This file is indexed.

/usr/include/gecode/float/trigonometric/sincos.hpp is in libgecode-dev 4.2.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
 *  Main authors:
 *     Vincent Barichard <Vincent.Barichard@univ-angers.fr>
 *
 *  Copyright:
 *     Vincent Barichard, 2012
 *
 *  Last modified:
 *     $Date: 2013-02-04 21:28:39 +0100 (Mon, 04 Feb 2013) $ by $Author: schulte $
 *     $Revision: 13262 $
 *
 *  This file is part of Gecode, the generic constraint
 *  development environment:
 *     http://www.gecode.org
 *
 *  Permission is hereby granted, free of charge, to any person obtaining
 *  a copy of this software and associated documentation files (the
 *  "Software"), to deal in the Software without restriction, including
 *  without limitation the rights to use, copy, modify, merge, publish,
 *  distribute, sublicense, and/or sell copies of the Software, and to
 *  permit persons to whom the Software is furnished to do so, subject to
 *  the following conditions:
 *
 *  The above copyright notice and this permission notice shall be
 *  included in all copies or substantial portions of the Software.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 *  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 *  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 *  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 *  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 *  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

namespace Gecode { namespace Float { namespace Trigonometric {


  /*
   * ASin projection function
   *
   */
template<class V>
void aSinProject(Rounding& r, const V& aSinIv, FloatNum& iv_min, FloatNum& iv_max, int& n_min, int& n_max) {
  #define I0__PI_2I    FloatVal(0,pi_half_upper())
  #define IPI_2__PII   FloatVal(pi_half_lower(),pi_upper())
  #define IPI__3PI_2I  FloatVal(pi_lower(),3*pi_half_upper())
  #define I3PI_2__2PII FloatVal(3*pi_half_lower(),pi_twice_upper())
  #define POS(X) ((I0__PI_2I.in(X))?0: (IPI_2__PII.in(X))?1: (IPI__3PI_2I.in(X))?2: 3 )
  #define ASININF_DOWN r.asin_down(aSinIv.min())
  #define ASINSUP_UP r.asin_up(aSinIv.max())
  
  // 0 <=> in [0;PI/2]
  // 1 <=> in [PI/2;PI]
  // 2 <=> in [PI;3*PI/2]
  // 3 <=> in [3*PI/2;2*PI]
  switch ( POS(iv_min) )
  {
    case 0:
      if (r.sin_down(iv_min) > aSinIv.max())    { n_min++; iv_min = -ASINSUP_UP;   }
      else if (r.sin_up(iv_min) < aSinIv.min()) {          iv_min = ASININF_DOWN;  }
    break;
    case 1:
      if (r.sin_down(iv_min) > aSinIv.max())    { n_min++;  iv_min = -ASINSUP_UP;   }
      else if (r.sin_up(iv_min) < aSinIv.min()) { n_min+=2; iv_min = ASININF_DOWN;  }
    break;
    case 2:
      if (r.sin_down(iv_min) > aSinIv.max())    { n_min++;  iv_min = -ASINSUP_UP;   }
      else if (r.sin_up(iv_min) < aSinIv.min()) { n_min+=2; iv_min = ASININF_DOWN; }
    break;
    case 3:
      if (r.sin_down(iv_min) > aSinIv.max())    { n_min+=3; iv_min = -ASINSUP_UP;    }
      else if (r.sin_up(iv_min) < aSinIv.min()) { n_min+=2; iv_min = ASININF_DOWN; }
    break;
    default:
      GECODE_NEVER;
    break;
  }

  // 0 <=> in [0;PI/2]
  // 1 <=> in [PI/2;PI]
  // 2 <=> in [PI;3*PI/2]
  // 3 <=> in [3*PI/2;2*PI]
  switch ( POS(iv_max) )
  {
    case 0:
      if (r.sin_down(iv_max) > aSinIv.max())    {           iv_max = ASINSUP_UP;    }
      else if (r.sin_up(iv_max) < aSinIv.min()) { n_max--;  iv_max = -ASININF_DOWN; }
    break;
    case 1:
      if (r.sin_down(iv_max) > aSinIv.max())    {          iv_max = ASINSUP_UP;    }
      else if (r.sin_up(iv_max) < aSinIv.min()) { n_max++; iv_max = -ASININF_DOWN; }
    break;
    case 2:
      if (r.sin_down(iv_max) > aSinIv.max())    {          iv_max = ASINSUP_UP;    }
      else if (r.sin_up(iv_max) < aSinIv.min()) { n_max++; iv_max = -ASININF_DOWN; }
    break;
    case 3:
      if (r.sin_down(iv_max) > aSinIv.max())    { n_max+=2; iv_max = ASINSUP_UP;    }
      else if (r.sin_up(iv_max) < aSinIv.min()) { n_max++;  iv_max = -ASININF_DOWN; }
    break;
    default:
      GECODE_NEVER;
    break;
  }
  #undef ASININF_DOWN
  #undef ASINSUP_UP
  #undef POS
  #undef I0__PI_2I
  #undef IPI_2__PII
  #undef IPI__3PI_2I
  #undef I3PI_2__2PII
}

/*
   * Bounds consistent sinus operator
   *
   */

  template<class A, class B>
  forceinline
  Sin<A,B>::Sin(Home home, A x0, B x1)
    : MixBinaryPropagator<A,PC_FLOAT_BND,B,PC_FLOAT_BND>(home,x0,x1) {}

  template<class A, class B>
  ExecStatus
  Sin<A,B>::post(Home home, A x0, B x1) {
    if (same(x0,x1)) {
      GECODE_ME_CHECK(x0.eq(home,0.0));
    } else {
      GECODE_ME_CHECK(x1.gq(home,-1.0));
      GECODE_ME_CHECK(x1.lq(home,1.0));
      (void) new (home) Sin<A,B>(home,x0,x1);
    }
    
    return ES_OK;
  }


  template<class A, class B>
  forceinline
  Sin<A,B>::Sin(Space& home, bool share, Sin<A,B>& p)
    : MixBinaryPropagator<A,PC_FLOAT_BND,B,PC_FLOAT_BND>(home,share,p) {}

  template<class A, class B>
  Actor*
  Sin<A,B>::copy(Space& home, bool share) {
    return new (home) Sin<A,B>(home,share,*this);
  }

  template<class A, class B>
  ExecStatus
  Sin<A,B>::propagate(Space& home, const ModEventDelta&) {
    GECODE_ME_CHECK(x1.eq(home,sin(x0.val())));
    Rounding r;
    int n_min = 2*static_cast<int>(r.div_up(x0.min(), pi_twice_upper()));
    int n_max = 2*static_cast<int>(r.div_up(x0.max(), pi_twice_upper()));
    if (x0.min() < 0) n_min-=2;
    if (x0.max() < 0) n_max-=2;
    FloatNum iv_min = r.sub_down(x0.min(),r.mul_down(n_min, pi_upper()));
    FloatNum iv_max = r.sub_up  (x0.max(),r.mul_down(n_max, pi_upper()));
    aSinProject(r,x1,iv_min,iv_max,n_min,n_max);
    FloatNum n_iv_min = r.add_down(iv_min,r.mul_down(n_min, pi_upper()));
    FloatNum n_iv_max = r.add_up  (iv_max,r.mul_down(n_max, pi_upper()));
    if (n_iv_min > n_iv_max) return ES_FAILED;
    GECODE_ME_CHECK(x0.eq(home,FloatVal(n_iv_min,n_iv_max)));
    GECODE_ME_CHECK(x1.eq(home,sin(x0.val()))); // Redo sin because with x0 reduction, sin may be more accurate
    return (x0.assigned()) ? home.ES_SUBSUMED(*this) : ES_FIX;
  }

  /*
   * Bounds consistent cosinus operator
   *
   */

  template<class A, class B>
  forceinline
  Cos<A,B>::Cos(Home home, A x0, B x1)
    : MixBinaryPropagator<A,PC_FLOAT_BND,B,PC_FLOAT_BND>(home,x0,x1) {}

  template<class A, class B>
  ExecStatus
  Cos<A,B>::post(Home home, A x0, B x1) {
    if (same(x0,x1)) {
      GECODE_ME_CHECK(x0.gq(home,0.7390851332151));
      GECODE_ME_CHECK(x0.lq(home,0.7390851332152));
      bool mod;
      do {
        mod = false;
        GECODE_ME_CHECK_MODIFIED(mod,x0.eq(home,cos(x0.val())));
      } while (mod);
    } else {
      GECODE_ME_CHECK(x1.gq(home,-1.0));
      GECODE_ME_CHECK(x1.lq(home,1.0));
      (void) new (home) Cos<A,B>(home,x0,x1);
    }
    return ES_OK;
  }


  template<class A, class B>
  forceinline
  Cos<A,B>::Cos(Space& home, bool share, Cos<A,B>& p)
    : MixBinaryPropagator<A,PC_FLOAT_BND,B,PC_FLOAT_BND>(home,share,p) {}

  template<class A, class B>
  Actor*
  Cos<A,B>::copy(Space& home, bool share) {
    return new (home) Cos<A,B>(home,share,*this);
  }

  template<class A, class B>
  ExecStatus
  Cos<A,B>::propagate(Space& home, const ModEventDelta&) {
    GECODE_ME_CHECK(x1.eq(home,cos(x0.val())));
    Rounding r;
    FloatVal x0Trans = x0.val() + FloatVal::pi_half();
    int n_min = 2*static_cast<int>(r.div_up(x0Trans.min(), pi_twice_upper()));
    int n_max = 2*static_cast<int>(r.div_up(x0Trans.max(), pi_twice_upper()));
    if (x0Trans.min() < 0) n_min-=2;
    if (x0Trans.max() < 0) n_max-=2;
    FloatNum iv_min = r.sub_down(x0Trans.min(),r.mul_down(n_min, pi_upper()));
    FloatNum iv_max = r.sub_up  (x0Trans.max(),r.mul_down(n_max, pi_upper()));
    aSinProject(r,x1,iv_min,iv_max,n_min,n_max);
    FloatNum n_iv_min = r.add_down(iv_min,r.mul_down(n_min, pi_upper()));
    FloatNum n_iv_max = r.add_up  (iv_max,r.mul_down(n_max, pi_upper()));
    if (n_iv_min > n_iv_max) return ES_FAILED;
    GECODE_ME_CHECK(x0.eq(home,FloatVal(n_iv_min,n_iv_max) - FloatVal::pi_half()));
    GECODE_ME_CHECK(x1.eq(home,cos(x0.val()))); // Redo sin because with x0 reduction, sin may be more accurate
    return (x0.assigned()) ? home.ES_SUBSUMED(*this) : ES_FIX;
  }

}}}

// STATISTICS: float-prop