This file is indexed.

/usr/include/speech_tools/EST_Wagon.h is in libestools2.1-dev 1:2.1~release-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/*************************************************************************/
/*                                                                       */
/*                Centre for Speech Technology Research                  */
/*                     University of Edinburgh, UK                       */
/*                      Copyright (c) 1996,1997                          */
/*                        All Rights Reserved.                           */
/*                                                                       */
/*  Permission is hereby granted, free of charge, to use and distribute  */
/*  this software and its documentation without restriction, including   */
/*  without limitation the rights to use, copy, modify, merge, publish,  */
/*  distribute, sublicense, and/or sell copies of this work, and to      */
/*  permit persons to whom this work is furnished to do so, subject to   */
/*  the following conditions:                                            */
/*   1. The code must retain the above copyright notice, this list of    */
/*      conditions and the following disclaimer.                         */
/*   2. Any modifications must be clearly marked as such.                */
/*   3. Original authors' names are not deleted.                         */
/*   4. The authors' names are not used to endorse or promote products   */
/*      derived from this software without specific prior written        */
/*      permission.                                                      */
/*                                                                       */
/*  THE UNIVERSITY OF EDINBURGH AND THE CONTRIBUTORS TO THIS WORK        */
/*  DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING      */
/*  ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT   */
/*  SHALL THE UNIVERSITY OF EDINBURGH NOR THE CONTRIBUTORS BE LIABLE     */
/*  FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES    */
/*  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN   */
/*  AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,          */
/*  ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF       */
/*  THIS SOFTWARE.                                                       */
/*                                                                       */
/*************************************************************************/
/*                     Author :  Alan W Black                            */
/*                     Date   :  May 1996                                */
/*-----------------------------------------------------------------------*/
/*                                                                       */
/* Public declarations for Wagon (CART builder)                          */
/*                                                                       */
/*=======================================================================*/
#ifndef __WAGON_H__
#define __WAGON_H__

#include "EST_String.h"
#include "EST_Val.h"
#include "EST_TVector.h"
#include "EST_TList.h"
#include "EST_simplestats.h"  /* For EST_SuffStats class */
#include "EST_Track.h"
#include "siod.h"
#define wagon_error(WMESS) (cerr << WMESS << endl,exit(-1))

// I get floating point exceptions of Alphas when I do any comparisons
// with HUGE_VAL or FLT_MAX so I'll make my own
#define WGN_HUGE_VAL 1.0e20

class WVector : public EST_FVector
{
  public:
    WVector(int n) : EST_FVector(n) {}
    int get_int_val(int n) const { return (int)a_no_check(n); }
    float get_flt_val(int n) const { return a_no_check(n); }
    void set_int_val(int n,int i) { a_check(n) = (int)i; }
    void set_flt_val(int n,float f) { a_check(n) = f; }
};

typedef EST_TList<WVector *> WVectorList;
typedef EST_TVector<WVector *> WVectorVector;

/* Different types of feature */
enum wn_dtype {/* for predictees and predictors */
               wndt_binary, wndt_float, wndt_class, 
               /* for predictees only */
               wndt_cluster, wndt_vector, wndt_matrix, wndt_trajectory,
               /* for ignored features */
               wndt_ignore};

class WDataSet : public WVectorList {
  private:
    int dlength;
    EST_IVector p_type;
    EST_IVector p_ignore;
    EST_StrVector p_name;
  public:
    void load_description(const EST_String& descfname,LISP ignores);
    void ignore_non_numbers();

    int ftype(const int &i) const {return p_type(i);}
    int ignore(int i) const {return p_ignore(i); }
    void set_ignore(int i,int value) { p_ignore[i] = value; }
    const EST_String &feat_name(const int &i) const {return p_name(i);}
    int samples(void) const {return length();}
    int width(void) const {return dlength;}
};    
enum wn_oper {wnop_equal, wnop_binary, wnop_greaterthan, 
		  wnop_lessthan, wnop_is, wnop_in, wnop_matches};

class WQuestion {
  private:
    int feature_pos;
    wn_oper op;
    int yes;
    int no;
    EST_Val operand1;
    EST_IList operandl;
    float score;
  public:
    WQuestion() {;}
    WQuestion(const WQuestion &s) 
       { feature_pos=s.feature_pos;
         op=s.op; yes=s.yes; no=s.no; operand1=s.operand1;
	 operandl = s.operandl; score=s.score;}
    ~WQuestion() {;}
    WQuestion(int fp, wn_oper o,EST_Val a)
       { feature_pos=fp; op=o; operand1=a; }
    void set_fp(const int &fp) {feature_pos=fp;}
    void set_oper(const wn_oper &o) {op=o;}
    void set_operand1(const EST_Val &a) {operand1 = a;}
    void set_yes(const int &y) {yes=y;}
    void set_no(const int &n) {no=n;}
    int get_yes(void) const {return yes;}
    int get_no(void) const {return no;}
    const int get_fp(void) const {return feature_pos;}
    const wn_oper get_op(void) const {return op;}
    const EST_Val get_operand1(void) const {return operand1;}
    const EST_IList &get_operandl(void) const {return operandl;}
    const float get_score(void) const {return score;}
    void set_score(const float &f) {score=f;}
    const int ask(const WVector &w) const;
    friend ostream& operator<<(ostream& s, const WQuestion &q);
};

enum wnim_type {wnim_unset, wnim_float, wnim_class, 
                wnim_cluster, wnim_vector, wnim_matrix,
                wnim_trajectory};

//  Impurity measure for cumulating impurities from set of data
class WImpurity {
  private:
    wnim_type t;
    EST_SuffStats a;
    EST_DiscreteProbDistribution p;

    float cluster_impurity();
    float cluster_member_mean(int i);
    float vector_impurity();
    float trajectory_impurity();
  public:
    EST_IList members;            // Maybe there should be a cluster class
    EST_SuffStats **trajectory;
    float score;
    int l,width;

    WImpurity() { t=wnim_unset; a.reset(); trajectory=0; l=0; width=0; }
    ~WImpurity();
    WImpurity(const WVectorVector &ds);
    void copy(const WImpurity &s) 
    {
        int i,j; 
        t=s.t; a=s.a; p=s.p; members=s.members; l=s.l; width=s.width;
        score = s.score;
        if (s.trajectory)
        {
            trajectory = new EST_SuffStats *[l];
            for (i=0; i<l; i++)
            {
                trajectory[i] = new EST_SuffStats[width];
                for (j=0; j<width; j++)
                    trajectory[i][j] = s.trajectory[i][j];
            }
        }
    }
    WImpurity &operator = (const WImpurity &a) { copy(a); return *this; }

    float measure(void);
    double samples(void);
    wnim_type type(void) const { return t;}
    void cumulate(const float pv,double count=1.0);
    EST_Val value(void);
    EST_DiscreteProbDistribution &pd() { return p; }
    float cluster_distance(int i); // distance i from centre in sds
    int in_cluster(int i);       // distance i from centre < most remote member
    float cluster_ranking(int i);  // position in closeness to centre
    friend ostream& operator<<(ostream &s, WImpurity &imp);
};

class WDlist {
  private:
    float p_score;
    WQuestion p_question;
    EST_String p_token;
    int p_freq;
    int p_samples;
    WDlist *next;
  public:
    WDlist() { next=0; }
    ~WDlist() { if (next != 0) delete next; }
    void set_score(float s) { p_score = s; }
    void set_question(const WQuestion &q) { p_question = q; }
    void set_best(const EST_String &t,int freq, int samples)
	{ p_token = t; p_freq = freq; p_samples = samples;}
    float score() const {return p_score;}
    const EST_String &token(void) const {return p_token;}
    const WQuestion &question() const {return p_question;}
    EST_Val predict(const WVector &w);
    friend WDlist *add_to_dlist(WDlist *l,WDlist *a);
    friend ostream &operator<<(ostream &s, WDlist &d);
};

class WNode {
  private:
    WVectorVector data;
    WQuestion question;
    WImpurity impurity;
    WNode *left;
    WNode *right;
    void print_out(ostream &s, int margin);
    int leaf(void) const { return ((left == 0) || (right == 0)); }
    int pure(void);
  public:
    WNode() { left = right = 0; }
    ~WNode() { if (left != 0) {delete left; left=0;}
	       if (right != 0) {delete right; right=0;} }
    WVectorVector &get_data(void) { return data; }
    void set_subnodes(WNode *l,WNode *r) { left=l; right=r; }
    void set_impurity(const WImpurity &imp) {impurity=imp;}
    void set_question(const WQuestion &q) {question=q;}
    void prune(void);
    void held_out_prune(void);
    WImpurity &get_impurity(void) {return impurity;}
    WQuestion &get_question(void) {return question;}
    EST_Val predict(const WVector &w);
    WNode *predict_node(const WVector &d);
    int samples(void) const { return data.n(); }
    friend ostream& operator<<(ostream &s, WNode &n);
};

extern Discretes wgn_discretes;
extern WDataSet wgn_dataset;
extern WDataSet wgn_test_dataset;
extern EST_FMatrix wgn_DistMatrix;
extern EST_Track wgn_VertexTrack;
extern EST_Track wgn_UnitTrack;
extern EST_Track wgn_VertexFeats;

void wgn_load_datadescription(EST_String fname,LISP ignores);
void wgn_load_dataset(WDataSet &ds,EST_String fname);
WNode *wgn_build_tree(float &score);
WNode *wgn_build_dlist(float &score,ostream *output);
WNode *wagon_stepwise(float limit);
float wgn_score_question(WQuestion &q, WVectorVector &ds);
void wgn_find_split(WQuestion &q,WVectorVector &ds,
		WVectorVector &y,WVectorVector &n);
float summary_results(WNode &tree,ostream *output);

extern int wgn_min_cluster_size;
extern int wgn_held_out;
extern int wgn_prune;
extern int wgn_quiet;
extern int wgn_verbose;
extern int wgn_predictee;
extern int wgn_count_field;
extern EST_String wgn_count_field_name;
extern EST_String wgn_predictee_name;
extern float wgn_float_range_split;
extern float wgn_balance;
extern EST_String wgn_opt_param;
extern EST_String wgn_vertex_output;

#define wgn_ques_feature(X) (get_c_string(car(X)))
#define wgn_ques_oper_str(X) (get_c_string(car(cdr(X))))
#define wgn_ques_operand(X) (car(cdr(cdr(X))))

int wagon_ask_question(LISP question, LISP value);

#endif /* __WAGON_H__ */