/usr/include/ga/GATreeGenome.C is in libga-dev 2.4.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 | // $Header$
/* ----------------------------------------------------------------------------
tree.C
mbwall 25feb95
Copyright (c) 1995 Massachusetts Institute of Technology
all rights reserved
DESCRIPTION:
Source file for the tree genome.
---------------------------------------------------------------------------- */
#ifndef _ga_tree_C_
#define _ga_tree_C_
#include <stdio.h>
#include <stdlib.h>
#include <ga/GATreeGenome.h>
#include <ga/garandom.h>
extern int _GATreeCompare(GANodeBASE * anode, GANodeBASE * bnode);
template <class T> const char *
GATreeGenome<T>::className() const {return "GATreeGenome";}
template <class T> int
GATreeGenome<T>::classID() const {return GAID::TreeGenome;}
template <class T>
GATreeGenome<T>::GATreeGenome(GAGenome::Evaluator f, void * u) :
GATree<T>(),
GAGenome(DEFAULT_TREE_INITIALIZER,
DEFAULT_TREE_MUTATOR,
DEFAULT_TREE_COMPARATOR) {
evaluator(f);
userData(u);
crossover(DEFAULT_TREE_CROSSOVER);
}
template <class T>
GATreeGenome<T>::GATreeGenome(const GATreeGenome<T> & orig) :
GATree<T>(),
GAGenome() {
GATreeGenome<T>::copy(orig);
}
template <class T>
GATreeGenome<T>::~GATreeGenome() { }
template <class T> GAGenome *
GATreeGenome<T>::clone(GAGenome::CloneMethod flag) const {
GATreeGenome<T> *cpy = new GATreeGenome<T>();
if(flag == (int)CONTENTS){cpy->copy(*this);} // cast is for metrowerks...
else{cpy->GAGenome::copy(*this);}
return cpy;
}
template <class T> void
GATreeGenome<T>::copy(const GAGenome & orig) {
if(&orig == this) return;
const GATreeGenome<T>* c = DYN_CAST(const GATreeGenome<T>*, &orig);
if(c) {
GAGenome::copy(*c);
GATree<T>::copy(*c);
}
}
#ifdef GALIB_USE_STREAMS
// Traverse the tree (breadth-first) and dump the contents as best we can to
// the stream. We don't try to write the contents of the nodes - we simply
// write a . for each node in the tree.
// We allocate space for x,y coord pair for each node in the tree. Then we
// do a depth-first traversal of the tree and assign coords to the nodes in the
// order we get them in the traversal. Each coord pair is measured relative to
// the parent of the node.
template <class T> void
_tt(STD_OSTREAM & os, GANode<T> * n)
{
if(!n) return;
GANodeBASE * node = DYN_CAST(GANodeBASE*, n);
os.width(10); os << node << " ";
os.width(10); os << node->parent << " ";
os.width(10); os << node->child << " ";
os.width(10); os << node->next << " ";
os.width(10); os << node->prev << " ";
os.width(10); os << &(n->contents) << "\n";
_tt(os, DYN_CAST(GANode<T>*, node->child));
for(GANodeBASE * tmp=node->next; tmp && tmp != node; tmp=tmp->next){
os.width(10); os << tmp << " ";
os.width(10); os << tmp->parent << " ";
os.width(10); os << tmp->child << " ";
os.width(10); os << tmp->next << " ";
os.width(10); os << tmp->prev << " ";
os.width(10); os << &(DYN_CAST(GANode<T>*, tmp)->contents) << "\n";
_tt(os, DYN_CAST(GANode<T>*, tmp->child));
}
}
template <class T> int
GATreeGenome<T>::write(STD_OSTREAM & os) const
{
os << "node parent child next prev contents\n";
_tt(os, (GANode<T> *)(this->rt));
return 0;
}
#endif
template <class T> int
GATreeGenome<T>::equal(const GAGenome & c) const
{
if(this == &c) return 1;
const GATreeGenome<T>& b = DYN_CAST(const GATreeGenome<T>&, c);
return _GATreeCompare(this->rt, b.rt) ? 0 : 1;
}
/* ----------------------------------------------------------------------------
Operator definitions
---------------------------------------------------------------------------- */
// This mutation method is destructive. We randomly pick a node in the tree
// then delete the subtree and node at that point. Each node in the tree has
// a pmut probability of getting nuked.
// After the mutation the iterator is left at the root of the tree.
template <class T> int
GATreeGenome<T>::DestructiveMutator(GAGenome & c, float pmut)
{
GATreeGenome<T> &child=DYN_CAST(GATreeGenome<T> &, c);
register int n, i;
if(pmut <= 0.0) return 0;
n = child.size();
float nMut = pmut * STA_CAST(float,n);
if(nMut < 1.0){ // we have to do a flip test for each node
nMut = 0;
for(i=0; i<n; i++){
if(GAFlipCoin(pmut) && child.warp(i)){
child.destroy();
nMut++;
}
}
}
else{ // only nuke the number of nodes we need to
for(i=0; i<nMut; i++){
if(child.warp(GARandomInt(0, n-1)))
child.destroy();
}
}
child.root(); // set iterator to root node
return(STA_CAST(int,nMut));
}
// This is a rearranging mutation operator. It randomly picks two nodes in the
// tree and swaps them. Any node has a pmut chance of getting
// swapped, and the swap could happen to any other node. And in the case of
// nMut < 1, the swap may generate a swap partner that is the same node, in
// which case no swap occurs (we don't check).
// After the mutation the iterator is left at the root of the tree.
template <class T> int
GATreeGenome<T>::SwapNodeMutator(GAGenome & c, float pmut)
{
GATreeGenome<T> &child=DYN_CAST(GATreeGenome<T> &, c);
register int n, i;
if(pmut <= 0.0) return 0;
n = child.size();
float nMut = pmut * STA_CAST(float,n);
nMut *= 0.5; // swapping one node swaps another as well
if(nMut < 1.0){ // we have to do a flip test for each node
nMut = 0;
for(i=0; i<n; i++){
if(GAFlipCoin(pmut)){
child.swap(i,GARandomInt(0,n-1));
nMut++;
}
}
}
else{ // only nuke the number of nodes we need to
for(i=0; i<nMut; i++)
child.swap(GARandomInt(0,n-1),GARandomInt(0,n-1));
}
child.root(); // set iterator to root node
return(STA_CAST(int,nMut*2));
}
// This is a rearranging mutation operator with subtree swap. It does the same
// thing as the rearranging mutator above, but swaps subtrees as well as the
// nodes that are selected.
// After the mutation the iterator is left at the root of the tree.
// We check to make sure that we don't try to swap ancestral nodes. If it is
// an ancestral swap, we give up and don't do anything to the tree. This could
// result in mutation rates that are lower than the specified rate!
// *** mutation rates are not exact!
template <class T> int
GATreeGenome<T>::SwapSubtreeMutator(GAGenome & c, float pmut)
{
GATreeGenome<T> &child=DYN_CAST(GATreeGenome<T> &, c);
register int n, i;
int a, b;
if(pmut <= 0.0) return 0;
n = child.size();
float nMut = pmut * STA_CAST(float,n);
nMut *= 0.5; // swapping one node swaps another as well
if(nMut < 1.0){ // we have to do a flip test for each node
nMut = 0;
for(i=0; i<n; i++){
if(GAFlipCoin(pmut)){
b = GARandomInt(0,n-1);
if(!child.ancestral(i,b)) child.swaptree(i,b);
nMut++;
}
}
}
else{ // only nuke the number of nodes we need to
for(i=0; i<nMut; i++){
a = GARandomInt(0,n-1);
b = GARandomInt(0,n-1);
if(!child.ancestral(a,b)) child.swaptree(a,b);
}
}
child.root(); // set iterator to root node
return(STA_CAST(int, nMut*2));
}
// We use the recursive tree function to compare the tree structures. This
// does not compare the contents of the nodes.
template <class T> float
GATreeGenome<T>::TopologyComparator(const GAGenome& a, const GAGenome& b)
{
if(&a == &b) return 0;
const GATreeGenome<T>& sis=DYN_CAST(const GATreeGenome<T>&, a);
const GATreeGenome<T>& bro=DYN_CAST(const GATreeGenome<T>&, b);
return STA_CAST(float, _GATreeCompare(sis.rt, bro.rt));
}
// The default crossover operator takes a node from parent a (with its entire
// sub-tree) and replaces it with a node from parent b (with its entire sub-
// tree). If the crossover site is not set, then we pick a random site based
// on the trees in the genomes we're going to cross. Once we have a valid
// crossover site, we copy the trees from the two genomes.
// If the crossover site is out of bounds (ie refers to a node not in the
// tree) then we don't do anything to the child.
// We allow crossover at ANY site in the genomes (including at the root
// node).
// *** we should be able to speed this up. there is an extra traversal when we
// do the check to see if the crossover site is valid.
template <class T> int
GATreeGenome<T>::
OnePointCrossover(const GAGenome& p1, const GAGenome& p2,
GAGenome* c1, GAGenome* c2){
const GATreeGenome<T> &mom=DYN_CAST(const GATreeGenome<T> &, p1);
const GATreeGenome<T> &dad=DYN_CAST(const GATreeGenome<T> &, p2);
int nc=0;
unsigned int a = GARandomInt(0, mom.size()-1);
unsigned int b = GARandomInt(0, dad.size()-1);
GATreeIter<T> momiter(mom), daditer(dad);
GATree<T> * tree;
if(c1 && c2){
GATreeGenome<T> &sis=DYN_CAST(GATreeGenome<T> &, *c1);
GATreeGenome<T> &bro=DYN_CAST(GATreeGenome<T> &, *c2);
// first do the sister...
if(momiter.warp(a) && daditer.warp(b)){
sis.GATree<T>::copy(mom);
tree = dad.GATree<T>::clone(b);
sis.warp(a);
sis.swaptree(tree);
delete tree;
sis.warp(0);
}
// ...now do the brother.
if(momiter.warp(a) && daditer.warp(b)){
bro.GATree<T>::copy(dad);
tree = mom.GATree<T>::clone(a);
bro.warp(b);
bro.swaptree(tree);
delete tree;
bro.warp(0);
}
nc = 2;
}
else if(c1){
GATreeGenome<T> &sis=DYN_CAST(GATreeGenome<T> &, *c1);
if(GARandomBit()){
if(momiter.warp(a) && daditer.warp(b)){
sis.GATree<T>::copy(mom);
tree = dad.GATree<T>::clone(b);
sis.warp(a);
sis.swaptree(tree);
delete tree;
sis.warp(0);
}
}
else{
if(momiter.warp(a) && daditer.warp(b)){
sis.GATree<T>::copy(dad);
tree = mom.GATree<T>::clone(a);
sis.warp(b);
sis.swaptree(tree);
delete tree;
sis.warp(0);
}
}
nc = 1;
}
return nc;
}
#endif
|