This file is indexed.

/usr/include/dune/grid/alugrid/3d/geometry_imp.cc is in libdune-grid-dev 2.2.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#ifndef DUNE_ALUGRID_GEOMETRY_IMP_CC
#define DUNE_ALUGRID_GEOMETRY_IMP_CC

#include <dune/geometry/genericgeometry/conversion.hh>
#include <dune/geometry/genericgeometry/topologytypes.hh>

#include "grid.hh"
#include "mappings.hh"
#include "geometry.hh"

namespace Dune {
// --Geometry

template <int mydim, int cdim, class GridImp>
inline ALU3dGridGeometry<mydim, cdim, GridImp> ::
ALU3dGridGeometry() 
: geoImpl_(), 
  volume_(1.0)
{
}

template< int mydim, int cdim, class GridImp>
inline void 
ALU3dGridGeometry< mydim, cdim, GridImp > :: invalidate () 
{
  geoImpl_.invalidate();
}

template< int mydim, int cdim, class GridImp>
inline bool
ALU3dGridGeometry< mydim, cdim, GridImp > :: valid () const
{
  return geoImpl_.valid();
}

template< int mydim, int cdim, class GridImp>
inline GeometryType
ALU3dGridGeometry< mydim, cdim, GridImp > :: type () const
{
  return GeometryType( (elementType == tetra) ? 
      GenericGeometry :: SimplexTopology< mydim > :: type :: id :
      GenericGeometry :: CubeTopology   < mydim > :: type :: id, 
      mydim );
}

template< int mydim, int cdim, class GridImp>
inline int 
ALU3dGridGeometry<mydim, cdim, GridImp >::corners() const 
{
  return corners_;
}

template< int mydim, int cdim, class GridImp>
inline const typename ALU3dGridGeometry<mydim, cdim, GridImp >::GlobalCoordinate& 
ALU3dGridGeometry<mydim, cdim, GridImp >::
operator[] (int i) const 
{
  typedef GenericGeometry::MapNumberingProvider< mydim > Numbering;
  const unsigned int tid = type().id();
  const int j = Numbering::template dune2generic< mydim >( tid, i );
  return geoImpl_[ j ];
}

template< int mydim, int cdim, class GridImp>
inline typename ALU3dGridGeometry<mydim, cdim, GridImp >::GlobalCoordinate 
ALU3dGridGeometry<mydim, cdim, GridImp >::
corner (int i) const
{
  return geoImpl_[ i ];
}


template< int mydim, int cdim, class GridImp>
inline typename ALU3dGridGeometry<mydim, cdim, GridImp >::GlobalCoordinate 
ALU3dGridGeometry<mydim, cdim, GridImp >::
global (const LocalCoordinate& local) const 
{
  GlobalCoordinate global;
  geoImpl_.mapping().map2world(local, global);
  return global;
}

template< int mydim, int cdim, class GridImp >
inline typename ALU3dGridGeometry<mydim, cdim, GridImp >::LocalCoordinate 
ALU3dGridGeometry<mydim, cdim, GridImp >::
local (const GlobalCoordinate& global) const 
{
  LocalCoordinate local;
  geoImpl_.mapping().world2map(global, local);
  return local;
}

template< int mydim, int cdim, class GridImp>
inline typename ALU3dGridGeometry<mydim, cdim, GridImp >::ctype 
ALU3dGridGeometry<mydim, cdim, GridImp >::
integrationElement (const LocalCoordinate& local) const 
{
  // this is the only case we need to specialize
  if( mydim == cdim && elementType == tetra ) 
  {
    assert( geoImpl_.valid() );
    return 6.0 * volume_;
  }
  else 
    return geoImpl_.mapping().det( local );
}

template<int mydim, int cdim, class GridImp>
inline typename ALU3dGridGeometry<mydim, cdim, GridImp >::ctype 
ALU3dGridGeometry<mydim, cdim, GridImp >::
volume () const 
{
  if( mydim == cdim ) 
  {
    assert( geoImpl_.valid() );
    return volume_ ;
  }
  else if ( mydim == cdim - 1 && elementType == tetra )
  {
    enum { factor = Factorial<mydim>::factorial };
    // local vector does not affect the result 
    const LocalCoordinate dummy(0);
    return integrationElement( dummy ) / ((ctype) factor);
  }
  else 
  {
    return integrationElement(LocalCoordinate(0.5));
  }
}

template< int mydim, int cdim, class GridImp>
inline bool 
ALU3dGridGeometry<mydim, cdim, GridImp >::
affine() const 
{
  return geoImpl_.mapping().affine();
}

template< int mydim, int cdim, class GridImp>
inline const typename ALU3dGridGeometry<mydim, cdim, GridImp >::Jacobian& 
ALU3dGridGeometry<mydim, cdim, GridImp >::
jacobianInverseTransposed (const LocalCoordinate& local) const 
{
  return geoImpl_.mapping().jacobianInverseTransposed( local );
}

template< int mydim, int cdim, class GridImp>
inline const typename ALU3dGridGeometry<mydim, cdim, GridImp >::JacobianTransposed& 
ALU3dGridGeometry<mydim, cdim, GridImp >::
jacobianTransposed (const LocalCoordinate& local) const 
{
  return geoImpl_.mapping().jacobianTransposed( local );
}

template <int mydim, int cdim, class GridImp>
inline void 
ALU3dGridGeometry<mydim, cdim, GridImp >::
print (std::ostream& ss) const 
{
  const char* charElType = (elementType == tetra) ? "tetra" : "hexa";
  ss << "ALU3dGridGeometry<" << mydim << "," << cdim << ", " << charElType << "> = {\n";
  for(int i=0; i<corners(); i++)
    {
      ss << " corner " << i << " ";
      ss << "{" << ((*this)[i]) << "}"; ss << std::endl;
    }
  ss << "} \n";
}

// built Geometry 
template <int mydim, int cdim, class GridImp>
template <class GeometryType>
inline bool 
ALU3dGridGeometry<mydim, cdim, GridImp >::
buildGeomInFather(const GeometryType &fatherGeom , const GeometryType & myGeom)
{
  // update geo impl 
  geoImpl_.updateInFather( fatherGeom, myGeom );

  // my volume is a part of 1 for hexas, for tetra adjust with factor 
  volume_ = myGeom.volume() / fatherGeom.volume();
  if( elementType == tetra ) 
  {
    volume_ /= 6.0; 
#ifndef NDEBUG
    LocalCoordinate local( 0.0 );
    assert( std::abs( 6.0 * volume_ - integrationElement( local ) ) < 1e-12 );
#endif
  }

  return true;
}

//--hexaBuildGeom
template <int mydim, int cdim, class GridImp>
inline bool 
ALU3dGridGeometry<mydim, cdim, GridImp >::
buildGeom(const IMPLElementType& item) 
{
  if ( elementType == hexa ) 
  {
    // if this assertion is thrown, use ElementTopo::dune2aluVertex instead
    // of number when calling myvertex 
    assert( ElementTopo::dune2aluVertex(0) == 0 );
    assert( ElementTopo::dune2aluVertex(1) == 1 );
    assert( ElementTopo::dune2aluVertex(2) == 3 );
    assert( ElementTopo::dune2aluVertex(3) == 2 );
    assert( ElementTopo::dune2aluVertex(4) == 4 );
    assert( ElementTopo::dune2aluVertex(5) == 5 );
    assert( ElementTopo::dune2aluVertex(6) == 7 );
    assert( ElementTopo::dune2aluVertex(7) == 6 );

    // update geo impl 
    geoImpl_.update( item.myvertex(0)->Point(),
                     item.myvertex(1)->Point(),
                     item.myvertex(3)->Point(),
                     item.myvertex(2)->Point(),
                     item.myvertex(4)->Point(),
                     item.myvertex(5)->Point(),
                     item.myvertex(7)->Point(),
                     item.myvertex(6)->Point() );
  }
  else if( elementType == tetra ) 
  {
    // if this assertion is thrown, use ElementTopo::dune2aluVertex instead
    // of number when calling myvertex 
    assert( ElementTopo::dune2aluVertex(0) == 0 );
    assert( ElementTopo::dune2aluVertex(1) == 1 );
    assert( ElementTopo::dune2aluVertex(2) == 2 );
    assert( ElementTopo::dune2aluVertex(3) == 3 );

    // update geo impl 
    geoImpl_.update( item.myvertex(0)->Point(),
                     item.myvertex(1)->Point(),
                     item.myvertex(2)->Point(),
                     item.myvertex(3)->Point() );
  }

  // get volume of element 
  volume_ = item.volume();

  return true;
}

// buildFaceGeom
template <int mydim, int cdim, class GridImp>
inline bool 
ALU3dGridGeometry<mydim, cdim, GridImp >::
buildGeom(const HFaceType & item, int twist, int duneFace ) 
{
  // get geo face 
  const GEOFaceType& face = static_cast<const GEOFaceType&> (item);

  // if face was not set (when face comes from face iteration), 
  // then set it to zero 
  if( duneFace < 0 ) duneFace = 0;

  enum { numVertices = ElementTopo::numVerticesPerFace };
  // for all vertices of this face get rotatedIndex 
  int rotatedALUIndex[ numVertices ];
  for (int i = 0; i < numVertices; ++i)
  {
    // Transform Dune index to ALU index and apply twist
    const int localALUIndex = ElementTopo::dune2aluFaceVertex(duneFace,i);
    rotatedALUIndex[ i ] = FaceTopo::twist(localALUIndex, twist);
  }

  if( elementType == hexa )
  {
    // update geometry implementation 
    geoImpl_.update( face.myvertex(rotatedALUIndex[0])->Point(),
                     face.myvertex(rotatedALUIndex[1])->Point(),
                     face.myvertex(rotatedALUIndex[2])->Point(),
                     face.myvertex(rotatedALUIndex[3])->Point() );
  }
  else if ( elementType == tetra )
  {
    // update geometry implementation 
    geoImpl_.update( face.myvertex(rotatedALUIndex[0])->Point(),
                     face.myvertex(rotatedALUIndex[1])->Point(),
                     face.myvertex(rotatedALUIndex[2])->Point());
  }

  return true;
}

// --buildFaceGeom 
template <int mydim, int cdim, class GridImp>
template <class coord_t>
inline bool 
ALU3dGridGeometry<mydim, cdim, GridImp >::
buildGeom(const coord_t& p0, 
          const coord_t& p1,
          const coord_t& p2,
          const coord_t& p3)
{         
  // update geometry implementation 
  geoImpl_.update( p0, p1, p2, p3 );
  return true;
}

// --buildFaceGeom 
template <int mydim, int cdim, class GridImp>
template <class coord_t>
inline bool 
ALU3dGridGeometry<mydim, cdim, GridImp >::
buildGeom(const coord_t& p0, 
          const coord_t& p1,
          const coord_t& p2)
{         
  // update geometry implementation 
  geoImpl_.update( p0, p1, p2 );
  return true;
}

template <int mydim, int cdim, class GridImp> // for faces
inline bool 
ALU3dGridGeometry<mydim, cdim, GridImp >::
buildGeom(const FaceCoordinatesType& coords) 
{
  if ( elementType == hexa ) 
    return buildGeom( coords[0], coords[1], coords[2], coords[3] );  
  else 
  {
    assert( elementType == tetra );
    return buildGeom( coords[0], coords[1], coords[2] );
  }
}

template <int mydim, int cdim, class GridImp> // for edges 
inline bool 
ALU3dGridGeometry<mydim, cdim, GridImp >::
buildGeom(const HEdgeType & item, int twist, int) 
{
  const GEOEdgeType & edge = static_cast<const GEOEdgeType &> (item);
  // update geometry implementation 
  geoImpl_.update( edge.myvertex((twist)  %2)->Point(),
                   edge.myvertex((1+twist)%2)->Point() );
  return true;
}

template <int mydim, int cdim, class GridImp> // for Vertices ,i.e. Points 
inline bool 
ALU3dGridGeometry<mydim, cdim, GridImp >:: 
buildGeom(const VertexType & item, int twist, int) 
{
  // update geometry implementation 
  geoImpl_.update( static_cast<const GEOVertexType &> (item).Point() );
  return true;
}

} // end namespace Dune
#endif // end DUNE_ALUGRID_GEOMETRY_IMP_CC