0; i < n; i++) {
      // visit intervals in increasing max order
      int x0 = rank[mu[i]].min;
      int y = rank[mu[i]].max;
      int succ = x0 + 1;
      z = pathmax_t(hall, succ);
      j = hall[z].t;

      /*
       * POTENTIALLY STABLE SET:
       *  z \neq succ \Leftrigharrow z>succ, i.e.
       *  min(D_{\mu(i)}) is guaranteed to occur min(K_i) times
       *  \Rightarrow [x0, min(y,z)] is potentially stable
       */

      if (z != succ) {
        w = pathmax_ps(hall, succ);
        v = hall[w].ps;
        pathset_ps(hall, succ, w, w);
        w = std::min(y, z);
        pathset_ps(hall, hall[w].ps, v, w);
        hall[w].ps = v;
      }

      /*
       * STABLE SET:
       *   being stable implies being potentially stable, i.e.
       *   [hall[y].ps, hall[y].bounds-1] is the largest stable subset of
       *   [hall[j].bounds, hall[y].bounds-1].
       */

      if (hall[z].d <= lps.sumup(hall[y].bounds, hall[z].bounds - 1)) {
        w = pathmax_s(hall, hall[y].ps);
        pathset_s(hall, hall[y].ps, w, w);
        // Path compression
        v = hall[w].s;
        pathset_s(hall, hall[y].s, v, y);
        hall[y].s = v;
      } else {
        /*
         * FAILURE SET:
         * If the considered interval [x0,y] is neither POTENTIALLY STABLE
         * nor STABLE there are still buckets that can be filled,
         * therefore d can be decreased. If d equals zero the intervals
         * minimum capacity is met and thepath can be compressed to the
         * next value having an empty bucket.
         * see DOMINATION in "ubc"
         */
        if (--hall[z].d == 0) {
          hall[z].t = z + 1;
          z = pathmax_t(hall, hall[z].t);
          hall[z].t = j;
        }

        /*
         * FINDING NEW LOWER BOUND:
         * If the lower bound belongs to an unstable or a stable set,
         * remind the new value we might assigned to the lower bound
         * in case the variable doesn't belong to a stable set.
         */
        if (hall[x0].h > x0) {
          hall[i].newBound = pathmax_h(hall, x0);
          w = hall[i].newBound;
          pathset_h(hall, x0, w, w); // path compression
        } else {
          // Do not shrink the variable: take old min as new min
          hall[i].newBound = x0;
        }

        /* UNSTABLE SET
         * If an unstable set is discovered
         * the difference between the interval bounds is equal to the
         * number of variables whose domain intersect the interval
         * (see ZEROTEST in "gcc")
         */
        // CLEARLY THIS WAS NOT STABLE == UNSTABLE
        if (hall[z].d == lps.sumup(hall[y].bounds, hall[z].bounds - 1)) {
          if (hall[y].h > y)
            /*
             * y is not the end of the potentially stable set
             * thus ensure that the potentially stable superset is marked
             */
            y = hall[y].h;
          // Equivalent to pathmax since the path is fully compressed
          pathset_h(hall, hall[y].h, j-1, y);
          // mark the new unstable set [j,y]
          hall[y].h = j-1;
        }
      }
      pathset_t(hall, succ, z, z); // path compression
    }

    /* If there is a FAILURE SET left the minimum occurences of the values
     * are not guaranteed. In order to satisfy the LBC the last value
     * in the stable and unstable datastructure hall[].h must point to
     * the sentinel at the beginning of bounds.
     */
    if (hall[nb].h != 0)
      return ES_FAILED;

    // Perform path compression over all elements in
    // the stable interval data structure. This data
    // structure will no longer be modified and will be
    // accessed n or 2n times. Therefore, we can afford
    // a linear time compression.
    for (i = bsize; --i;)
      if (hall[i].s > i)
        hall[i].s = w;
      else
        w = i;

    /*
     * UPDATING LOWER BOUND:
     * For all variables that are not a subset of a stable set,
     * shrink the lower bound, i.e. forall stable sets S we have:
     * x0 < S_min <= y <=S_max  or S_min <= x0 <= S_max < y
     * that is [x0,y] is NOT a proper subset of any stable set S
     */
    for (i = n; i--; ) {
      int x0 = rank[mu[i]].min;
      int y = rank[mu[i]].max;
      // update only those variables that are not contained in a stable set
      if ((hall[x0].s <= x0) || (y > hall[x0].s)) {
        // still have to check this out, how skipping works (consider dominated indices)
        int m = lps.skipNonNullElementsRight(hall[hall[i].newBound].bounds);
        GECODE_ME_CHECK(x[mu[i]].gq(home, m));
      }
    }

    // LBC narrow upper bounds
    w = 0;
    for (i = 0; i <= nb; i++) {
      hall[i].d = lps.sumup(hall[i].bounds, hall[i + 1].bounds - 1);
      if (hall[i].d == 0) {
        hall[i].t = w;
      } else {
        hall[w].t = i;
        w = i;
      }
    }
    hall[w].t = i;

    w = 0;
    for (i = 1; i <= nb; i++)
      if (hall[i - 1].d == 0) {
        hall[i].h = w;
      } else {
        hall[w].h = i;
        w = i;
      }
    hall[w].h = i;

    for (i = n; i--; ) {
      // visit intervals in decreasing min order
      // i.e. minsorted from right to left
      int x0 = rank[nu[i]].max;
      int y = rank[nu[i]].min;
      int pred = x0 - 1; // predecessor of x0 in the indices
      z = pathmin_t(hall, pred);
      j = hall[z].t;

      /* If the variable is not in a discovered stable set
       * (see above condition for STABLE SET)
       */
      if (hall[z].d > lps.sumup(hall[z].bounds, hall[y].bounds - 1)) {
        // FAILURE SET
        if (--hall[z].d == 0) {
          hall[z].t = z - 1;
          z = pathmin_t(hall, hall[z].t);
          hall[z].t = j;
        }
        // FINDING NEW UPPER BOUND
        if (hall[x0].h < x0) {
          w = pathmin_h(hall, hall[x0].h);
          hall[i].newBound = w;
          pathset_h(hall, x0, w, w); // path compression
        } else {
          hall[i].newBound = x0;
        }
        // UNSTABLE SET
        if (hall[z].d == lps.sumup(hall[z].bounds, hall[y].bounds - 1)) {
          if (hall[y].h < y) {
            y = hall[y].h;
          }
          int succj = j + 1;
          // mark new unstable set [y,j]
          pathset_h(hall, hall[y].h, succj, y);
          hall[y].h = succj;
        }
      }
      pathset_t(hall, pred, z, z);
    }

    // UPDATING UPPER BOUND
    for (i = n; i--; ) {
      int x0 =  rank[nu[i]].min;
      int y  =  rank[nu[i]].max;
      if ((hall[x0].s <= x0) || (y > hall[x0].s)) {
        int m = lps.skipNonNullElementsLeft(hall[hall[i].newBound].bounds - 1);
        GECODE_ME_CHECK(x[nu[i]].lq(home, m));
      }
    }
    return ES_OK;
  }


  template<class Card>
  forceinline ExecStatus
  Bnd<Card>::ubc(Space& home, int& nb,
                           HallInfo hall[], Rank rank[], int mu[], int nu[]) {
    int rightmost = nb + 1; // rightmost accesible value in bounds
    int bsize = nb + 2; // number of unique bounds including sentinels

    //Narrow lower bounds (UBC)

    /*
     * Initializing tree structure with the values from bounds
     * and the interval capacities of neighboured values
     * from left to right
     */


    hall[0].h = 0;
    hall[0].t = 0;
    hall[0].d = 0;

    for (int i = bsize; --i; ) {
      hall[i].h = hall[i].t = i-1;
      hall[i].d = ups.sumup(hall[i-1].bounds, hall[i].bounds - 1);
    }

    int n = x.size();

    for (int i = 0; i < n; i++) {
      // visit intervals in increasing max order
      int x0   = rank[mu[i]].min;
      int succ = x0 + 1;
      int y    = rank[mu[i]].max;
      int z    = pathmax_t(hall, succ);
      int j    = hall[z].t;

      /* DOMINATION:
       *     v^i_j denotes
       *     unused values in the current interval. If the difference d
       *     between to critical capacities v^i_j and v^i_z
       *     is equal to zero, j dominates z
       *
       *     i.e. [hall[l].bounds, hall[nb+1].bounds] is not left-maximal and
       *     [hall[j].bounds, hall[l].bounds] is a Hall set iff
       *     [hall[j].bounds, hall[l].bounds] processing a variable x_i uses up a value in the interval
       *     [hall[z].bounds,hall[z+1].bounds] according to the intervals
       *     capacity. Therefore, if d = 0
       *     the considered value has already been used by processed variables
       *     m-times, where m = u[i] for value v_i. Since this value must not
       *     be reconsidered the path can be compressed
       */
      if (--hall[z].d == 0) {
        hall[z].t = z + 1;
        z = pathmax_t(hall, hall[z].t);
        if (z >= bsize)
          z--;
        hall[z].t = j;
      }
      pathset_t(hall, succ, z, z); // path compression

      /* NEGATIVE CAPACITY:
       *     A negative capacity results in a failure.Since a
       *     negative capacity signals that the number of variables
       *     whose domain is contained in the set S is larger than
       *     the maximum capacity of S => UBC is not satisfiable,
       *     i.e. there are more variables than values to instantiate them
       */
      if (hall[z].d < ups.sumup(hall[y].bounds, hall[z].bounds - 1))
        return ES_FAILED;
      
      /* UPDATING LOWER BOUND:
       *   If the lower bound min_i lies inside a Hall interval [a,b]
       *   i.e. a <= min_i <=b <= max_i
       *   min_i is set to  min_i := b+1
       */
      if (hall[x0].h > x0) {
        int w = pathmax_h(hall, hall[x0].h);
        int m = hall[w].bounds;
        GECODE_ME_CHECK(x[mu[i]].gq(home, m));
        pathset_h(hall, x0, w, w); // path compression
      }

      /* ZEROTEST:
       *     (using the difference between capacity pointers)
       *     zero capacity => the difference between critical capacity
       *     pointers is equal to the maximum capacity of the interval,i.e.
       *     the number of variables whose domain is contained in the
       *     interval is equal to the sum over all u[i] for a value v_i that
       *     lies in the Hall-Intervall which can also be thought of as a
       *     Hall-Set
       *
       *    ZeroTestLemma: Let k and l be succesive critical indices.
       *          v^i_k=0  =>  v^i_k = max_i+1-l+d
       *                   <=> v^i_k = y + 1 - z + d
       *                   <=> d = z-1-y
       *    if this equation holds the interval [j,z-1] is a hall intervall
       */

      if (hall[z].d == ups.sumup(hall[y].bounds, hall[z].bounds - 1)) {
        /*
         *mark hall interval [j,z-1]
         * hall pointers form a path to the upper bound of the interval
         */
        int predj = j - 1;
        pathset_h(hall, hall[y].h, predj, y);
        hall[y].h = predj;
      }
    }

    /* Narrow upper bounds (UBC)
     * symmetric to the narrowing of the lower bounds
     */
    for (int i = 0; i < rightmost; i++) {
      hall[i].h = hall[i].t = i+1;
      hall[i].d = ups.sumup(hall[i].bounds, hall[i+1].bounds - 1);
    }
        
    for (int i = n; i--; ) {
      // visit intervals in decreasing min order
      int x0 = rank[nu[i]].max;
      int pred = x0 - 1;
      int y = rank[nu[i]].min;
      int z = pathmin_t(hall, pred);
      int j = hall[z].t;
    
      // DOMINATION:
      if (--hall[z].d == 0) {
        hall[z].t = z - 1;
        z = pathmin_t(hall, hall[z].t);
        hall[z].t = j;
      }
      pathset_t(hall, pred, z, z);
    
      // NEGATIVE CAPACITY:
      if (hall[z].d < ups.sumup(hall[z].bounds,hall[y].bounds-1))
        return ES_FAILED;
    
      /* UPDATING UPPER BOUND:
       *   If the upper bound max_i lies inside a Hall interval [a,b]
       *   i.e. min_i <= a <= max_i < b
       *   max_i is set to  max_i := a-1
       */
      if (hall[x0].h < x0) {
        int w = pathmin_h(hall, hall[x0].h);
        int m = hall[w].bounds - 1;
        GECODE_ME_CHECK(x[nu[i]].lq(home, m));
        pathset_h(hall, x0, w, w);
      }

      // ZEROTEST
      if (hall[z].d == ups.sumup(hall[z].bounds, hall[y].bounds - 1)) {
        //mark hall interval [y,j]
        pathset_h(hall, hall[y].h, j+1, y);
        hall[y].h = j+1;
      }
    }
    return ES_OK;
  }

  template<class Card>
  ExecStatus
  Bnd<Card>::pruneCards(Space& home) {
    // Remove all values with 0 max occurrence
    // and remove corresponding occurrence variables from k
    
    // The number of zeroes
    int n_z = 0;
    for (int i=k.size(); i--;)
      if (k[i].max() == 0)
        n_z++;

    if (n_z > 0) {
      Region r(home);
      int* z = r.alloc<int>(n_z);
      n_z = 0;
      int n_k = 0;
      for (int i=0; i<k.size(); i++)
        if (k[i].max() == 0) {
          z[n_z++] = k[i].card();            
        } else {
          k[n_k++] = k[i];
        }
      k.size(n_k);
      Support::quicksort(z,n_z);
      for (int i=x.size(); i--;) {
        Iter::Values::Array zi(z,n_z);
        GECODE_ME_CHECK(x[i].minus_v(home,zi,false));
      }
      lps.reinit(); ups.reinit();
    }
    return ES_OK;
  }

  template<class Card>
  ExecStatus
  Bnd<Card>::propagate(Space& home, const ModEventDelta& med) {
    if (IntView::me(med) == ME_INT_VAL) {
      GECODE_ES_CHECK(prop_val<Card>(home,*this,y,k));
      return home.ES_NOFIX_PARTIAL(*this,IntView::med(ME_INT_BND));
    }

    if (Card::propagate)
      GECODE_ES_CHECK(pruneCards(home));

    Region r(home);
    int* count = r.alloc<int>(k.size());

    for (int i = k.size(); i--; )
      count[i] = 0;
    bool all_assigned = true;
    int noa = 0;
    for (int i = x.size(); i--; ) {
      if (x[i].assigned()) {
        noa++;
        int idx;
        // reduction is essential for order on value nodes in dom
        // hence introduce test for failed lookup
        if (!lookupValue(k,x[i].val(),idx))
          return ES_FAILED;
        count[idx]++;
      } else {
        all_assigned = false;
        // We only need the counts in the view case or when all
        // x are assigned
        if (!Card::propagate)
          break;
      }
    }

    if (Card::propagate) {
      // before propagation performs inferences on cardinality variables:
      if (noa > 0)
        for (int i = k.size(); i--; )
          if (!k[i].assigned()) {
            GECODE_ME_CHECK(k[i].lq(home, x.size() - (noa - count[i])));
            GECODE_ME_CHECK(k[i].gq(home, count[i]));
          }

      if (!card_consistent<Card>(x, k))
        return ES_FAILED;

      GECODE_ES_CHECK(prop_card<Card>(home, x, k));

      // Cardinalities may have been modified, so recompute
      // count and all_assigned
      for (int i = k.size(); i--; )
        count[i] = 0;
      all_assigned = true;
      for (int i = x.size(); i--; ) {
        if (x[i].assigned()) {
          int idx;
          // reduction is essential for order on value nodes in dom
          // hence introduce test for failed lookup
          if (!lookupValue(k,x[i].val(),idx))
            return ES_FAILED;
          count[idx]++;
        } else {
          // We won't need the remaining counts, they're only used when
          // all x are assigned
          all_assigned = false;
          break;
        }
      }
    }

    if (all_assigned) {
      for (int i = k.size(); i--; )
        GECODE_ME_CHECK(k[i].eq(home, count[i]));
      return home.ES_SUBSUMED(*this);
    }

    if (Card::propagate)
      GECODE_ES_CHECK(pruneCards(home));

    int n = x.size();

    int* mu = r.alloc<int>(n);
    int* nu = r.alloc<int>(n);

    for (int i = n; i--; )
      nu[i] = mu[i] = i;

    // Create sorting permutation mu according to the variables upper bounds
    MaxInc<IntView> max_inc(x);
    Support::quicksort<int, MaxInc<IntView> >(mu, n, max_inc);

    // Create sorting permutation nu according to the variables lower bounds
    MinInc<IntView> min_inc(x);
    Support::quicksort<int, MinInc<IntView> >(nu, n, min_inc);

    // Sort the cardinality bounds by index
    MinIdx<Card> min_idx;
    Support::quicksort<Card, MinIdx<Card> >(&k[0], k.size(), min_idx);

    if (!lps.initialized()) {
      assert (!ups.initialized());
      lps.init(home, k, false);
      ups.init(home, k, true);
    } else if (Card::propagate) {
      // if there has been a change to the cardinality variables
      // reconstruction of the partial sum structure is necessary
      if (lps.check_update_min(k))
        lps.init(home, k, false);
      if (ups.check_update_max(k))
        ups.init(home, k, true);
    }

    // assert that the minimal value of the partial sum structure for
    // LBC is consistent with the smallest value a variable can take
    assert(lps.minValue() <= x[nu[0]].min());
    // assert that the maximal value of the partial sum structure for
    // UBC is consistent with the largest value a variable can take

    /*
     *  Setup rank and bounds info
     *  Since this implementation is based on the theory of Hall Intervals
     *  additional datastructures are needed in order to represent these
     *  intervals and the "partial-sum" data structure (cf."gcc/bnd-sup.hpp")
     *
     */

    HallInfo* hall = r.alloc<HallInfo>(2 * n + 2);
    Rank* rank = r.alloc<Rank>(n);

    int nb = 0;
    // setup bounds and rank
    int min        = x[nu[0]].min();
    int max        = x[mu[0]].max() + 1;
    int last       = lps.firstValue + 1; //equivalent to last = min -2
    hall[0].bounds = last;

    /*
     * First the algorithm merges the arrays minsorted and maxsorted
     * into bounds i.e. hall[].bounds contains the ordered union
     * of the lower and upper domain bounds including two sentinels
     * at the beginning and at the end of the set
     * ( the upper variable bounds in this union are increased by 1 )
     */

    {
      int i = 0;
      int j = 0;
      while (true) {
        if (i < n && min < max) {
          if (min != last) {
            last = min;
            hall[++nb].bounds = last;
          }
          rank[nu[i]].min = nb;
          if (++i < n)
            min = x[nu[i]].min();
        } else {
          if (max != last) {
            last = max;
            hall[++nb].bounds = last;
          }
          rank[mu[j]].max = nb;
          if (++j == n)
            break;
          max = x[mu[j]].max() + 1;
        }
      }
    }

    int rightmost = nb + 1; // rightmost accesible value in bounds
    hall[rightmost].bounds = ups.lastValue + 1 ;

    if (Card::propagate) {
      skip_lbc = true;
      for (int i = k.size(); i--; )
        if (k[i].min() != 0) {
          skip_lbc = false;
          break;
        }
    }

    if (!card_fixed && !skip_lbc)
      GECODE_ES_CHECK((lbc(home, nb, hall, rank, mu, nu)));

    GECODE_ES_CHECK((ubc(home, nb, hall, rank, mu, nu)));

    if (Card::propagate)
      GECODE_ES_CHECK(prop_card<Card>(home, x, k));

    for (int i = k.size(); i--; )
      count[i] = 0;
    for (int i = x.size(); i--; )
      if (x[i].assigned()) {
        int idx;
        if (!lookupValue(k,x[i].val(),idx))
          return ES_FAILED;
        count[idx]++;
      } else {
        // We won't need the remaining counts, they're only used when
        // all x are assigned
        return ES_NOFIX;
      }

    for (int i = k.size(); i--; )
      GECODE_ME_CHECK(k[i].eq(home, count[i]));

    return home.ES_SUBSUMED(*this);
  }


  template<class Card>
  ExecStatus
  Bnd<Card>::post(Home home,
                  ViewArray<IntView>& x, ViewArray<Card>& k) {
    bool cardfix = true;
    for (int i=k.size(); i--; )
      if (!k[i].assigned()) {
        cardfix = false; break;
      }
    bool nolbc = true;
    for (int i=k.size(); i--; )
      if (k[i].min() != 0) {
        nolbc = false; break;
      }

    GECODE_ES_CHECK(postSideConstraints<Card>(home, x, k));

    if (isDistinct<Card>(home,x,k))
      return Distinct::Bnd<IntView>::post(home,x);

    (void) new (home) Bnd<Card>(home,x,k,cardfix,nolbc);
    return ES_OK;
  }

}}}

// STATISTICS: int-prop