This file is indexed.

/usr/include/dune/grid/yaspgrid/grids.hh is in libdune-grid-dev 2.2.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
#ifndef DUNE_YGRIDS_HH
#define DUNE_YGRIDS_HH

// C++ includes
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<vector>
#include<deque>

// C includes
#if HAVE_MPI
#include<mpi.h>
#endif
#include<string.h>

// local includes
#include <dune/common/fvector.hh>
#include <dune/common/stdstreams.hh>
#include <dune/grid/common/grid.hh>

/*! \file grids.hh
  This is the basis for the yaspgrid implementation of the Dune grid interface.
*/

namespace Dune {

  // forward declarations
  template<int d, typename ct> class YGrid;
  template<int d, typename ct> class SubYGrid;

  static const double Ytolerance=1E-13;

  /**
     This is the basis of a parallel implementation of the dune grid interface
     supporting codim 0 and dim.
     
     You can also use the structured interface and write really fast code.
     
     The YGrid considered here describes a finite set \f$d\f$-tupels of the form 
     \f[ G = \{ (k_0,\ldots,k_{d-1}) | o_i \leq k_i < o_i+s_i \}  \f]
     
     togehter with an affine mapping
     
     \f[ t : G \to R^d, \ \ \ t(k)_i = k_i h_i + r_i \f].
     
     Therefore a YGrid is characterized by the following four quantities:
     
     - The origin \f$ o=(o_0,\ldots,o_{d-1}) \in Z^d\f$,
     - the size \f$ s=(s_0,\ldots,s_{d-1}) \in Z^d\f$,
     - the mesh width \f$ h=(h_0,\ldots,h_{d-1}) \in R^d\f$,
     - The shift \f$ r=(r_0,\ldots,r_{d-1}) \in R^d\f$. The shift can be used to interpret the 
     points of a grid as midpoints of cells, faces, edges, etc.
     
     The YGrid can be parametrized by the dimension d and the type to be used for the coordinates.
     
     Here is a graphical illustration of a grid:
     
     \image html  grid.png "A YGrid."
     \image latex grid.eps "A YGrid." width=\textwidth
     
     A grid can be manipulated either in the origin/size representation or in the
     min index / max index representation.
     
     A YGrid allows to iterate over all its cells with an Iterator class.
  */
  template<int d, typename ct>
  class YGrid {
  public:
    //! define types used for arguments
    typedef FieldVector<int, d>  iTupel;
    typedef FieldVector<ct, d> fTupel;
    typedef FieldVector<bool, d> bTupel;
    
    //! Destructor
    virtual ~YGrid()
    {}
    
    //! Make an empty YGrid with origin 0
    YGrid () :
      _origin(0), _size(0), _h(0.0), _r(0.0)
    {}

    //! Make YGrid from origin and size arrays
    YGrid (iTupel o, iTupel s, fTupel h, fTupel r) :
      _origin(o), _size(s), _h(h), _r(r)
    {
#ifndef NDEBUG
      for (int i=0; i<d; ++i) 
        assert (_size[i] >= 0);
#endif
    }

    //! Return origin in direction i
    int origin (int i) const
    {
      return _origin[i];
    }
        
    //! Set origin in direction i
    void origin (int i, int oi) const
    {
      _origin[i] = oi;
    }

    //! return reference to origin 
    const iTupel& origin () const
    {
      return _origin;
    }

    //! Return size in direction i
    int size (int i) const
    {
      return _size[i];
    }

    //! Set size in direction i
    void size (int i, int si) const
    {
      _size[i] = si;
      if (_size[i]<0) _size[i] = 0;
    }
        
    //! Return reference to size tupel
    const iTupel& size () const
    {
      return _size;
    }

    //! Return total size of index set which is the product of all size per direction.
    int totalsize () const
    {
      int s=1;
      for (int i=0; i<d; ++i) s=s*_size[i];
      return s;
    }

    //! Return minimum index in direction i
    int min (int i) const
    {
      return _origin[i];
    }

    //! Set minimum index in direction i
    void min (int i, int mi) const
    {
      _size[i] = max(i)-mi+1;
      _origin[i] = mi;
      if (_size[i]<0) _size[i] = 0;
    }

    //! Return maximum index in direction i
    int max (int i) const
    {
      return _origin[i]+_size[i]-1;
    }

    //! Set maximum index in direction i
    void max (int i, int mi) const
    {
      _size[i] = mi-min(i)+1;
      if (_size[i]<0) _size[i] = 0;
    }

    //! Return reference to mesh size tupel for read write access
    const fTupel& meshsize () const
    {
      return _h;
    }
        
    //! Return mesh size in direction i
    ct meshsize (int i) const
    {
      return _h[i];
    }
        
    //! Set mesh size in direction i
    void meshsize (int i, int hi) const
    {
      _h[i] = hi;
    }

    //! Return shift tupel
    const fTupel& shift () const
    {
      return _r;
    }
        
    //! Return shift in direction i
    ct shift (int i) const
    {
      return _r[i];
    }
        
    //! Set shift in direction i
    void shift (int i, int ri) const
    {
      _r[i] = ri;
    }

    //! Return true if YGrid is empty, i.e. has size 0 in all directions.
    bool empty () const
    {
      for (int i=0; i<d; ++i) if (_size[i]<=0) return true;
      return false;
    }

    //! given a tupel compute its index in the lexicographic numbering
    int index (const iTupel& coord) const
    {
      int index = (coord[d-1]-_origin[d-1]);
          
      for (int i=d-2; i>=0; i--) 
        index = index*_size[i] + (coord[i]-_origin[i]);

      return index;
    }

    //! given a coordinate, return true if it is in the grid
    bool inside (const iTupel& coord) const
    {
      for (int i=0; i<d; i++)
        {
          if (coord[i]<_origin[i] || coord[i]>=_origin[i]+_size[i]) return false;
        }
      return true;
    }

    //! Return new SubYGrid of self which is the intersection of self and another YGrid
    virtual SubYGrid<d,ct> intersection (const YGrid<d,ct>& r) const
    {
      // check if the two grids can be intersected, must have same mesh size and shift
      for (int i=0; i<d; i++)
        if (fabs(meshsize(i)-r.meshsize(i))>Ytolerance) return SubYGrid<d,ct>();
      for (int i=0; i<d; i++)
        if (fabs(shift(i)-r.shift(i))>Ytolerance) return SubYGrid<d,ct>();

      iTupel neworigin;
      iTupel newsize;
      iTupel offset;

      for (int i=0; i<d; ++i)
        {
          // intersect
          neworigin[i] = std::max(min(i),r.min(i));
          newsize[i] = std::min(max(i),r.max(i))-neworigin[i]+1;
          if (newsize[i]<0) {
            newsize[i] = 0;
            neworigin[i] = min(i);
          }

          // offset to own origin
          offset[i] = neworigin[i]-_origin[i];
        }       
      return SubYGrid<d,ct>(neworigin,newsize,offset,_size,_h,_r);
    }

    //! return grid moved by the vector v
    YGrid<d,ct> move (iTupel v) const
    {
      for (int i=0; i<d; i++) v[i] += _origin[i];
      return YGrid<d,ct>(v,_size,_h,_r);
    }

    /*! Iterator class allows one to run over all cells of a grid. 
      The cells of the grid to iterate over are numbered consecutively starting
      with zero. Via the index() method the iterator provides a mapping of the 
      cells of the grid to a one-dimensional array. The number of entries
      in this array must be the size of the grid.
    */
    class Iterator {
    public:
      //! Make iterator pointing to first cell in a grid.
      Iterator (const YGrid<d,ct>& r)
      {
        // copy data coming from grid to iterate over 
        for (int i=0; i<d; ++i) _origin[i] = r.origin(i);
        for (int i=0; i<d; ++i) _end[i] = r.origin(i)+r.size(i)-1;
                
        // initialize to first position in index set
        for (int i=0; i<d; ++i) _coord[i] = _origin[i];
        _index = 0;
                
        // compute increments;
        int inc = 1;
        for (int i=0; i<d; ++i)
          {
            _increment[i] = inc;
            inc *= r.size(i);
          }
      }

      //! Make iterator pointing to given cell in a grid.
      Iterator (const YGrid<d,ct>& r, const iTupel& coord)
      {
        // copy data coming from grid to iterate over 
        for (int i=0; i<d; ++i) _origin[i] = r.origin(i);
        for (int i=0; i<d; ++i) _end[i] = r.origin(i)+r.size(i)-1;
                
        // compute increments;
        int inc = 1;
        for (int i=0; i<d; ++i)
          {
            _increment[i] = inc;
            inc *= r.size(i);
          }

        // initialize to given position in index set
        for (int i=0; i<d; ++i) _coord[i] = coord[i];
        _index = r.index(coord);
      }

      //! reinitialize iterator to given position
      void reinit (const YGrid<d,ct>& r, const iTupel& coord)
      {
        // copy data coming from grid to iterate over 
        for (int i=0; i<d; ++i) _origin[i] = r.origin(i);
        for (int i=0; i<d; ++i) _end[i] = r.origin(i)+r.size(i)-1;
                
        // compute increments;
        int inc = 1;
        for (int i=0; i<d; ++i)
          {
            _increment[i] = inc;
            inc *= r.size(i);
          }

        // initialize to given position in index set
        for (int i=0; i<d; ++i) _coord[i] = coord[i];
        _index = r.index(coord);
      }

      //! Return true when two iterators over the same grid are equal (!).
      bool operator== (const Iterator& i) const
      {
        return _index == i._index;
      }

      //! Return true when two iterators over the same grid are not equal (!).
      bool operator!= (const Iterator& i) const
      {
        return _index != i._index;
      }
        
      //! Return index of the current cell in the consecutive numbering. 
      int index () const
      {
        return _index;
      }
          
      //! Return coordinate of the cell in direction i.
      int coord (int i) const
      {
        return _coord[i];
      }

      //! Return coordinate of the cell as reference (do not modify).
      const iTupel& coord () const
      {
        return _coord;
      }

      //! Get index of cell which is dist cells away in direction i.
      int neighbor (int i, int dist) const
      {
        return _index+dist*_increment[i];
      }

      //! Get index of neighboring cell which is -1 away in direction i.
      int down (int i) const
      {
        return _index-_increment[i];
      }

      //! Get index of neighboring cell which is +1 away in direction i.
      int up (int i) const
      {
        return _index+_increment[i];
      }

      //! move this iterator dist cells in direction i
      void move (int i, int dist)
      {
        _coord[i] += dist;
        _index += dist*_increment[i];
      }

      //! Increment iterator to next cell.
      Iterator& operator++ ()
      {
        ++_index;
        for (int i=0; i<d; i++)
          if (++(_coord[i])<=_end[i])
            return *this;
          else { _coord[i]=_origin[i]; }
        return *this;
      }
          
      //! Print position of iterator
      void print (std::ostream& s) const
      {
        s << index() << " : [";
        for (int i=0; i<d-1; i++) s << coord(i) << ",";
        s << coord(d-1) << "]";
      }

    protected:
      int _index;          //< current lexicographic position in index set
      iTupel _coord;       //< current position in index set 
      iTupel _increment;   //< increment for next neighbor in direction i 
      iTupel _origin;      //< origin and
      iTupel _end;         //< last index in direction i
    };

    //! return iterator to first element of index set
    Iterator begin () const { return Iterator(*this); }
        
    //! return iterator to one past the last element of index set
    Iterator end () const {
      iTupel last;
      for (int i=0; i<d; i++) last[i] = max(i);
      last[0] += 1;
      return Iterator(*this,last);
    }

    /*! TransformingIterator is an Iterator providing in addition a linear transformation
      of the coordinates of the grid in the form \f$ y_i = x_i h_i + s_i \f$.
      This can be used to interpret the grid cells as vertices, edges, faces, etc.
    */
    class TransformingIterator : public Iterator {
    public:
      //! Make iterator pointing to first cell in a grid.
      TransformingIterator (const YGrid<d,ct>& r) : Iterator(r)
      {
        for (int i=0; i<d; ++i) _h[i] = r.meshsize(i);
        for (int i=0; i<d; ++i) _begin[i] = r.origin(i)*r.meshsize(i)+r.shift(i);
        for (int i=0; i<d; ++i) _position[i] = _begin[i];
      }

      //! Make iterator pointing to given cell in a grid.
      TransformingIterator (const YGrid<d,ct>& r, iTupel& coord) : Iterator(r,coord)
      {
        for (int i=0; i<d; ++i) _h[i] = r.meshsize(i);
        for (int i=0; i<d; ++i) _begin[i] = r.origin(i)*r.meshsize(i)+r.shift(i);
        for (int i=0; i<d; ++i) _position[i] = coord[i]*r.meshsize(i)+r.shift(i);
      }

      //! Make transforming iterator from iterator (used for automatic conversion of end)
      TransformingIterator (Iterator i) : Iterator(i)
      {       }

      //! Increment iterator to next cell with position.
      TransformingIterator& operator++ ()
      {
        ++(this->_index);
        for (int i=0; i<d; i++)
          if (++(this->_coord[i])<=this->_end[i])
            {
              _position[i] += _h[i];
              return *this;
            }
          else 
            { 
              this->_coord[i]=this->_origin[i]; 
              _position[i] = _begin[i];
            }
        return *this;
      }
          
      //! Return position of current cell in direction i.
      ct position (int i) const
      {
        return _position[i];
      }

      //! Return position of current cell as reference.
      const fTupel& position () const
      {
        return _position;
      }

      //! Return meshsize in direction i
      ct meshsize (int i) const
      {
        return _h[i];
      }

      //! Return meshsize of current cell as reference.
      const fTupel& meshsize () const
      {
        return _h;
      }

      //! Move cell position by dist cells in direction i.
      void move (int i, int dist)
      {
        Iterator::move(i,dist);
        _position[i] += dist*_h[i];
      }

      //! Print contents of iterator
      void print (std::ostream& s) const
      {
        Iterator::print(s);
        s << " " << _position;
      }

    private:
      fTupel _h;        //!< mesh size per direction
      fTupel _begin;    //!< position of origin of grid
      fTupel _position; //!< current position
    };

    //! return iterator to first element of index set
    TransformingIterator tbegin () const
    {
      return TransformingIterator(*this);
    }
        
    //! return iterator to one past the last element of the grid
    TransformingIterator tend () const
    {
      iTupel last;
      for (int i=0; i<d; i++) last = max(i);
      last[0] += 1;
      return TransformingIterator(*this,last);
    }
        
  protected:
    //! internal representation uses origin/size
    iTupel _origin; 
    iTupel _size;
    fTupel _h;        //!< mesh size per direction
    fTupel _r;        //!< shift per direction
  };

  //! Output operator for grids
  template <int d, typename ct>
  inline std::ostream& operator<< (std::ostream& s, YGrid<d,ct> e)
  {
    s << "{";
    for (int i=0; i<d-1; i++)
      s << "[" << e.min(i) << "," << e.max(i) << "]x";
    s << "[" << e.min(d-1) << "," << e.max(d-1) << "]";
    s << " = [";
    for (int i=0; i<d-1; i++) s << e.origin(i) << ",";
    s << e.origin(d-1) << "]x[";
    for (int i=0; i<d-1; i++) s << e.size(i) << ",";
    s << e.size(d-1) << "]";
    s << " h=[";
    for (int i=0; i<d-1; i++) s << e.meshsize(i) << ",";
    s << e.meshsize(d-1) << "]";
    s << " r=[";
    for (int i=0; i<d-1; i++) s << e.shift(i) << ",";
    s << e.shift(d-1) << "]";
    s << "}";
    return s;
  }

  //! Output operator for Iterators
  template <int d, typename ct>
  inline std::ostream& operator<< (std::ostream& s, typename YGrid<d,ct>::Iterator& e)
  {
    e.print(s);
    return s;
  }


  /*! A SubYGrid is a grid that is embedded in a larger grid
    It is characterized by an offset and an enclosing grid as 
    shown in the following picture:

    \image html  subgrid.png "The SubYGrid is shown in red, blue is the enclosing grid."
    \image latex subgrid.eps "The SubYGrid is shown in red, blue is the enclosing grid." width=\textwidth

    SubYGrid has additional iterators that provide a mapping to 
    the consecutive index in the enclosing grid.
  */
  template<int d, typename ct>
  class SubYGrid : public YGrid<d,ct> {
  public:
    typedef typename YGrid<d,ct>::iTupel iTupel;
    typedef typename YGrid<d,ct>::fTupel fTupel;
    typedef typename YGrid<d,ct>::bTupel bTupel;

    //! Destructor
    virtual ~SubYGrid()
    {}
    
    //! make uninitialized subgrid
    SubYGrid () {}

    //! Make SubYGrid from origin, size, offset and supersize
    SubYGrid (iTupel origin, iTupel size, iTupel offset, iTupel supersize, fTupel h, fTupel r) 
      : YGrid<d,ct>::YGrid(origin,size,h,r), _offset(offset), _supersize(supersize)
    {
      for (int i=0; i<d; ++i) 
        {
          if (offset[i]<0) 
            std::cout << "warning: offset["
                      << i <<"] negative in SubYGrid"
                      << std::endl; 
          if (-offset[i]+supersize[i]<size[i]) 
            std::cout << "warning: subgrid larger than enclosing grid in direction "
                      << i <<" in SubYGrid"
                      << std::endl; 
        }
    }

    //! Make SubYGrid from YGrid
    SubYGrid (YGrid<d,ct> base) : YGrid<d,ct>(base)
    {
      for (int i=0; i<d; ++i) 
        {
          _offset[i] = 0;
          _supersize[i] = this->size(i);
        }
    }
 
    //! Return offset to origin of enclosing grid
    int offset (int i) const
    {
      return _offset[i];
    }

    //! Return offset to origin of enclosing grid
    const iTupel & offset () const
    {
      return _offset;
    }

    //! return size of enclosing grid
    int supersize (int i) const
    {
      return _supersize[i];
    }

    //! return size of enclosing grid
    const iTupel & supersize () const
    {
      return _supersize;
    }

    //! Return SubYGrid of supergrid of self which is the intersection of self and another YGrid
    virtual SubYGrid<d,ct> intersection (const YGrid<d,ct>& r) const
    {
      // check if the two grids can be intersected, must have same mesh size and shift
      for (int i=0; i<d; i++)
        if (fabs(this->meshsize(i)-r.meshsize(i))>Ytolerance) return SubYGrid<d,ct>();
      for (int i=0; i<d; i++)
        if (fabs(this->shift(i)-r.shift(i))>Ytolerance) return SubYGrid<d,ct>();

      iTupel neworigin;
      iTupel newsize;
      iTupel offset;

      for (int i=0; i<d; ++i)
        {
          // intersect
          neworigin[i] = std::max(this->min(i),r.min(i));
          newsize[i] = std::min(this->max(i),r.max(i))-neworigin[i]+1;
          if (newsize[i]<0) {
            newsize[i] = 0;
            neworigin[i] = this->min(i);
          }

          // offset to my supergrid
          offset[i] = _offset[i]+neworigin[i]-this->origin(i);
        }       
      return SubYGrid<d,ct>(neworigin,newsize,offset,_supersize,this->meshsize(),this->shift());
    }

    /*! SubIterator is an Iterator that provides in addition the consecutive
      index in the enclosing grid.
    */
    class SubIterator : public YGrid<d,ct>::Iterator {
    public:
      //! Make iterator pointing to first cell in subgrid.
      SubIterator (const SubYGrid<d,ct>& r) : YGrid<d,ct>::Iterator::Iterator (r)
      {
        //! store some grid information
        for (int i=0; i<d; ++i) _size[i] = r.size(i);

        // compute superincrements 
        int inc = 1;
        for (int i=0; i<d; ++i)
          {
            _superincrement[i] = inc;
            inc *= r.supersize(i);
          }

        // move superindex to first cell in subgrid
        _superindex = 0;
        for (int i=0; i<d; ++i)
          _superindex += r.offset(i)*_superincrement[i];
      }

      //! Make iterator pointing to given cell in subgrid.
      SubIterator (const SubYGrid<d,ct>& r, const iTupel& coord) : YGrid<d,ct>::Iterator::Iterator (r,coord)
      {
        //! store some grid information
        for (int i=0; i<d; ++i) _size[i] = r.size(i);

        // compute superincrements 
        int inc = 1;
        for (int i=0; i<d; ++i)
          {
            _superincrement[i] = inc;
            inc *= r.supersize(i);
          }

        // move superindex to first cell in subgrid
        _superindex = 0;
        for (int i=0; i<d; ++i)
          _superindex += (r.offset(i)+coord[i]-r.origin(i))*_superincrement[i];
      }

      //! Make transforming iterator from iterator (used for automatic conversion of end)
      SubIterator (const typename YGrid<d,ct>::Iterator& i) : YGrid<d,ct>::Iterator::Iterator(i)
        {}

      //! Make iterator pointing to given cell in subgrid.
      void reinit (const SubYGrid<d,ct>& r, const iTupel& coord) 
      {
        YGrid<d,ct>::Iterator::reinit(r,coord);

        //! store some grid information
        for (int i=0; i<d; ++i) _size[i] = r.size(i);

        // compute superincrements 
        int inc = 1;
        for (int i=0; i<d; ++i)
          {
            _superincrement[i] = inc;
            inc *= r.supersize(i);
          }

        // move superindex to first cell in subgrid
        _superindex = 0;
        for (int i=0; i<d; ++i)
          _superindex += (r.offset(i)+coord[i]-r.origin(i))*_superincrement[i];
      }

      //! Return true when two iterators over the same grid are equal (!).
      bool operator== (const SubIterator& i) const
      {
        return _superindex == i._superindex;
      }

      //! Return true when two iterators over the same grid are not equal (!).
      bool operator!= (const SubIterator& i) const
      {
        return _superindex != i._superindex;
      }
        
      //! Return consecutive index in enclosing grid
      int superindex () const
      {
        return _superindex;
      }

      //! Get index of cell which is dist cells away in direction i in enclosing grid.
      int superneighbor (int i, int dist) const
      {
        return _superindex+dist*_superincrement[i];
      }

      //! Get index of neighboring cell which is -1 away in direction i in enclosing grid.
      int superdown (int i) const
      {
        return _superindex-_superincrement[i];
      }

      //! Get index of neighboring cell which is +1 away in direction i in enclosing grid.
      int superup (int i) const
      {
        return _superindex+_superincrement[i];
      }

      //! move this iterator dist cells in direction i
      void move (int i, int dist)
      {
        YGrid<d,ct>::Iterator::move(i,dist);    // move base iterator
        _superindex += dist*_superincrement[i]; // move superindex
      }

      //! Increment iterator to next cell in subgrid
      SubIterator& operator++ ()
      {
        ++(this->_index);               // update consecutive index in grid
        for (int i=0; i<d; i++)         // check for wrap around
          {
            _superindex += _superincrement[i]; // move on cell in direction i
            if (++(this->_coord[i])<=this->_end[i])
              return *this;
            else
              {
                this->_coord[i]=this->_origin[i];     // move back to origin in direction i
                _superindex -= _size[i]*_superincrement[i]; 
              }
          }
        // if we wrapped around, back to to begin(), we must put the iterator to end()
        if (this->_coord == this->_origin)
        {
          for (int i=0; i<d; i++)
            this->_superindex += (this->_size[i]-1)*this->_superincrement[i];
          this->_superindex += this->_superincrement[0];
        }
        return *this;
      }
          
      //! Print position of iterator
      void print (std::ostream& s) const
      {
        YGrid<d,ct>::Iterator::print(s);
        s << " super=" << superindex();
      }

    protected:
      int _superindex;        //!< consecutive index in enclosing grid
      iTupel _superincrement; //!< moves consecutive index by one in this direction in supergrid
      iTupel _size;           //!< size of subgrid
    };

    //! return subiterator to first element of index set
    SubIterator subbegin () const { return SubIterator(*this); }
        
    //! return subiterator to last element of index set
    SubIterator subend () const
    {
      iTupel last;
      for (int i=0; i<d; i++) last[i] = this->max(i);
      last[0] += 1;
      return SubIterator(*this,last);
    }

    /*! TransformingSubIterator is a SubIterator providing in addition a linear transformation
      of the coordinates of the grid in the form \f$ y_i = x_i h_i + s_i \f$.
      This can be used to interpret the grid cells as vertices, edges, faces, etc.
    */
    class TransformingSubIterator : public SubIterator {
    public:
      //! Make iterator pointing to first cell in a grid.
      TransformingSubIterator (const SubYGrid<d,ct>& r) : SubIterator(r)
      {
        for (int i=0; i<d; ++i) _h[i] = r.meshsize(i);
        for (int i=0; i<d; ++i) _begin[i] = r.origin(i)*r.meshsize(i)+r.shift(i);
        for (int i=0; i<d; ++i) _position[i] = _begin[i];
      }

      //! Make iterator pointing to given cell in a grid.
      TransformingSubIterator (const SubYGrid<d,ct>& r, const iTupel& coord) : SubIterator(r,coord)
      {
        for (int i=0; i<d; ++i) _h[i] = r.meshsize(i);
        for (int i=0; i<d; ++i) _begin[i] = r.origin(i)*r.meshsize(i)+r.shift(i);
        for (int i=0; i<d; ++i) _position[i] = coord[i]*r.meshsize(i)+r.shift(i);
      }

      //! Make transforming iterator from iterator (used for automatic conversion of end)
      TransformingSubIterator (const SubIterator& i) :
        SubIterator(i)
        {}

      TransformingSubIterator (const TransformingSubIterator & t) :
        SubIterator(t), _h(t._h), _begin(t._begin), _position(t._position)
        {}

      //! Make iterator pointing to given cell in a grid.
      void reinit (const SubYGrid<d,ct>& r, const iTupel& coord) 
      {
        SubIterator::reinit(r,coord);
        for (int i=0; i<d; ++i) _h[i] = r.meshsize(i);
        for (int i=0; i<d; ++i) _begin[i] = r.origin(i)*r.meshsize(i)+r.shift(i);
        for (int i=0; i<d; ++i) _position[i] = coord[i]*r.meshsize(i)+r.shift(i);
      }

      //! Increment iterator to next cell with position.
      TransformingSubIterator& operator++ ()
      {
        ++(this->_index);               // update consecutive index in subgrid
        for (int i=0; i<d; i++)         // check for wrap around
          {
            this->_superindex += this->_superincrement[i]; // move on cell in direction i
            if (++(this->_coord[i])<=this->_end[i])
              {
                _position[i] += _h[i];
                return *this;
              }
            else
              { 
                this->_coord[i]=this->_origin[i];     // move back to origin in direction i
                this->_superindex -= this->_size[i]*this->_superincrement[i]; 
                _position[i] = _begin[i];
              }
          }
        // if we wrapped around, back to to begin(), we must put the iterator to end()
        if (this->_coord == this->_origin)
        {
          for (int i=0; i<d; i++)
            this->_superindex += (this->_size[i]-1)*this->_superincrement[i];
          this->_superindex += this->_superincrement[0];
        }
        return *this;
      }

      //! Return position of current cell in direction i.
      ct position (int i) const
      {
        return _position[i];
      }

      //! Return position of current cell as reference.
      const fTupel& position () const
      {
        return _position;
      }

      //! Return meshsize in direction i
      ct meshsize (int i) const
      {
        return _h[i];
      }

      //! Return meshsize of current cell as reference.
      const fTupel& meshsize () const
      {
        return _h;
      }

      //! Move cell position by dist cells in direction i.
      void move (int i, int dist)
      {
        SubIterator::move(i,dist);
        _position[i] += dist*_h[i];
      }

      //! Print contents of iterator
      void print (std::ostream& s) const
      {
        SubIterator::print(s);
        s << " [";
        for (int i=0; i<d-1; i++) s << position(i) << ",";
        s << position(d-1) << "]";
      }

    private:
      fTupel _h;        //!< mesh size per direction
      fTupel _begin;    //!< position of origin of grid
      fTupel _position; //!< current position
    };

    //! return iterator to first element of index set
    TransformingSubIterator tsubbegin () const
    {
      return TransformingSubIterator(*this);
    }
        
    //! return iterator to given element of index set
    TransformingSubIterator tsubbegin (iTupel& co) const
    {
      return TransformingSubIterator(*this,co);
    }
        
    //! return subiterator to last element of index set
    TransformingSubIterator tsubend () const
    {
      SubIterator endit = subend();
      return TransformingSubIterator(endit);
    }
        
  private:
    iTupel _offset;    //!< offset to origin of the enclosing grid
    iTupel _supersize; //!< size of the enclosing grid
  };


  //! Output operator for subgrids
  template <int d, typename ct>
  inline std::ostream& operator<< (std::ostream& s, SubYGrid<d,ct> e)
  {
    YGrid<d,ct> x = e;
    s << x << " ofs=" << e.offset() << " ss=" << e.supersize();
    return s;
  }

  //! Output operator for subgrids
  template <int d, typename ct>
  inline std::ostream& operator<< (std::ostream& s, typename SubYGrid<d,ct>::TransformingSubIterator& e)
  {
    e.print(s);
    return s;
  }

  namespace
  {
    template<int dim>
    struct power
    {
      static int eval(int s)
      {
        return s*power<dim-1>::eval(s);
      }
    };
    
    template<>
    struct power<0>
    {
      static int eval(int s)
      {
    return 1;
      }
    };
  }

  /** \brief Implement the default load balance strategy of yaspgrid
   */
  template<int d>
  class YLoadBalance
  {
  public:
    typedef FieldVector<int, d>  iTupel;
    virtual ~YLoadBalance() {}
    virtual void loadbalance (const iTupel& size, int P, iTupel& dims) const
    {
      double opt=1E100;
      iTupel trydims;

      optimize_dims(d-1,size,P,dims,trydims,opt);
    }
  private:
    void optimize_dims (int i, const iTupel& size, int P, iTupel& dims, iTupel& trydims, double &opt ) const
    {
      if (i>0) // test all subdivisions recursively
        {
          for (int k=1; k<=P; k++)
            if (P%k==0)
              {
                // P divisible by k
                trydims[i] = k;
                optimize_dims(i-1,size,P/k,dims,trydims,opt);
              }
        }
      else
        {
          // found a possible combination
          trydims[0] = P;
          
          // check for optimality
          double m = -1.0;

          for (int k=0; k<d; k++)
            {
              double mm=((double)size[k])/((double)trydims[k]);
              if (fmod((double)size[k],(double)trydims[k])>0.0001) mm*=3;
              if ( mm > m ) m = mm;
            }
          //if (_rank==0) std::cout << "optimize_dims: " << size << " | " << trydims << " norm=" << m << std::endl;  
          if (m<opt) 
            {
              opt = m;
              dims = trydims;
            }
        }
    }
  };

  /** \brief Implement yaspgrid load balance strategy for P=x^{dim} processors
   */
  template<int d>
  class YLoadBalancePowerD : public YLoadBalance<d>
  {
  public:
    typedef FieldVector<int, d>  iTupel;
    virtual void loadbalance (const iTupel& size, int P, iTupel& dims) const
    {
      bool found=false;
      for(int i=1;i<P;++i)
        if(power<d>::eval(i)==P){
          for(int j=0;j<d;++j)
            dims[j]=i;
          found=true;
        }
      if(!found)
        DUNE_THROW(GridError, "Loadbalancing failed\n");
    }
  };
 
  /*! Torus provides all the functionality to handle a toroidal communication structure:

  - Map a set of processes (given by an MPI communicator) to a torus of dimension d. The "optimal"
  torus dimensions are determined by a coarse mesh. The maximum side length is minimized.

  - Provide lists of neighboring processes and a method for nearest neighbor exchange
  using asynchronous communication with MPI. The periodic case is handled where one process
  might have to exchange several messages with the same process. (Logically, a process has always
  \f$3^d-1\f$ neighbors, but several of these logical neighbors might be identical)

  - Provide means to partition a grid to the torus.

  */
  template<int d>
  class Torus {
  public:
    //! type used to pass tupels in and out
    typedef FieldVector<int, d> iTupel;
    typedef FieldVector<bool, d> bTupel;


  private:
    struct CommPartner {
      int rank;
      iTupel delta;
      int index;
    };

    struct CommTask {
      int rank;      // process to send to / receive from
      void *buffer;  // buffer to send / receive
      int size;      // size of buffer
#if HAVE_MPI
      MPI_Request request; // used by MPI to handle request
#else
      int request;
#endif
      int flag;      // used by MPI 
    };

  public:
    //! constructor making uninitialized object
    Torus () :
      _loadbalancer(0)
    {}

    //! make partitioner from communicator and coarse mesh size
#if HAVE_MPI
    Torus (MPI_Comm comm, int tag, iTupel size, const YLoadBalance<d>* lb) :
#else
    Torus (int tag, iTupel size, const YLoadBalance<d>* lb) :
#endif
      _loadbalancer(lb)
    {
      // MPI stuff
#if HAVE_MPI
      _comm = comm;
      MPI_Comm_size(comm,&_procs);
      MPI_Comm_rank(comm,&_rank);
#else
      _procs=1; _rank=0;
#endif
      _tag = tag;

      // determine dimensions
      _loadbalancer->loadbalance(size, _procs, _dims);
      // if (_rank==0) std::cout << "Torus<" << d 
      //                         << ">: mapping " << _procs << " processes onto "
      //                         << _dims << " torus." << std::endl;

      // compute increments for lexicographic ordering
      int inc = 1;
      for (int i=0; i<d; i++)
        {
          _increment[i] = inc;
          inc *= _dims[i];
        }

      // make full schedule
      proclists();
    }

    //! return own rank
    int rank () const
    {
      return _rank;
    }

    //! return own coordinates
    iTupel coord () const
    {
      return rank_to_coord(_rank);
    }

    //! return number of processes
    int procs () const
    {
      return _procs;
    }

    //! return dimensions of torus
    const iTupel & dims () const
    {
      return _dims;
    }

    //! return dimensions of torus in direction i
    int dims (int i) const
    {
      return _dims[i];
    }

    //! return MPI communicator
#if HAVE_MPI
    MPI_Comm comm () const
    {
      return _comm;
    }
#endif

    //! return tag used by torus
    int tag () const
    {
      return _tag;
    }

    //! return true if coordinate is inside torus
    bool inside (iTupel c) const
    {
      for (int i=d-1; i>=0; i--)
        if (c[i]<0 || c[i]>=_dims[i]) return false;
      return true;
    }

    //! map rank to coordinate in torus using lexicographic ordering
    iTupel rank_to_coord (int rank) const
    {
      iTupel coord;
      rank = rank%_procs;
      for (int i=d-1; i>=0; i--)
        {
          coord[i] = rank/_increment[i];
          rank = rank%_increment[i];
        }
      return coord;
    }

    //! map coordinate in torus to rank using lexicographic ordering
    int coord_to_rank (iTupel coord) const
    {
      for (int i=0; i<d; i++) coord[i] = coord[i]%_dims[i];
      int rank = 0;
      for (int i=0; i<d; i++) rank += coord[i]*_increment[i];
      return rank;
    }

    //! return rank of process where its coordinate in direction dir has offset cnt (handles periodic case)
    int rank_relative (int rank, int dir, int cnt) const
    {
      iTupel coord = rank_to_coord(rank);
      coord[dir] = (coord[dir]+dims[dir]+cnt)%dims[dir];
      return coord_to_rank(coord);
    }

    //! assign color to given coordinate
    int color (const iTupel & coord) const
    {
      int c = 0;
      int power = 1;

      // interior coloring
      for (int i=0; i<d; i++)
        {
          if (coord[i]%2==1) c += power;
          power *= 2;
        }

      // extra colors for boundary processes
      for (int i=0; i<d; i++)
        {
          if (_dims[i]>1 && coord[i]==_dims[i]-1) c += power;
          power *= 2;
        }

      return c;
    }

    //! assign color to given rank
    int color (int rank) const
    {
      return color(rank_to_coord(rank));
    }

    //! return the number of neighbors, which is \f$3^d-1\f$
    int neighbors () const
    {
      int n=1;
      for (int i=0; i<d; ++i)
        n *= 3;
      return n-1;
    }

    //! return true if neighbor with given delta is a neighbor under the given periodicity
    bool is_neighbor (iTupel delta, bTupel periodic) const
    {
      iTupel coord = rank_to_coord(_rank); // my own coordinate with 0 <= c_i < dims_i


      for (int i=0; i<d; i++)
        {
          if (delta[i]<0)
            {
              // if I am on the boundary and domain is not periodic => no neighbor
              if (coord[i]==0 && periodic[i]==false) return false;
            }
          if (delta[i]>0)
            {
              // if I am on the boundary and domain is not periodic => no neighbor
              if (coord[i]==_dims[i]-1 && periodic[i]==false) return false;
            }
        }
      return true;
    }

    //! partition the given grid onto the torus and return the piece of the process with given rank; returns load imbalance
    double partition (int rank, iTupel origin_in, iTupel size_in, iTupel& origin_out, iTupel& size_out) const
    {
      iTupel coord = rank_to_coord(rank);
      double maxsize = 1;
      double sz = 1;

      // make a tensor product partition
      for (int i=0; i<d; i++)
        {
          // determine 
          int m = size_in[i]/_dims[i];
          int r = size_in[i]%_dims[i];

          sz *= size_in[i];

          if (coord[i]<_dims[i]-r)
            {
              origin_out[i] = origin_in[i] + coord[i]*m;
              size_out[i] = m;
              maxsize *= m;
            }
          else
            {
              origin_out[i] = origin_in[i] + (_dims[i]-r)*m + (coord[i]-(_dims[i]-r))*(m+1);
              size_out[i] = m+1;
              maxsize *= m+1;
            }
        }
      return maxsize/(sz/_procs);
    }

    /*!
      ProcListIterator provides access to a list of neighboring processes. There are always
      \f$ 3^d-1 \f$ entries in such a list. Two lists are maintained, one for sending and one for
      receiving. The lists are sorted in such a way that in sequence message delivery ensures that
      e.g. a message send to the left neighbor is received as a message from the right neighbor.
    */
    class ProcListIterator {
    public:
      //! make an iterator
      ProcListIterator (typename std::deque<CommPartner>::const_iterator iter)
      {
        i = iter;
      }

      //! return rank of neighboring process
      int rank () const
      {
        return i->rank;
      }

      //! return distance vector
      iTupel delta () const
      {
        return i->delta;
      }

      //! return index in proclist
      int index () const
      {
        return i->index;
      }

      //! return 1-norm of distance vector
      int distance () const
      {
        int dist = 0;
        iTupel delta=i->delta;
        for (int i=0; i<d; ++i)
          dist += std::abs(delta[i]);
        return dist;
      }

      //! Return true when two iterators point to same member
      bool operator== (const ProcListIterator& iter)
      {
        return i == iter.i;
      }


      //! Return true when two iterators do not point to same member
      bool operator!= (const ProcListIterator& iter)
      {
        return i != iter.i;
      }
        
      //! Increment iterator to next cell.
      ProcListIterator& operator++ ()
      {
        ++i;
        return *this;
      }
          
    private:
      typename std::deque<CommPartner>::const_iterator i;
    };

    //! first process in send list
    ProcListIterator sendbegin () const
    {
      return ProcListIterator(_sendlist.begin());
    }

    //! end of send list
    ProcListIterator sendend () const
    {
      return ProcListIterator(_sendlist.end());
    }

    //! first process in receive list
    ProcListIterator recvbegin () const
    {
      return ProcListIterator(_recvlist.begin());
    }

    //! last process in receive list
    ProcListIterator recvend () const
    {
      return ProcListIterator(_recvlist.end());
    }

    //! store a send request; buffers are sent in order; handles also local requests with memcpy
    void send (int rank, void* buffer, int size) const
    {
      CommTask task;
      task.rank = rank;
      task.buffer = buffer;
      task.size = size;
      if (rank!=_rank)
        _sendrequests.push_back(task);
      else
        _localsendrequests.push_back(task);
    }
 
    //! store a receive request; buffers are received in order; handles also local requests with memcpy
    void recv (int rank, void* buffer, int size) const
    {
      CommTask task;
      task.rank = rank;
      task.buffer = buffer;
      task.size = size;
      if (rank!=_rank)
        _recvrequests.push_back(task);
      else
        _localrecvrequests.push_back(task);
    }
 
    //! exchange messages stored in request buffers; clear request buffers afterwards
    void exchange () const
    {
      // handle local requests first
      if (_localsendrequests.size()!=_localrecvrequests.size())
        {
          std::cout << "[" << rank() << "]: ERROR: local sends/receives do not match in exchange!" << std::endl;
          return;
        }
      for (unsigned int i=0; i<_localsendrequests.size(); i++)
        {
          if (_localsendrequests[i].size!=_localrecvrequests[i].size)
            {
              std::cout << "[" << rank() << "]: ERROR: size in local sends/receive does not match in exchange!" << std::endl;
              return;
            }
          memcpy(_localrecvrequests[i].buffer,_localsendrequests[i].buffer,_localsendrequests[i].size);
        }
      _localsendrequests.clear();
      _localrecvrequests.clear();

#if HAVE_MPI
      // handle foreign requests
      int sends=0;
      int recvs=0;

      // issue sends to foreign processes
      for (unsigned int i=0; i<_sendrequests.size(); i++)
        if (_sendrequests[i].rank!=rank())
          {
//          std::cout << "[" << rank() << "]" << " send " << _sendrequests[i].size << " bytes " 
//                    << "to " << _sendrequests[i].rank << " p=" << _sendrequests[i].buffer << std::endl;
            MPI_Isend(_sendrequests[i].buffer, _sendrequests[i].size, MPI_BYTE, 
                      _sendrequests[i].rank, _tag, _comm, &(_sendrequests[i].request));
            _sendrequests[i].flag = false;
            sends++;
          }

      // issue receives from foreign processes
      for (unsigned int i=0; i<_recvrequests.size(); i++)
        if (_recvrequests[i].rank!=rank())
          {
//          std::cout << "[" << rank() << "]"  << " recv " << _recvrequests[i].size << " bytes " 
//                    << "fm " << _recvrequests[i].rank << " p=" << _recvrequests[i].buffer << std::endl;
            MPI_Irecv(_recvrequests[i].buffer, _recvrequests[i].size, MPI_BYTE, 
                      _recvrequests[i].rank, _tag, _comm, &(_recvrequests[i].request));
            _recvrequests[i].flag = false;
            recvs++;
          }

      // poll sends
      while (sends>0)
        {
          for (unsigned int i=0; i<_sendrequests.size(); i++)
            if (!_sendrequests[i].flag)
              {
                MPI_Status status;
                MPI_Test( &(_sendrequests[i].request), &(_sendrequests[i].flag), &status);
                if (_sendrequests[i].flag)
                  {
                    sends--;
//                  std::cout << "[" << rank() << "]"  << " send to " << _sendrequests[i].rank << " OK" << std::endl;
                  }
              }
        }

      // poll receives
      while (recvs>0)
        {
          for (unsigned int i=0; i<_recvrequests.size(); i++)
            if (!_recvrequests[i].flag)
              {
                MPI_Status status;
                MPI_Test( &(_recvrequests[i].request), &(_recvrequests[i].flag), &status);
                if (_recvrequests[i].flag)
                  {
                    recvs--;
//                  std::cout << "[" << rank() << "]"  << " recv fm " << _recvrequests[i].rank << " OK" << std::endl;
                  }

              }
        }

      // clear request buffers
      _sendrequests.clear();
      _recvrequests.clear();
#endif
    }

    //! global sum
    double global_sum (double x) const
    {
      if (_procs==1) return x;
      double res = 0.0;
#if HAVE_MPI
      MPI_Allreduce(&x,&res,1,MPI_DOUBLE,MPI_SUM,_comm);
#endif
      return res;
    }

    //! global max
    double global_max (double x) const
    {
      double res = 0.0;
        
      if (_procs==1) return x;
#if HAVE_MPI
      MPI_Allreduce(&x,&res,1,MPI_DOUBLE,MPI_MAX,_comm);
#endif
      return res;
    }

    //! global min
    double global_min (double x) const
    {
      double res = 0.0;
        
      if (_procs==1) return x;
#if HAVE_MPI
      MPI_Allreduce(&x,&res,1,MPI_DOUBLE,MPI_MIN,_comm);
#endif
      return res;
    }

 
    //! print contents of torus object
    void print (std::ostream& s) const
    {
      s << "[" << rank() <<  "]: Torus " << procs() << " processor(s) arranged as " << dims() << std::endl;
      for (ProcListIterator i=sendbegin(); i!=sendend(); ++i)
        {
          s << "[" << rank() <<  "]: send to   " 
            << "rank=" << i.rank() 
            << " index=" << i.index() 
            << " delta=" << i.delta() << " dist=" << i.distance() << std::endl;
        }
      for (ProcListIterator i=recvbegin(); i!=recvend(); ++i)
        {
          s << "[" << rank() <<  "]: recv from " 
            << "rank=" << i.rank() 
            << " index=" << i.index() 
            << " delta=" << i.delta() << " dist=" << i.distance() << std::endl;
        }
    }

  private:

    void proclists ()
    {
      // compile the full neighbor list
      CommPartner cp;
      iTupel delta;

      delta = -1;
      bool ready = false;
      iTupel me, nb;
      me = rank_to_coord(_rank);
      int index = 0;
      int last = neighbors()-1;
      while (!ready)
        {
          // find neighbors coordinates
          for (int i=0; i<d; i++)
            nb[i] = ( me[i]+_dims[i]+delta[i] ) % _dims[i];

          // find neighbors rank
          int nbrank = coord_to_rank(nb);
                  
          // check if delta is not zero
          for (int i=0; i<d; i++)
            if (delta[i]!=0) 
              {
                cp.rank = nbrank;
                cp.delta = delta;
                cp.index = index;
                _recvlist.push_back(cp);
                cp.index = last-index;
                _sendlist.push_front(cp);
                index++;
                break;
              }

          // next neighbor
          ready = true;
          for (int i=0; i<d; i++)
            if (delta[i]<1)
              {
                (delta[i])++;
                ready=false;
                break;
              }
            else
              {
                delta[i] = -1;
              }
        }

    }

#if HAVE_MPI
    MPI_Comm _comm;
#endif
    int _rank;
    int _procs;
    iTupel _dims;
    iTupel _increment;
    int _tag;
    std::deque<CommPartner> _sendlist;
    std::deque<CommPartner> _recvlist;

    mutable std::vector<CommTask> _sendrequests;
    mutable std::vector<CommTask> _recvrequests;
    mutable std::vector<CommTask> _localsendrequests;
    mutable std::vector<CommTask> _localrecvrequests;

    //! pointer to the load balancer
    const YLoadBalance<d>* _loadbalancer;
  };

  //! Output operator for Torus
  template <int d>
  inline std::ostream& operator<< (std::ostream& s, const Torus<d> & t)
  {
    t.print(s);
    return s;
  }


  /*! MultiYGrid manages a d-dimensional grid mapped to a set of processes.
   */
  template<int d, typename ct>
  class MultiYGrid {
  public:
    // some data types
    struct Intersection {
      SubYGrid<d,ct> grid; // the intersection as a subgrid of local grid
      int rank;            // rank of process where other grid is stored
      int distance;        // manhattan distance to other grid
    };
        
    struct YGridLevel {        // This stores all the information on one grid level 
      // cell (codim 0) data
      YGrid<d,ct> cell_global;         // the whole cell grid on that level
      SubYGrid<d,ct> cell_overlap;     // we have no ghost cells, so our part is overlap completely
      SubYGrid<d,ct> cell_interior;    // interior cells are a subgrid of all cells
      
      std::deque<Intersection> send_cell_overlap_overlap;  // each intersection is a subgrid of overlap
      std::deque<Intersection> recv_cell_overlap_overlap;  // each intersection is a subgrid of overlap
      
      std::deque<Intersection> send_cell_interior_overlap; // each intersection is a subgrid of overlap
      std::deque<Intersection> recv_cell_overlap_interior; // each intersection is a subgrid of overlap
      
      // vertex (codim dim) data
      YGrid<d,ct> vertex_global;           // the whole vertex grid on that level
      SubYGrid<d,ct> vertex_overlapfront;  // all our vertices are overlap and front
      SubYGrid<d,ct> vertex_overlap;       // subgrid containing only overlap
      SubYGrid<d,ct> vertex_interiorborder;// subgrid containing only interior and border
      SubYGrid<d,ct> vertex_interior;      // subgrid containing only interior

      std::deque<Intersection> send_vertex_overlapfront_overlapfront; // each intersection is a subgrid of overlapfront
      std::deque<Intersection> recv_vertex_overlapfront_overlapfront; // each intersection is a subgrid of overlapfront

      std::deque<Intersection> send_vertex_overlap_overlapfront; // each intersection is a subgrid of overlapfront
      std::deque<Intersection> recv_vertex_overlapfront_overlap; // each intersection is a subgrid of overlapfront

      std::deque<Intersection> send_vertex_interiorborder_interiorborder; // each intersection is a subgrid of overlapfront
      std::deque<Intersection> recv_vertex_interiorborder_interiorborder; // each intersection is a subgrid of overlapfront
        
      std::deque<Intersection> send_vertex_interiorborder_overlapfront; // each intersection is a subgrid of overlapfront
      std::deque<Intersection> recv_vertex_overlapfront_interiorborder; // each intersection is a subgrid of overlapfront
        
      // general
      MultiYGrid<d,ct>* mg;  // each grid level knows its multigrid
      int overlap;           // in mesh cells on this level
    };

    //! define types used for arguments
    typedef FieldVector<int, d> iTupel;
    typedef FieldVector<ct, d> fTupel;
    typedef FieldVector<bool, d> bTupel;

    // communication tag used by multigrid
    enum { tag = 17 };

    //! constructor making a grid
#if HAVE_MPI
    MultiYGrid (MPI_Comm comm, fTupel L, iTupel s, bTupel periodic, int overlap, const YLoadBalance<d>* lb = defaultLoadbalancer())
      : _LL(L), _s(s), _periodic(periodic), _maxlevel(0), _overlap(overlap),
        _torus(comm,tag,s,lb) // torus gets s to compute procs/direction
    {
      // coarse cell interior  grid obtained through partitioning of global grid
      iTupel o_interior;
      iTupel s_interior;
      iTupel o = iTupel(0);
      double imbal = _torus.partition(_torus.rank(),o,s,o_interior,s_interior);
      imbal = _torus.global_max(imbal);

      // add level
      _levels[_maxlevel] = makelevel(L,s,periodic,o_interior,s_interior,overlap);

      // output
//    if (_torus.rank()==0) std::cout << "MultiYGrid<" << d // changed dinfo to cout
//                                    << ">: coarse grid with size " << s 
//                                    << " imbalance=" << (imbal-1)*100 << "%" << std::endl;
      //      print(std::cout);
    }
#else
    MultiYGrid (fTupel L, iTupel s, bTupel periodic, int overlap, const YLoadBalance<d>* lb = defaultLoadbalancer())
      : _LL(L), _s(s), _periodic(periodic), _maxlevel(0), _overlap(overlap),
        _torus(tag,s,lb) // torus gets s to compute procs/direction
    {
      // coarse cell interior  grid obtained through partitioning of global grid
      iTupel o = iTupel(0);
      iTupel o_interior(o);
      iTupel s_interior(s);

      // add level
      _levels[_maxlevel] = makelevel(L,s,periodic,o_interior,s_interior,overlap);
      // output
//    if (_torus.rank()==0) std::cout << "MultiYGrid<" << d // changed dinfo to cout
//                                    << ">: coarse grid with size " << s 
//                                    << " imbalance=" << (imbal-1)*100 << "%" << std::endl;
      //      print(std::cout);
    }
#endif

    //! do a global mesh refinement; true: keep overlap in absolute size; false: keep overlap in mesh cells
    void refine (bool keep_overlap)
    {
      // access to coarser grid level
      YGridLevel& cg = _levels[maxlevel()];

      // compute size of new global grid
      iTupel s;
      for (int i=0; i<d; i++) s[i] = 2*cg.cell_global.size(i);

      // compute overlap
      int overlap;
      if (keep_overlap) overlap = 2*cg.overlap; else overlap = cg.overlap;

      // output
//    if (_torus.rank()==0) std::cout << "MultiYGrid<" // changed dinfo to cout
//                                    << d << ">: refined to size " 
//                                    << s << std::endl;

      // the cell interior grid obtained from coarse cell interior grid
      iTupel o_interior;
      iTupel s_interior;
      for (int i=0; i<d; i++) o_interior[i] = 2*cg.cell_interior.origin(i);
      for (int i=0; i<d; i++) s_interior[i] = 2*cg.cell_interior.size(i);
          
      // add level
      _maxlevel++;
      _levels[_maxlevel] = makelevel(_LL,s,_periodic,o_interior,s_interior,overlap);
    }

    //! do a global mesh coarsening; delete _maxlevel level
    void coarsen ()
    {
      // create an empty grid level
      YGridLevel empty;
      _levels[_maxlevel] = empty;
      // reduce maxlevel
      _maxlevel--;
    }

    //! return reference to torus 
    const Torus<d>& torus () const
    {
      return _torus;
    }

    //! return the maximum level index (number of levels is maxlevel()+1)
    int maxlevel () const
    {
      return _maxlevel;
    }

    //! return true if grid is periodic in given direction
    bool periodic (int i) const
    {
      return _periodic[i];
    }

    //! provides access to a given grid level
    class YGridLevelIterator {
    private:
      int l;
      const YGridLevel* i;
    public:
      //! empty constructor, use with care
      YGridLevelIterator ()
      {
      }

      //! make iterator pointing to level k (no check made)
      YGridLevelIterator (const YGridLevel* start, int level)
      {
        i=start; l=level;
      }

      //! make iterator pointing to level k (no check made)
      YGridLevelIterator (const YGridLevelIterator & it)
        : l(it.l), i(it.i)
      {}

      //! return number of this grid level
      int level () const
      {
        return l;
      }

      //! return size of overlap on this level
      int overlap () const
      {
        return i->overlap;
      }

      //! return pointer to multigrid object that contains this level
      const MultiYGrid<d,ct>* mg () const
      {
        return i->mg;
      }

      //! Return true when two iterators point to same member
      bool operator== (const YGridLevelIterator& iter) const
      {
        return i == iter.i;
      }

      //! Return true when two iterators do not point to same member
      bool operator!= (const YGridLevelIterator& iter) const
      {
        return i != iter.i;
      }
        
      //! Increment iterator to next finer grid level
      YGridLevelIterator& operator++ ()
      {
        ++i; // assumes built-in array
        ++l;
        return *this;
      }

      //! Increment iterator to coarser grid level
      YGridLevelIterator& operator-- ()
      {
        --i;
        --l;
        return *this;
      }

      //! get iterator to next finer grid level
      YGridLevelIterator finer () const
      {
        return YGridLevelIterator(i+1,l+1);
      }

      //! get iterator to next coarser grid level
      YGridLevelIterator coarser () const
      {
        return YGridLevelIterator(i-1,l-1);
      }

      //! reference to global cell grid
      const YGrid<d,ct>& cell_global () const
      {
        return i->cell_global;
      }

      //! reference to local cell grid which is a subgrid of the global cell grid
      const SubYGrid<d,ct>& cell_overlap () const
      {
        return i->cell_overlap;
      }

      //! reference to cell master grid which is a subgrid of the local cell grid
      const SubYGrid<d,ct>& cell_interior () const
      {
        return i->cell_interior;
      }


      //! access to intersection lists
      const std::deque<Intersection>& send_cell_overlap_overlap () const
      {
        return i->send_cell_overlap_overlap;
      }
      const std::deque<Intersection>& recv_cell_overlap_overlap () const
      {
        return i->recv_cell_overlap_overlap;
      }
      const std::deque<Intersection>& send_cell_interior_overlap () const
      {
        return i->send_cell_interior_overlap;
      }
      const std::deque<Intersection>& recv_cell_overlap_interior () const 
      {
        return i->recv_cell_overlap_interior;
      }


      //! reference to global vertex grid
      const YGrid<d,ct>& vertex_global () const
      {
        return i->vertex_global;
      }
      //! reference to vertex grid, up to front; there are no ghosts in this implementation
      const SubYGrid<d,ct>& vertex_overlapfront () const
      {
        return i->vertex_overlapfront;
      }
      //! reference to overlap vertex grid; is subgrid of overlapfront vertex grid
      const SubYGrid<d,ct>& vertex_overlap () const
      {
        return i->vertex_overlap;
      }
      //! reference to interiorborder vertex grid; is subgrid of overlapfront vertex grid
      const SubYGrid<d,ct>& vertex_interiorborder () const
      {
        return i->vertex_interiorborder;
      }
      //! reference to interior vertex grid; is subgrid of overlapfront vertex grid
      const SubYGrid<d,ct>& vertex_interior () const
      {
        return i->vertex_interior;
      }

      //! access to intersection lists
      const std::deque<Intersection>& send_vertex_overlapfront_overlapfront () const
      {
        return i->send_vertex_overlapfront_overlapfront;
      }
      const std::deque<Intersection>& recv_vertex_overlapfront_overlapfront () const
      {
        return i->recv_vertex_overlapfront_overlapfront;
      }
      const std::deque<Intersection>& send_vertex_overlap_overlapfront () const
      {
        return i->send_vertex_overlap_overlapfront;
      }
      const std::deque<Intersection>& recv_vertex_overlapfront_overlap () const
      {
        return i->recv_vertex_overlapfront_overlap;
      }
      const std::deque<Intersection>& send_vertex_interiorborder_interiorborder () const
      {
        return i->send_vertex_interiorborder_interiorborder;
      }
      const std::deque<Intersection>& recv_vertex_interiorborder_interiorborder () const
      {
        return i->recv_vertex_interiorborder_interiorborder;
      }
      const std::deque<Intersection>& send_vertex_interiorborder_overlapfront () const
      {
        return i->send_vertex_interiorborder_overlapfront;
      }
      const std::deque<Intersection>& recv_vertex_overlapfront_interiorborder () const
      {
        return i->recv_vertex_overlapfront_interiorborder;
      }
    };

    //! return iterator pointing to coarsest level
    YGridLevelIterator begin () const
    {
      return YGridLevelIterator(_levels,0);
    }

    //! return iterator pointing to given level
    YGridLevelIterator begin (int i) const
    {
      if (i<0 || i>maxlevel())
        DUNE_THROW(GridError, "level not existing");
      return YGridLevelIterator(_levels+i,i);
    }

    //! return iterator pointing to one past the finest level
    YGridLevelIterator end () const
    {
      return YGridLevelIterator(_levels+(_maxlevel+1),_maxlevel+1);
    }

    //! return iterator pointing to the finest level
    YGridLevelIterator rbegin () const
    {
      return YGridLevelIterator(_levels+_maxlevel,_maxlevel);
    }

    //! return iterator pointing to one before the coarsest level
    YGridLevelIterator rend () const
    {
      return YGridLevelIterator(_levels-1,-1);
    }

    //! print function for multigrids
    inline void print (std::ostream& s) const
    {
      int rank = torus().rank();

      s << "[" << rank << "]:" << " MultiYGrid maxlevel=" << maxlevel() << std::endl;

      for (YGridLevelIterator g=begin(); g!=end(); ++g)
        {
          s << "[" << rank << "]:   " << std::endl;
          s << "[" << rank << "]:   " << "==========================================" << std::endl;
          s << "[" << rank << "]:   " << "level=" << g.level() << std::endl;
          s << "[" << rank << "]:   " << "cell_global=" << g.cell_global() << std::endl;
          s << "[" << rank << "]:   " << "cell_overlap=" << g.cell_overlap() << std::endl;
          s << "[" << rank << "]:   " << "cell_interior=" << g.cell_interior() << std::endl;          
          for (typename std::deque<Intersection>::const_iterator i=g.send_cell_overlap_overlap().begin();
               i!=g.send_cell_overlap_overlap().end(); ++i)
            {
              s << "[" << rank << "]:    " << " s_c_o_o "
                << i->rank << " " << i->grid << std::endl;
            }
          for (typename std::deque<Intersection>::const_iterator i=g.recv_cell_overlap_overlap().begin();
               i!=g.recv_cell_overlap_overlap().end(); ++i)
            {
              s << "[" << rank << "]:    " << " r_c_o_o "
                << i->rank << " " << i->grid << std::endl;
            }
          for (typename std::deque<Intersection>::const_iterator i=g.send_cell_interior_overlap().begin();
               i!=g.send_cell_interior_overlap().end(); ++i)
            {
              s << "[" << rank << "]:    " << " s_c_i_o "
                << i->rank << " " << i->grid << std::endl;
            }
          for (typename std::deque<Intersection>::const_iterator i=g.recv_cell_overlap_interior().begin();
               i!=g.recv_cell_overlap_interior().end(); ++i)
            {
              s << "[" << rank << "]:    " << " r_c_o_i "
                << i->rank << " " << i->grid << std::endl;
            }

          s << "[" << rank << "]:   " << "-----------------------------------------------"  << std::endl;
          s << "[" << rank << "]:   " << "vertex_global="         << g.vertex_global() << std::endl;
          s << "[" << rank << "]:   " << "vertex_overlapfront="   << g.vertex_overlapfront() << std::endl;
          s << "[" << rank << "]:   " << "vertex_overlap="        << g.vertex_overlap() << std::endl;
          s << "[" << rank << "]:   " << "vertex_interiorborder=" << g.vertex_interiorborder() << std::endl;
          s << "[" << rank << "]:   " << "vertex_interior="       << g.vertex_interior() << std::endl;
          for (typename std::deque<Intersection>::const_iterator i=g.send_vertex_overlapfront_overlapfront().begin();
               i!=g.send_vertex_overlapfront_overlapfront().end(); ++i)
            {
              s << "[" << rank << "]:    " << " s_v_of_of "
                << i->rank << " " << i->grid << std::endl;
            }
          for (typename std::deque<Intersection>::const_iterator i=g.recv_vertex_overlapfront_overlapfront().begin();
               i!=g.recv_vertex_overlapfront_overlapfront().end(); ++i)
            {
              s << "[" << rank << "]:    " << " r_v_of_of "
                << i->rank << " " << i->grid << std::endl;
            }
          for (typename std::deque<Intersection>::const_iterator i=g.send_vertex_overlap_overlapfront().begin();
               i!=g.send_vertex_overlap_overlapfront().end(); ++i)
            {
              s << "[" << rank << "]:    " << " s_v_o_of "
                << i->rank << " " << i->grid << std::endl;
            }
          for (typename std::deque<Intersection>::const_iterator i=g.recv_vertex_overlapfront_overlap().begin();
               i!=g.recv_vertex_overlapfront_overlap().end(); ++i)
            {
              s << "[" << rank << "]:    " << " r_v_of_o "
                << i->rank << " " << i->grid << std::endl;
            }
          for (typename std::deque<Intersection>::const_iterator i=g.send_vertex_interiorborder_interiorborder().begin();
               i!=g.send_vertex_interiorborder_interiorborder().end(); ++i)
            {
              s << "[" << rank << "]:    " << " s_v_ib_ib "
                << i->rank << " " << i->grid << std::endl;
            }
          for (typename std::deque<Intersection>::const_iterator i=g.recv_vertex_interiorborder_interiorborder().begin();
               i!=g.recv_vertex_interiorborder_interiorborder().end(); ++i)
            {
              s << "[" << rank << "]:    " << " r_v_ib_ib "
                << i->rank << " " << i->grid << std::endl;
            }
          for (typename std::deque<Intersection>::const_iterator i=g.send_vertex_interiorborder_overlapfront().begin();
               i!=g.send_vertex_interiorborder_overlapfront().end(); ++i)
            {
              s << "[" << rank << "]:    " << " s_v_ib_of "
                << i->rank << " " << i->grid << std::endl;
            }
          for (typename std::deque<Intersection>::const_iterator i=g.recv_vertex_overlapfront_interiorborder().begin();
               i!=g.recv_vertex_overlapfront_interiorborder().end(); ++i)
            {
              s << "[" << rank << "]:    " << " s_v_of_ib "
                << i->rank << " " << i->grid << std::endl;
            }
        }

      s << std::endl;
    }

    // static method to create the default load balance strategy
    static const YLoadBalance<d>* defaultLoadbalancer()
    {
      static YLoadBalance<d> lb;
      return & lb;
    }
    
  private:
    // make a new YGridLevel structure. For that we need
    // L           size of the whole domain in each direction
    // s           number of cells in each direction
    // periodic    boolean indication periodicity in each direction
    // o_interior  origin of interior (non-overlapping) cell decomposition
    // s_interior  size of interior cell decomposition
    // overlap     to be used on this grid level
    YGridLevel makelevel (fTupel L, iTupel s, bTupel periodic, iTupel o_interior, iTupel s_interior, int overlap)
    {
      // first, lets allocate a new structure
      YGridLevel g;
      g.overlap = overlap;
      g.mg = this;

      // the global cell grid
      iTupel o = iTupel(0); // logical origin is always 0, that is not a restriction
      fTupel h;
      fTupel r;
      for (int i=0; i<d; i++) h[i] = L[i]/s[i]; // the mesh size in each direction
      for (int i=0; i<d; i++) r[i] = 0.5*h[i];  // the shift for cell centers
      g.cell_global = YGrid<d,ct>(o,s,h,r);     // this is the global cell grid

      // extend the cell interior grid by overlap considering periodicity
      iTupel o_overlap;
      iTupel s_overlap;
      for (int i=0; i<d; i++)
        {
          if (periodic[i])
            {
              // easy case, extend by 2 overlaps in total
              o_overlap[i] = o_interior[i]-overlap;  // Note: origin might be negative now 
              s_overlap[i] = s_interior[i]+2*overlap;// Note: might be larger than global size
            }
          else
            {
              // nonperiodic case, intersect with global size
              int min = std::max(0,o_interior[i]-overlap);
              int max = std::min(s[i]-1,o_interior[i]+s_interior[i]-1+overlap);
              o_overlap[i] = min;
              s_overlap[i] = max-min+1;
            }
        }
      g.cell_overlap = SubYGrid<d,ct>(YGrid<d,ct>(o_overlap,s_overlap,h,r));

      // now make the interior grid a subgrid of the overlapping grid
      iTupel offset;
      for (int i=0; i<d; i++) offset[i] = o_interior[i]-o_overlap[i];
      g.cell_interior = SubYGrid<d,ct>(o_interior,s_interior,offset,s_overlap,h,r);

      // compute cell intersections 
      intersections(g.cell_overlap,g.cell_overlap,g.cell_global.size(),g.send_cell_overlap_overlap,g.recv_cell_overlap_overlap);
      intersections(g.cell_interior,g.cell_overlap,g.cell_global.size(),g.send_cell_interior_overlap,g.recv_cell_overlap_interior);

      // now we can do the vertex grids. They are derived completely from the cell grids
      iTupel o_vertex_global, s_vertex_global;
      for (int i=0; i<d; i++) r[i] = 0.0;  // the shift for vertices is zero, and the mesh size is same as for cells

      // first let's make the global grid
      for (int i=0; i<d; i++) o_vertex_global[i] = g.cell_global.origin(i);
      for (int i=0; i<d; i++) s_vertex_global[i] = g.cell_global.size(i)+1; // one more vertices than cells ...
      g.vertex_global = YGrid<d,ct>(o_vertex_global,s_vertex_global,h,r);

      // now the local grid stored in this processor. All other grids are subgrids of this
      iTupel o_vertex_overlapfront;
      iTupel s_vertex_overlapfront;
      for (int i=0; i<d; i++) o_vertex_overlapfront[i] = g.cell_overlap.origin(i);
      for (int i=0; i<d; i++) s_vertex_overlapfront[i] = g.cell_overlap.size(i)+1; // one more vertices than cells ...
      g.vertex_overlapfront = SubYGrid<d,ct>(YGrid<d,ct>(o_vertex_overlapfront,s_vertex_overlapfront,h,r));

      // now overlap only (i.e. without front), is subgrid of overlapfront
      iTupel o_vertex_overlap;
      iTupel s_vertex_overlap;
      for (int i=0; i<d; i++) 
        {
          o_vertex_overlap[i] = g.cell_overlap.origin(i);
          s_vertex_overlap[i] = g.cell_overlap.size(i)+1;

          if (!periodic[i] && g.cell_overlap.origin(i)>g.cell_global.origin(i))
          {
            // not at the lower boundary
            o_vertex_overlap[i] += 1;
            s_vertex_overlap[i] -= 1;
          }

          if (!periodic[i] && g.cell_overlap.origin(i)+g.cell_overlap.size(i)<g.cell_global.origin(i)+g.cell_global.size(i))
          {
            // not at the upper boundary
            s_vertex_overlap[i] -= 1;
          }


          offset[i] = o_vertex_overlap[i]-o_vertex_overlapfront[i];
        }
      g.vertex_overlap = SubYGrid<d,ct>(o_vertex_overlap,s_vertex_overlap,offset,s_vertex_overlapfront,h,r);

      // now interior with border
      iTupel o_vertex_interiorborder;
      iTupel s_vertex_interiorborder;
      for (int i=0; i<d; i++) o_vertex_interiorborder[i] = g.cell_interior.origin(i);
      for (int i=0; i<d; i++) s_vertex_interiorborder[i] = g.cell_interior.size(i)+1;
      for (int i=0; i<d; i++) offset[i] = o_vertex_interiorborder[i]-o_vertex_overlapfront[i];
      g.vertex_interiorborder = SubYGrid<d,ct>(o_vertex_interiorborder,s_vertex_interiorborder,offset,s_vertex_overlapfront,h,r);

      // now only interior
      iTupel o_vertex_interior;
      iTupel s_vertex_interior;
      for (int i=0; i<d; i++) 
        {
          o_vertex_interior[i] = g.cell_interior.origin(i);
          s_vertex_interior[i] = g.cell_interior.size(i)+1;

          if (!periodic[i] && g.cell_interior.origin(i)>g.cell_global.origin(i))
          {
            // not at the lower boundary
            o_vertex_interior[i] += 1;
            s_vertex_interior[i] -= 1;
          }

          if (!periodic[i] && g.cell_interior.origin(i)+g.cell_interior.size(i)<g.cell_global.origin(i)+g.cell_global.size(i))
          {
            // not at the upper boundary
            s_vertex_interior[i] -= 1;
          }

          offset[i] = o_vertex_interior[i]-o_vertex_overlapfront[i];
        }
      g.vertex_interior = SubYGrid<d,ct>(o_vertex_interior,s_vertex_interior,offset,s_vertex_overlapfront,h,r);

      // compute vertex intersections
      intersections(g.vertex_overlapfront,g.vertex_overlapfront,g.cell_global.size(),
                    g.send_vertex_overlapfront_overlapfront,g.recv_vertex_overlapfront_overlapfront);
      intersections(g.vertex_overlap,g.vertex_overlapfront,g.cell_global.size(),
                    g.send_vertex_overlap_overlapfront,g.recv_vertex_overlapfront_overlap);
      intersections(g.vertex_interiorborder,g.vertex_interiorborder,g.cell_global.size(),
                    g.send_vertex_interiorborder_interiorborder,g.recv_vertex_interiorborder_interiorborder);
      intersections(g.vertex_interiorborder,g.vertex_overlapfront,g.cell_global.size(),
                    g.send_vertex_interiorborder_overlapfront,g.recv_vertex_overlapfront_interiorborder);

      // return the whole thing
      return g;
    }


    struct mpifriendly_ygrid {
      mpifriendly_ygrid ()
	: origin(0), size(0), h(0.0), r(0.0)
      {}
      mpifriendly_ygrid (const YGrid<d,ct>& grid)
	: origin(grid.origin()), size(grid.size()), h(grid.meshsize()), r(grid.shift())
      {}
      iTupel origin; 
      iTupel size;
      fTupel h;
      fTupel r;
    };

    // construct list of intersections with neighboring processors:
    //   recvgrid: the grid stored in this processor
    //   sendgrid:  the subgrid to be sent to neighboring processors
    //   size: needed to shift local grid in periodic case
    //   returns two lists: Intersections to be sent and Intersections to be received
    // Note: sendgrid/recvgrid may be SubYGrids. Since intersection method is virtual it should work properly
    void intersections (const SubYGrid<d,ct>& sendgrid, const SubYGrid<d,ct>& recvgrid, const iTupel& size, 
                        std::deque<Intersection>& sendlist, std::deque<Intersection>& recvlist)
    {
      // the exchange buffers
      std::vector<YGrid<d,ct> > send_recvgrid(_torus.neighbors()); 
      std::vector<YGrid<d,ct> > recv_recvgrid(_torus.neighbors());
      std::vector<YGrid<d,ct> > send_sendgrid(_torus.neighbors()); 
      std::vector<YGrid<d,ct> > recv_sendgrid(_torus.neighbors());

      // new exchange buffers to send simple struct without virtual functions
      std::vector<mpifriendly_ygrid> mpifriendly_send_recvgrid(_torus.neighbors()); 
      std::vector<mpifriendly_ygrid> mpifriendly_recv_recvgrid(_torus.neighbors());
      std::vector<mpifriendly_ygrid> mpifriendly_send_sendgrid(_torus.neighbors()); 
      std::vector<mpifriendly_ygrid> mpifriendly_recv_sendgrid(_torus.neighbors());

      // fill send buffers; iterate over all neighboring processes
      // non-periodic case is handled automatically because intersection will be zero
      for (typename Torus<d>::ProcListIterator i=_torus.sendbegin(); i!=_torus.sendend(); ++i)
        {
          // determine if we communicate with this neighbor (and what)
          bool skip = false;
          iTupel coord = _torus.coord(); // my coordinates
          iTupel delta = i.delta();      // delta to neighbor
          iTupel nb = coord;             // the neighbor
          for (int k=0; k<d; k++) nb[k] += delta[k];
          iTupel v = iTupel(0);                  // grid movement

          for (int k=0; k<d; k++)
            {
              if (nb[k]<0) 
                {
                  if (_periodic[k])
                    v[k] += size[k];
                  else
                    skip = true;
                }
              if (nb[k]>=_torus.dims(k))
                {
                  if (_periodic[k])
                    v[k] -= size[k];
                  else
                    skip = true;
                }
              // neither might be true, then v=0
            }

          // store moved grids in send buffers
          if (!skip)
            {
              send_sendgrid[i.index()] = sendgrid.move(v);
              send_recvgrid[i.index()] = recvgrid.move(v);
            }
          else
            {
              send_sendgrid[i.index()] = YGrid<d,ct>(iTupel(0),iTupel(0),fTupel(0.0),fTupel(0.0));
              send_recvgrid[i.index()] = YGrid<d,ct>(iTupel(0),iTupel(0),fTupel(0.0),fTupel(0.0));
            }
        }

      // issue send requests for sendgrid being sent to all neighbors
      for (typename Torus<d>::ProcListIterator i=_torus.sendbegin(); i!=_torus.sendend(); ++i)
	{
	  mpifriendly_send_sendgrid[i.index()] = mpifriendly_ygrid(send_sendgrid[i.index()]);
	  _torus.send(i.rank(), &mpifriendly_send_sendgrid[i.index()], sizeof(mpifriendly_ygrid));
	}

      // issue recv requests for sendgrids of neighbors
      for (typename Torus<d>::ProcListIterator i=_torus.recvbegin(); i!=_torus.recvend(); ++i)
        _torus.recv(i.rank(), &mpifriendly_recv_sendgrid[i.index()], sizeof(mpifriendly_ygrid));
          
      // exchange the sendgrids
      _torus.exchange();

      // issue send requests for recvgrid being sent to all neighbors
      for (typename Torus<d>::ProcListIterator i=_torus.sendbegin(); i!=_torus.sendend(); ++i)
	{
	  mpifriendly_send_recvgrid[i.index()] = mpifriendly_ygrid(send_recvgrid[i.index()]);
	  _torus.send(i.rank(), &mpifriendly_send_recvgrid[i.index()], sizeof(mpifriendly_ygrid));
	}

      // issue recv requests for recvgrid of neighbors
      for (typename Torus<d>::ProcListIterator i=_torus.recvbegin(); i!=_torus.recvend(); ++i)
        _torus.recv(i.rank(), &mpifriendly_recv_recvgrid[i.index()], sizeof(mpifriendly_ygrid));
          
      // exchange the recvgrid
      _torus.exchange();

      // process receive buffers and compute intersections
      for (typename Torus<d>::ProcListIterator i=_torus.recvbegin(); i!=_torus.recvend(); ++i)
        {
          // what must be sent to this neighbor
          Intersection send_intersection;
	  mpifriendly_ygrid yg = mpifriendly_recv_recvgrid[i.index()];
	  recv_recvgrid[i.index()] = YGrid<d,ct>(yg.origin,yg.size,yg.h,yg.r);
          send_intersection.grid = sendgrid.intersection(recv_recvgrid[i.index()]);
//        std::cout << "[" << _torus.rank() << "]:   " << "sendgrid=" << sendgrid << std::endl;
//        std::cout << "[" << _torus.rank() << "]:   " << "recved recvgrid=" << recv_recvgrid[i.index()] << std::endl;
//        std::cout << "[" << _torus.rank() << "]:   " << "intersection=" << send_intersection.grid << std::endl;
          send_intersection.rank = i.rank();
          send_intersection.distance = i.distance();
          if (!send_intersection.grid.empty()) sendlist.push_front(send_intersection);

          Intersection recv_intersection;
	  yg = mpifriendly_recv_sendgrid[i.index()];
	  recv_sendgrid[i.index()] = YGrid<d,ct>(yg.origin,yg.size,yg.h,yg.r);
          recv_intersection.grid = recvgrid.intersection(recv_sendgrid[i.index()]);
//        std::cout << "[" << _torus.rank() << "]:   " << "recvgrid=" << recvgrid << std::endl;
//        std::cout << "[" << _torus.rank() << "]:   " << "recved sendgrid=" << recv_sendgrid[i.index()] << std::endl;
//        std::cout << "[" << _torus.rank() << "]:   " << "intersection=" << recv_intersection.grid << std::endl;
          recv_intersection.rank = i.rank();
          recv_intersection.distance = i.distance();
          if(!recv_intersection.grid.empty()) recvlist.push_back(recv_intersection);
        }
    }

    // private data of multigrid
    fTupel _LL;
    iTupel _s;
    bTupel _periodic;
    int _maxlevel;
    YGridLevel _levels[32];
    int _overlap;
    Torus<d> _torus;
  };

  //! Output operator for multigrids
  template <int d, class ct>
  inline std::ostream& operator<< (std::ostream& s, MultiYGrid<d,ct>& mg)
  {
    mg.print(s);
    s << std::endl;
    return s;
  }

} // namespace Dune

#endif