/usr/include/ga/GAListGenome.C is in libga-dev 2.4.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 | // $Header$
/* ----------------------------------------------------------------------------
list.C
mbwall 25feb95
Copyright (c) 1995 Massachusetts Institute of Technology
all rights reserved
DESCRIPTION:
Source file for the list genome.
---------------------------------------------------------------------------- */
#ifndef _ga_list_C_
#define _ga_list_C_
#include <stdio.h>
#include <stdlib.h>
#include <ga/GAListGenome.h>
#include <ga/GAMask.h>
#include <ga/garandom.h>
template <class T> int
GAListIsHole(const GAListGenome<T>&, const GAListGenome<T>&, int, int, int);
template <class T> const char *
GAListGenome<T>::className() const {return "GAListGenome";}
template <class T> int
GAListGenome<T>::classID() const {return GAID::ListGenome;}
template <class T>
GAListGenome<T>::GAListGenome(GAGenome::Evaluator f, void * u) :
GAList<T>(),
GAGenome(DEFAULT_LIST_INITIALIZER,
DEFAULT_LIST_MUTATOR,
DEFAULT_LIST_COMPARATOR) {
evaluator(f);
userData(u);
crossover(DEFAULT_LIST_CROSSOVER);
}
template <class T>
GAListGenome<T>::GAListGenome(const GAListGenome<T> & orig) :
GAList<T>(),
GAGenome() {
GAListGenome<T>::copy(orig);
}
template <class T>
GAListGenome<T>::~GAListGenome() { }
template <class T> GAGenome *
GAListGenome<T>::clone(GAGenome::CloneMethod flag) const {
GAListGenome<T> *cpy = new GAListGenome<T>();
if(flag == (int)CONTENTS){cpy->copy(*this);} // the cast is for metrowerks...
else{cpy->GAGenome::copy(*this);}
return cpy;
}
template <class T> void
GAListGenome<T>::copy(const GAGenome & orig){
if(&orig == this) return;
const GAListGenome<T>* c = DYN_CAST(const GAListGenome<T>*, &orig);
if(c) {
GAGenome::copy(*c);
GAList<T>::copy(*c);
}
}
#ifdef GALIB_USE_STREAMS
// Traverse the list (breadth-first) and dump the contents as best we can to
// the stream. We don't try to write the contents of the nodes - we simply
// write a . for each node in the list.
template <class T> int
GAListGenome<T>::write(STD_OSTREAM & os) const
{
os << "node next prev contents\n";
if(!this->hd) return 0;;
os.width(10); os << this->hd << " ";
os.width(10); os << this->hd->next << " ";
os.width(10); os << this->hd->prev << " ";
os.width(10); os << &(DYN_CAST(GANode<T>*, this->hd)->contents) << "\n";
for(GANodeBASE * tmp=this->hd->next; tmp && tmp != this->hd; tmp=tmp->next){
os.width(10); os << tmp << " ";
os.width(10); os << tmp->next << " ";
os.width(10); os << tmp->prev << " ";
os.width(10); os << &(DYN_CAST(GANode<T>*, tmp)->contents) << "\n";
}
return 0;
}
#endif
// Both the == and != operators assume that both operator== and operator!= are
// defined for the object that is store in the node of your list. If it is
// not, you'll get an error message. If you're storing pointers in the nodes,
// then you have nothing to worry about.
// Neither of these operators affects the internal iterator of either
// list genome in any way.
template <class T> int
GAListGenome<T>::equal(const GAGenome & c) const
{
if(this == &c) return 1;
const GAListGenome<T> & b = DYN_CAST(const GAListGenome<T>&, c);
if(this->size() != b.size()) return 0;
GAListIter<T> iterA(*this), iterB(b);
T *tmpA = iterA.head(), *tmpB = iterB.head();
T *head = tmpA;
do{
if(tmpA && tmpB && *tmpA != *tmpB) return gaFalse;
tmpB = iterB.next();
tmpA = iterA.next();
}while(tmpA && tmpA != head);
return 1;
}
/* ----------------------------------------------------------------------------
Operator definitions
---------------------------------------------------------------------------- */
// Mutate a list by nuking nodes. Any node has a pmut chance of getting nuked.
// This is actually kind of bogus for the second part of the if clause (if nMut
// is greater than or equal to 1). Nodes end up having more than pmut
// probability of getting nuked.
// After the mutation the iterator is left at the head of the list.
template <class T> int
GAListGenome<T>::DestructiveMutator(GAGenome & c, float pmut)
{
GAListGenome<T> &child=DYN_CAST(GAListGenome<T> &, c);
register int n, i;
if(pmut <= 0.0) return 0;
n = child.size();
float nMut = pmut * STA_CAST(float, n);
if(nMut < 1.0){ // we have to do a flip test for each node
nMut = 0;
for(i=0; i<n; i++){
if(GAFlipCoin(pmut) && child.warp(i)){
child.destroy();
nMut++;
}
}
}
else{ // only nuke the number of nodes we need to
for(i=0; i<nMut; i++){
if(child.warp(GARandomInt(0, n-1)))
child.destroy();
}
}
child.head(); // set iterator to root node
return(STA_CAST(int,nMut));
}
// Mutate a list by swapping two nodes. Any node has a pmut chance of getting
// swapped, and the swap could happen to any other node. And in the case of
// nMut < 1, the swap may generate a swap partner that is the same node, in
// which case no swap occurs (we don't check).
// After the mutation the iterator is left at the head of the list.
template <class T> int
GAListGenome<T>::SwapMutator(GAGenome & c, float pmut)
{
GAListGenome<T> &child=DYN_CAST(GAListGenome<T> &, c);
register int n, i;
if(pmut <= 0.0) return 0;
n = child.size();
float nMut = pmut * STA_CAST(float,n);
nMut *= 0.5; // swapping one node swaps another as well
if(nMut < 1.0){ // we have to do a flip test for each node
nMut = 0;
for(i=0; i<n; i++){
if(GAFlipCoin(pmut)){
child.swap(i,GARandomInt(0,n-1));
nMut++;
}
}
}
else{ // only nuke the number of nodes we need to
for(i=0; i<nMut; i++)
child.swap(GARandomInt(0,n-1),GARandomInt(0,n-1));
}
child.head(); // set iterator to root node
return(STA_CAST(int, nMut*2));
}
// This comparator returns the number of elements that the two lists have
// in common (both in position and in value). If they are different lengths
// then we just say they are completely different. This is probably barely
// adequate for most applications - we really should give more credit for
// nodes that are the same but in different positions. But that would be
// pretty nasty to compute.
// This is somewhat problematic since there is no absolute measure against
// which to compare this diversity measure. Its kind of hard to define this
// one in a general way...
template <class T> float
GAListGenome<T>::NodeComparator(const GAGenome& a, const GAGenome& b)
{
if(&a == &b) return 0;
const GAListGenome<T>& sis=DYN_CAST(const GAListGenome<T>&, a);
const GAListGenome<T>& bro=DYN_CAST(const GAListGenome<T>&, b);
if(sis.size() > bro.size()) return (float)(sis.size() - bro.size());
if(sis.size() < bro.size()) return (float)(bro.size() - sis.size());
if(sis.size() == 0) return 0;
float count = 0;
GAListIter<T> biter(bro), siter(sis);
T *sptr, *bptr;
for(int i=siter.size()-1; i>=0; i--) {
sptr = siter.next();
bptr = biter.next();
if(sptr != 0 && bptr != 0)
count += ((*sptr == *bptr) ? 0 : 1);
}
return count;
}
#define SWAP(a,b) {unsigned int tmp=a; a=b; b=tmp;}
// This crossover picks a site between nodes in each parent. It is the same
// as single point crossover on a resizeable binary string genome. The site
// in the mother is not necessarily the same as the site in the father!
// When we pick a crossover site, it is between nodes of the list (otherwise
// we won't be able to do NULL lists or get an empty list from one parent or
// the other). Beware that a list is numbered from 0 to size-1, inclusive,
// whereas the cross site possibilities are numbered from 0 to size, inclusive.
// This means we have to map the site to the list to determine whether an
// insertion should occur before or after a node.
// We first copy the mother into the child (this deletes whatever contents
// were in the child originally). Then we clone the father from the cross site
// to the end of the list. Then we delete the tail of the child from the
// mother's cross site to the end of the list. Finally, we insert the clone
// at the end of the child.
// The last thing we do is delete the clone (the contents of the clone are
// now owned by the child, but the clone itself uses memory that we must free).
// This implementation isn't particularly efficient. For example, we copy
// the mother then proceed to destroy much of the copy we just made. We could
// do better by copying only what we need of the mother.
template <class T> int
GAListGenome<T>::
OnePointCrossover(const GAGenome& p1, const GAGenome& p2,
GAGenome* c1, GAGenome* c2){
const GAListGenome<T> &mom=DYN_CAST(const GAListGenome<T> &, p1);
const GAListGenome<T> &dad=DYN_CAST(const GAListGenome<T> &, p2);
int nc=0;
int a = GARandomInt(0, mom.size());
int b = GARandomInt(0, dad.size());
GAList<T> * list;
if(c1){
GAListGenome<T> &sis=DYN_CAST(GAListGenome<T> &, *c1);
sis.GAList<T>::copy(mom);
list = dad.GAList<T>::clone(b);
if(a < mom.size()){
T *site = sis.warp(a);
while(sis.tail() != site)
sis.destroy(); // delete the tail node
sis.destroy(); // trash the trailing node (list[a])
}
else{
sis.tail(); // move to the end of the list
}
sis.insert(list); // stick the clone onto the end
delete list;
sis.head(); // set iterator to head of list
nc += 1;
}
if(c2){
GAListGenome<T> &bro=DYN_CAST(GAListGenome<T> &, *c2);
bro.GAList<T>::copy(dad);
list = mom.GAList<T>::clone(a);
if(b < dad.size()){
T *site = bro.warp(b);
while(bro.tail() != site)
bro.destroy(); // delete the tail node
bro.destroy(); // trash the trailing node (list[a])
}
else{
bro.tail(); // move to the end of the list
}
bro.insert(list); // stick the clone onto the end
delete list;
bro.head(); // set iterator to head of list
nc += 1;
}
return nc;
}
// Partial match crossover for list genomes. We need two versions of this
// routine: one for lists whose nodes are pointers to objects (each genome
// points to the same objects as all of the other genomes) and one for
// lists whose nodes contain independent objects (each node has its own copy
// of the object).
// This version of the partial match crossover uses objects that are multiply
// instantiated - each list genome contains its own objects in its nodes.
// The operator== method must be defined on the object for this implementation
// to work! In this case, the 'object' is an int, so we're OK. If you are
// putting your own objects in the nodes, be sure you have operator== defined
// for your object. You must also have operator!= defined for your object. We
// do not do any assignments, so operator= and/or copy is not required.
// We assume that none of the nodes will return a NULL pointer. Also assume
// that the cross site has been selected properly.
// First we make a copy of the mother. Then we loop through the match
// section and try to swap each element in the child's match section with its
// partner (as defined by the current node in the father's match section).
// Mirroring will work the same way - just swap mom & dad and you're all set.
// The parents should be the same size as the child (and they should contain
// the same nodes, but in any order). We do not check for this!!
template <class T> int
GAListGenome<T>::
PartialMatchCrossover(const GAGenome& p1, const GAGenome& p2,
GAGenome* c1, GAGenome* c2){
const GAListGenome<T> &mom=DYN_CAST(const GAListGenome<T> &, p1);
const GAListGenome<T> &dad=DYN_CAST(const GAListGenome<T> &, p2);
if(mom.size() != dad.size()){
GAErr(GA_LOC, mom.className(), "cross", gaErrBadParentLength);
return 0;
}
int a = GARandomInt(0, mom.size());
int b = GARandomInt(0, dad.size());
if(b<a) SWAP(a,b);
T* index;
int i,j,nc=0;
if(c1){
GAListGenome<T> &sis=DYN_CAST(GAListGenome<T> &, *c1);
sis.GAList<T>::copy(mom);
GAListIter<T> diter(dad);
index = diter.warp(a);
for(i=a; i<b; i++, index=diter.next()){
if(*sis.head() == *index){
sis.swap(i,0);
}
else{
for(j=1; (j<sis.size()) && (*sis.next() != *index); j++);
sis.swap(i,j); // no op if j>size
}
}
sis.head(); // set iterator to head of list
nc += 1;
}
if(c2){
GAListGenome<T> &bro=DYN_CAST(GAListGenome<T> &, *c2);
bro.GAList<T>::copy(dad);
GAListIter<T> miter(mom);
index = miter.warp(a);
for(i=a; i<b; i++, index=miter.next()){
if(*bro.head() == *index){
bro.swap(i,0);
}
else{
for(j=1; (j<bro.size()) && (*bro.next() != *index); j++);
bro.swap(i,j); // no op if j>size
}
}
bro.head(); // set iterator to head of list
nc += 2;
}
return nc;
}
// Order crossover for lists. As described in Goldberg's book.
// We assume that we'll never get a NULL pointer while iterating through the
// list. Also we assume that the lists are the same size and non-NULL.
template <class T> int
GAListIsHole(const GAListGenome<T> &child, const GAListGenome<T> &parent,
int index, int a, int b){
GAListIter<T> citer(child), piter(parent);
citer.warp(index);
piter.warp(a);
for(int i=a; i<b; i++){
if(*citer.current() == *piter.current()) return 1;
piter.next();
}
return 0;
}
template <class T> int
GAListGenome<T>::
OrderCrossover(const GAGenome& p1, const GAGenome& p2,
GAGenome* c1, GAGenome* c2){
const GAListGenome<T> &mom=DYN_CAST(const GAListGenome<T> &, p1);
const GAListGenome<T> &dad=DYN_CAST(const GAListGenome<T> &, p2);
if(mom.size() != dad.size()){
GAErr(GA_LOC, mom.className(), "cross", gaErrBadParentLength);
return 0;
}
int a = GARandomInt(0, mom.size());
int b = GARandomInt(0, dad.size());
if(b<a) SWAP(a,b);
int i,j, index, nc=0;
if(c1){
GAListGenome<T> &sis=DYN_CAST(GAListGenome<T> &, *c1);
sis.GAList<T>::copy(mom);
GAListIter<T> siter(sis);
GAListIter<T> diter(dad);
// Move all the 'holes' into the crossover section and maintain the ordering of
// the non-hole elements.
for(i=0, index=b; i<sis.size(); i++, index++){
if(index >= sis.size()) index=0;
if(GAListIsHole(sis,dad,index,a,b)) break;
}
for(; i<sis.size()-b+a; i++, index++){
if(index >= sis.size()) index=0;
j=index;
do{
j++;
if(j >= sis.size()) j=0;
} while(GAListIsHole(sis,dad,j,a,b));
sis.swap(index,j);
}
// Now put the 'holes' in the proper order within the crossover section.
for(i=a, sis.warp(a), diter.warp(a);
i<b; i++, sis.next(), diter.next()){
if(*sis.current() != *diter.current()){
siter.warp(i);
for(j=i+1; j<b; j++)
if(*siter.next() == *diter.current()){
sis.swap(i,j);
sis.warp(siter); // move iterator back to previous location
break;
}
}
}
sis.head(); // set iterator to head of list
nc += 1;
}
if(c2){
GAListGenome<T> &bro=DYN_CAST(GAListGenome<T> &, *c2);
bro.GAList<T>::copy(dad);
GAListIter<T> biter(bro);
GAListIter<T> miter(mom);
// Move all the 'holes' into the crossover section and maintain the ordering of
// the non-hole elements.
for(i=0, index=b; i<bro.size(); i++, index++){
if(index >= bro.size()) index=0;
if(GAListIsHole(bro,mom,index,a,b)) break;
}
for(; i<bro.size()-b+a; i++, index++){
if(index >= bro.size()) index=0;
j=index;
do{
j++;
if(j >= bro.size()) j=0;
} while(GAListIsHole(bro,mom,j,a,b));
bro.swap(index,j);
}
// Now put the 'holes' in the proper order within the crossover section.
for(i=a, bro.warp(a), miter.warp(a);
i<b; i++, bro.next(), miter.next()){
if(*bro.current() != *miter.current()){
biter.warp(i);
for(j=i+1; j<b; j++)
if(*biter.next() == *miter.current()){
bro.swap(i,j);
bro.warp(biter); // move iterator back to previous location
break;
}
}
}
bro.head(); // set iterator to head of list
nc += 1;
}
return nc;
}
template <class T> int
GAListGenome<T>::
CycleCrossover(const GAGenome& p1, const GAGenome& p2,
GAGenome* c1, GAGenome* c2){
const GAListGenome<T> &mom=DYN_CAST(const GAListGenome<T> &, p1);
const GAListGenome<T> &dad=DYN_CAST(const GAListGenome<T> &, p2);
if(mom.size() != dad.size()){
GAErr(GA_LOC, mom.className(), "cross", gaErrBadParentLength);
return 0;
}
GAMask mask;
mask.size(mom.size());
mask.clear();
int i, nc=0;
if(c1){
GAListGenome<T> &sis=DYN_CAST(GAListGenome<T> &, *c1);
sis.GAList<T>::copy(mom);
GAListIter<T> diter(dad);
// Cycle through mom & dad to get the cyclic part of the crossover.
mask[0] = 1;
diter.head();
while(*diter.current() != *sis.head()){
for(i=0; i<sis.size(); i++, sis.next()){
if(*sis.current() == *diter.current()){
mask[i] = 1;
diter.warp(i);
break;
}
}
}
// Now fill in the rest of the sis with dad's contents that we didn't use
// in the cycle.
sis.head();
diter.head();
for(i=0; i<sis.size(); i++){
if(mask[i] == 0) *sis.current() = *diter.current();
sis.next(); diter.next();
}
sis.head(); // set iterator to head of list
nc += 1;
}
if(c2){
GAListGenome<T> &bro=DYN_CAST(GAListGenome<T> &, *c2);
bro.GAList<T>::copy(dad);
GAListIter<T> miter(mom);
// Cycle through mom & dad to get the cyclic part of the crossover.
mask[0] = 1;
miter.head();
while(*miter.current() != *bro.head()){
for(i=0; i<bro.size(); i++, bro.next()){
if(*bro.current() == *miter.current()){
mask[i] = 1;
miter.warp(i);
break;
}
}
}
// Now fill in the rest of the bro with dad's contents that we didn't use
// in the cycle.
bro.head();
miter.head();
for(i=0; i<bro.size(); i++){
if(mask[i] == 0) *bro.current() = *miter.current();
bro.next(); miter.next();
}
bro.head(); // set iterator to head of list
nc += 1;
}
return nc;
}
#endif
|