This file is indexed.

/usr/include/dune/common/tupleutility.hh is in libdune-common-dev 2.2.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
// -*- tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set ts=8 sw=2 et sts=2:

#ifndef DUNE_TUPLE_UTILITY_HH
#define DUNE_TUPLE_UTILITY_HH

#include <cstddef>

#include <dune/common/static_assert.hh>
#include <dune/common/typetraits.hh>

#include "tuples.hh"

namespace Dune {

  /** @ addtogroup Common
   *
   * @{
   */

  /**
   * @file
   * @brief Contains utility classes which can be used with tuples.
   */

  /**
   * @brief A helper template that initializes a tuple consisting of pointers
   * to NULL.
   *
   * A tuple of NULL pointers may be useful when you use a tuple of pointers
   * in a class which you can only initialise in a later stage.
   */
  template <class Tuple>
  class NullPointerInitialiser {
    dune_static_assert(AlwaysFalse<Tuple>::value, "Attempt to use the "
                       "unspecialized version of NullPointerInitialiser.  "
                       "NullPointerInitialiser needs to be specialized for "
                       "each possible tuple size.  Naturally the number of "
                       "pre-defined specializations is limited arbitrarily.  "
                       "Maybe you need to raise this limit by defining some "
                       "more specializations?  Also check that the tuple this "
                       "is applied to really is a tuple of pointers only.");
  public:
    //! export the type of the tuples
    typedef Tuple ResultType;
    //! generate a zero-initialized tuple
    static ResultType apply();
  };

#ifndef DOXYGEN
  template<class Tuple>
  struct NullPointerInitialiser<const Tuple>
    : public NullPointerInitialiser<Tuple>
  {
    typedef const Tuple ResultType;
  };

  template<>
  struct NullPointerInitialiser<tuple<> > {
    typedef tuple<> ResultType;
    static ResultType apply() {
      return ResultType();
    }
  };

  template<class T0>
  struct NullPointerInitialiser<tuple<T0*> > {
    typedef tuple<T0*> ResultType;
    static ResultType apply() {
      return ResultType(static_cast<T0*>(0));
    }
  };

  template<class T0, class T1>
  struct NullPointerInitialiser<tuple<T0*, T1*> > {
    typedef tuple<T0*, T1*> ResultType;
    static ResultType apply() {
      return ResultType(static_cast<T0*>(0), static_cast<T1*>(0));
    }
  };

  template<class T0, class T1, class T2>
  struct NullPointerInitialiser<tuple<T0*, T1*, T2*> > {
    typedef tuple<T0*, T1*, T2*> ResultType;
    static ResultType apply() {
      return ResultType(static_cast<T0*>(0), static_cast<T1*>(0),
                        static_cast<T2*>(0));
    }
  };

  template<class T0, class T1, class T2, class T3>
  struct NullPointerInitialiser<tuple<T0*, T1*, T2*, T3*> > {
    typedef tuple<T0*, T1*, T2*, T3*> ResultType;
    static ResultType apply() {
      return ResultType(static_cast<T0*>(0), static_cast<T1*>(0),
                        static_cast<T2*>(0), static_cast<T3*>(0));
    }
  };

  template<class T0, class T1, class T2, class T3, class T4>
  struct NullPointerInitialiser<tuple<T0*, T1*, T2*, T3*, T4*> > {
    typedef tuple<T0*, T1*, T2*, T3*, T4*> ResultType;
    static ResultType apply() {
      return ResultType(static_cast<T0*>(0), static_cast<T1*>(0),
                        static_cast<T2*>(0), static_cast<T3*>(0),
                        static_cast<T4*>(0));
    }
  };

  template<class T0, class T1, class T2, class T3, class T4, class T5>
  struct NullPointerInitialiser<tuple<T0*, T1*, T2*, T3*, T4*, T5*> > {
    typedef tuple<T0*, T1*, T2*, T3*, T4*, T5*> ResultType;
    static ResultType apply() {
      return ResultType(static_cast<T0*>(0), static_cast<T1*>(0),
                        static_cast<T2*>(0), static_cast<T3*>(0),
                        static_cast<T4*>(0), static_cast<T5*>(0));
    }
  };

  template<class T0, class T1, class T2, class T3, class T4, class T5,
           class T6>
  struct NullPointerInitialiser<tuple<T0*, T1*, T2*, T3*, T4*, T5*, T6*> > {
    typedef tuple<T0*, T1*, T2*, T3*, T4*, T5*, T6*> ResultType;
    static ResultType apply() {
      return ResultType(static_cast<T0*>(0), static_cast<T1*>(0),
                        static_cast<T2*>(0), static_cast<T3*>(0),
                        static_cast<T4*>(0), static_cast<T5*>(0),
                        static_cast<T6*>(0));
    }
  };

  template<class T0, class T1, class T2, class T3, class T4, class T5,
           class T6, class T7>
  struct NullPointerInitialiser<tuple<T0*, T1*, T2*, T3*, T4*, T5*, T6*,
                                      T7*> > {
    typedef tuple<T0*, T1*, T2*, T3*, T4*, T5*, T6*, T7*> ResultType;
    static ResultType apply() {
      return ResultType(static_cast<T0*>(0), static_cast<T1*>(0),
                        static_cast<T2*>(0), static_cast<T3*>(0),
                        static_cast<T4*>(0), static_cast<T5*>(0),
                        static_cast<T6*>(0), static_cast<T7*>(0));
    }
  };

  template<class T0, class T1, class T2, class T3, class T4, class T5,
           class T6, class T7, class T8>
  struct NullPointerInitialiser<tuple<T0*, T1*, T2*, T3*, T4*, T5*, T6*,
                                      T7*, T8*> > {
    typedef tuple<T0*, T1*, T2*, T3*, T4*, T5*, T6*, T7*, T8*> ResultType;
    static ResultType apply() {
      return ResultType(static_cast<T0*>(0), static_cast<T1*>(0),
                        static_cast<T2*>(0), static_cast<T3*>(0),
                        static_cast<T4*>(0), static_cast<T5*>(0),
                        static_cast<T6*>(0), static_cast<T7*>(0),
                        static_cast<T8*>(0));
    }
  };

  // template<class T0, class T1, class T2, class T3, class T4, class T5,
  //          class T6, class T7, class T8, class T9>
  // struct NullPointerInitialiser<tuple<T0*, T1*, T2*, T3*, T4*, T5*, T6*,
  //                                     T7*, T8*, T9*> > {
  //   typedef tuple<T0*, T1*, T2*, T3*, T4*, T5*, T6*, T7*, T8*, T9*> ResultType;
  //   static ResultType apply() {
  //     return ResultType(static_cast<T0*>(0), static_cast<T1*>(0),
  //                       static_cast<T2*>(0), static_cast<T3*>(0),
  //                       static_cast<T4*>(0), static_cast<T5*>(0),
  //                       static_cast<T6*>(0), static_cast<T7*>(0),
  //                       static_cast<T8*>(0), static_cast<T9*>(0));
  //   }
  // };
#endif // !defined(DOXYGEN)
  
  /**
   * @brief Helper template to clone the type definition of a tuple with the
   * storage types replaced by a user-defined rule.
   *  
   * Suppose all storage types A_i in a tuple define a type A_i::B. You can
   * build up a pair consisting of the types defined by A_i::B in the following
   * way:
   \code
   template <class A>
   struct MyEvaluator {
     typedef typename A::B Type;
   };

   typedef ForEachType<MyEvaluator, ATuple>::Type BTuple;
   \endcode
   * Here, MyEvaluator is a helper struct that extracts the correct type from
   * the storage types of the tuple defined by the tuple ATuple.
   *
   * \sa AddRefTypeEvaluator, AddPtrTypeEvaluator, genericTransformTuple(),
   *     and transformTuple().
   */
  template <template <class> class TypeEvaluator, class TupleType>
  class ForEachType {
    dune_static_assert(AlwaysFalse<TupleType>::value, "Attempt to use the "
                       "unspecialized version of ForEachType.  ForEachType "
                       "needs to be specialized for each possible tuple "
                       "size.  Naturally the number of pre-defined "
                       "specializations is limited arbitrarily.  Maybe you "
                       "need to raise this limit by defining some more "
                       "specializations?");
    struct ImplementationDefined {};
  public:
    //! type of the transformed tuple
    typedef ImplementationDefined Type;
  };

#ifndef DOXYGEN
  template <template <class> class TE, class Tuple>
  struct ForEachType<TE, const Tuple> {
    typedef const typename ForEachType<TE, Tuple>::Type Type;
  };

  template <template <class> class TE>
  struct ForEachType<TE, tuple<> > {
    typedef tuple<> Type;
  };

  template <template <class> class TE, class T0>
  struct ForEachType<TE, tuple<T0> > {
    typedef tuple<typename TE<T0>::Type> Type;
  };

  template <template <class> class TE, class T0, class T1>
  struct ForEachType<TE, tuple<T0, T1> > {
    typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type> Type;
  };

  template <template <class> class TE, class T0, class T1, class T2>
  struct ForEachType<TE, tuple<T0, T1, T2> > {
    typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type,
                  typename TE<T2>::Type> Type;
  };

  template <template <class> class TE, class T0, class T1, class T2, class T3>
  struct ForEachType<TE, tuple<T0, T1, T2, T3> > {
    typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type,
                  typename TE<T2>::Type, typename TE<T3>::Type> Type;
  };

  template <template <class> class TE, class T0, class T1, class T2, class T3,
            class T4>
  struct ForEachType<TE, tuple<T0, T1, T2, T3, T4> > {
    typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type,
                  typename TE<T2>::Type, typename TE<T3>::Type,
                  typename TE<T4>::Type> Type;
  };

  template <template <class> class TE, class T0, class T1, class T2, class T3,
            class T4, class T5>
  struct ForEachType<TE, tuple<T0, T1, T2, T3, T4, T5> > {
    typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type,
                  typename TE<T2>::Type, typename TE<T3>::Type,
                  typename TE<T4>::Type, typename TE<T5>::Type> Type;
  };

  template <template <class> class TE, class T0, class T1, class T2, class T3,
            class T4, class T5, class T6>
  struct ForEachType<TE, tuple<T0, T1, T2, T3, T4, T5, T6> > {
    typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type,
                  typename TE<T2>::Type, typename TE<T3>::Type,
                  typename TE<T4>::Type, typename TE<T5>::Type,
                  typename TE<T6>::Type> Type;
  };

  template <template <class> class TE, class T0, class T1, class T2, class T3,
            class T4, class T5, class T6, class T7>
  struct ForEachType<TE, tuple<T0, T1, T2, T3, T4, T5, T6, T7> > {
    typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type,
                  typename TE<T2>::Type, typename TE<T3>::Type,
                  typename TE<T4>::Type, typename TE<T5>::Type,
                  typename TE<T6>::Type, typename TE<T7>::Type> Type;
  };

  template <template <class> class TE, class T0, class T1, class T2, class T3,
            class T4, class T5, class T6, class T7, class T8>
  struct ForEachType<TE, tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> > {
    typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type,
                  typename TE<T2>::Type, typename TE<T3>::Type,
                  typename TE<T4>::Type, typename TE<T5>::Type,
                  typename TE<T6>::Type, typename TE<T7>::Type,
                  typename TE<T8>::Type> Type;
  };

  // template <template <class> class TE, class T0, class T1, class T2, class T3,
  //           class T4, class T5, class T6, class T7, class T8, class T9>
  // struct ForEachType<TE, tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> > {
  //   typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type,
  //                 typename TE<T2>::Type, typename TE<T3>::Type,
  //                 typename TE<T4>::Type, typename TE<T5>::Type,
  //                 typename TE<T6>::Type, typename TE<T7>::Type,
  //                 typename TE<T8>::Type, typename TE<T9>::Type> Type;
  // };
#endif // !defined(DOXYGEN)

  //////////////////////////////////////////////////////////////////////
  //
  // genericTransformTuple stuff
  //

  // genericTransformTuple() needs to be overloaded for each tuple size (we
  // limit ourselves to tuple_size <= 10 here).  For a given tuple size it
  // needs to be overloaded for all combinations of const and non-const
  // argument references.  (On the one hand, we want to allow modifyable
  // arguments, so const references alone are not sufficient.  On the other
  // hand, we also want to allow rvalues (literals) as argument, which do not
  // bind to non-const references.)
  //
  // We can half the number of specializations required by introducing a
  // function genericTransformTupleBackend(), which is overloaded for each
  // tuple size and for const and non-const tuple arguments; the functor
  // argument is always given as as (non-const) reference.  When
  // genericTransformTupleBackend() is called, the type of the Functor template
  // parameter is the deduced as either "SomeType" or "const SomeType",
  // depending on whether the function argument is a non-const or a const
  // lvalue of type "SomeType".  As explained above, this does not work for
  // rvalues (i.e. literals).
  //
  // To make it work for literals of functors as well, we wrap the call to
  // genericTransformTupleBackend() in a function genericTransformTuple().
  // genericTransformTuple() needs to be overloaded for non-const and const
  // tuples and functors -- 4 overloads only.  Inside genericTransformTuple()
  // the functor is an lvalue no matter whether the argument was an lvalue or
  // an rvalue.  There is no need need to overload genericTransformTuple() for
  // all tuple sizes -- this is done by the underlying
  // genericTransformTupleBackend().

  // genericTransformTupleBackend() is an implementation detail -- hide it
  // from Doxygen
#ifndef DOXYGEN
  // 0-element tuple
  // This is a special case: we touch neither the tuple nor the functor, so
  // const references are sufficient and we don't need to overload
  template<class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<> >::Type
  genericTransformTupleBackend
  (const tuple<>& t, const Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<> >::Type
      ();
  }

  // 1-element tuple
  template<class T0, class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0> >::Type
  genericTransformTupleBackend
  (tuple<T0>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0> >::Type
      (f(get<0>(t)));
  }
  template<class T0, class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0> >::Type
  genericTransformTupleBackend
  (const tuple<T0>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0> >::Type
      (f(get<0>(t)));
  }

  // 2-element tuple
  template<class T0, class T1, class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0, T1> >::Type
  genericTransformTupleBackend
  (tuple<T0, T1>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0, T1> >::Type
      (f(get<0>(t)), f(get<1>(t)));
  }
  template<class T0, class T1, class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0, T1> >::Type
  genericTransformTupleBackend
  (const tuple<T0, T1>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0, T1> >::Type
      (f(get<0>(t)), f(get<1>(t)));
  }

  // 3-element tuple
  template<class T0, class T1, class T2, class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0, T1, T2> >::Type
  genericTransformTupleBackend
  (tuple<T0, T1, T2>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0, T1, T2> >::Type
      (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)));
  }
  template<class T0, class T1, class T2, class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0, T1, T2> >::Type
  genericTransformTupleBackend
  (const tuple<T0, T1, T2>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0, T1, T2> >::Type
      (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)));
  }

  // 4-element tuple
  template<class T0, class T1, class T2, class T3, class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0, T1, T2, T3> >::Type
  genericTransformTupleBackend
  (tuple<T0, T1, T2, T3>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0, T1, T2, T3> >::Type
      (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)));
  }
  template<class T0, class T1, class T2, class T3, class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0, T1, T2, T3> >::Type
  genericTransformTupleBackend
  (const tuple<T0, T1, T2, T3>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0, T1, T2, T3> >::Type
      (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)));
  }

  // 5-element tuple
  template<class T0, class T1, class T2, class T3, class T4, class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0, T1, T2, T3, T4> >::Type
  genericTransformTupleBackend
  (tuple<T0, T1, T2, T3, T4>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0, T1, T2, T3, T4> >::Type
      (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)));
  }
  template<class T0, class T1, class T2, class T3, class T4, class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0, T1, T2, T3, T4> >::Type
  genericTransformTupleBackend
  (const tuple<T0, T1, T2, T3, T4>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0, T1, T2, T3, T4> >::Type
      (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)));
  }

  // 6-element tuple
  template<class T0, class T1, class T2, class T3, class T4, class T5,
           class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0, T1, T2, T3, T4, T5> >::Type
  genericTransformTupleBackend
  (tuple<T0, T1, T2, T3, T4, T5>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0, T1, T2, T3, T4, T5> >::Type
      (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
       f(get<5>(t)));
  }
  template<class T0, class T1, class T2, class T3, class T4, class T5,
           class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0, T1, T2, T3, T4, T5> >::Type
  genericTransformTupleBackend
  (const tuple<T0, T1, T2, T3, T4, T5>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0, T1, T2, T3, T4, T5> >::Type
      (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
       f(get<5>(t)));
  }

  // 7-element tuple
  template<class T0, class T1, class T2, class T3, class T4, class T5,
           class T6, class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0, T1, T2, T3, T4, T5, T6> >::Type
  genericTransformTupleBackend
  (tuple<T0, T1, T2, T3, T4, T5, T6>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0, T1, T2, T3, T4, T5, T6> >::Type
      (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
       f(get<5>(t)), f(get<6>(t)));
  }
  template<class T0, class T1, class T2, class T3, class T4, class T5,
           class T6, class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0, T1, T2, T3, T4, T5, T6> >::Type
  genericTransformTupleBackend
  (const tuple<T0, T1, T2, T3, T4, T5, T6>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0, T1, T2, T3, T4, T5, T6> >::Type
      (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
       f(get<5>(t)), f(get<6>(t)));
  }

  // 8-element tuple
  template<class T0, class T1, class T2, class T3, class T4, class T5,
           class T6, class T7, class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0, T1, T2, T3, T4, T5, T6, T7> >::Type
  genericTransformTupleBackend
  (tuple<T0, T1, T2, T3, T4, T5, T6, T7>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0, T1, T2, T3, T4, T5, T6, T7> >::Type
      (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
       f(get<5>(t)), f(get<6>(t)), f(get<7>(t)));
  }
  template<class T0, class T1, class T2, class T3, class T4, class T5,
           class T6, class T7, class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0, T1, T2, T3, T4, T5, T6, T7> >::Type
  genericTransformTupleBackend
  (const tuple<T0, T1, T2, T3, T4, T5, T6, T7>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0, T1, T2, T3, T4, T5, T6, T7> >::Type
      (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
       f(get<5>(t)), f(get<6>(t)), f(get<7>(t)));
  }

  // 9-element tuple
  template<class T0, class T1, class T2, class T3, class T4, class T5,
           class T6, class T7, class T8, class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> >::Type
  genericTransformTupleBackend
  (tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> >::Type
      (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
       f(get<5>(t)), f(get<6>(t)), f(get<7>(t)), f(get<8>(t)));
  }
  template<class T0, class T1, class T2, class T3, class T4, class T5,
           class T6, class T7, class T8, class Functor>
  typename ForEachType<Functor::template TypeEvaluator,
                       tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> >::Type
  genericTransformTupleBackend
  (const tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8>& t, Functor& f)
  {
    return typename ForEachType<Functor::template TypeEvaluator,
      tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> >::Type
      (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
       f(get<5>(t)), f(get<6>(t)), f(get<7>(t)), f(get<8>(t)));
  }

  // // 10-element tuple
  // template<class T0, class T1, class T2, class T3, class T4, class T5,
  //          class T6, class T7, class T8, class T9, class Functor>
  // typename ForEachType<Functor::template TypeEvaluator,
  //                      tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> >::Type
  // genericTransformTupleBackend
  // (tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>& t, Functor& f)
  // {
  //   return typename ForEachType<Functor::template TypeEvaluator,
  //     tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> >::Type
  //     (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
  //      f(get<5>(t)), f(get<6>(t)), f(get<7>(t)), f(get<8>(t)), f(get<9>(t)));
  // }
  // template<class T0, class T1, class T2, class T3, class T4, class T5,
  //          class T6, class T7, class T8, class T9, class Functor>
  // typename ForEachType<Functor::template TypeEvaluator,
  //                      tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> >::Type
  // genericTransformTupleBackend
  // (const tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>& t, Functor& f)
  // {
  //   return typename ForEachType<Functor::template TypeEvaluator,
  //     tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> >::Type
  //     (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
  //      f(get<5>(t)), f(get<6>(t)), f(get<7>(t)), f(get<8>(t)), f(get<9>(t)));
  // }
#endif // ! defined(DOXYGEN)

  //! transform a tuple object into another tuple object
  /**
   * \code
#include <dune/common/utility.hh>
   * \endcode
   * This function does for the value of a tuple what ForEachType does for the
   * type of a tuple: it transforms the value using a user-provided policy
   * functor.
   *
   * \param t The tuple value to transform.
   * \param f The functor to use to transform the values.
   *
   * The functor should have the following form:
   * \code
struct Functor {
  template<class> struct TypeEvaluator {
    typedef user-defined Type;
  };

  template<class T>
  typename TypeEvaluator<T>::Type operator()(T& val);

  template<class T>
  typename TypeEvaluator<T>::Type operator()(T& val) const;

  template<class T>
  typename TypeEvaluator<T>::Type operator()(const T& val);

  template<class T>
  typename TypeEvaluator<T>::Type operator()(const T& val) const;
};
   * \endcode
   * The member class template \c TypeEvaluator should be a class template
   * suitable as the \c TypeEvaluator template parameter for ForEachType.  The
   * function call operator \c operator() is used to transform the value; only
   * the signatures of \c operator() which are actually used must be present.
   *
   * There are overloaded definitions of genericTransformTuple() wich take
   * constant tuple and functor arguments so rvalues are permissible as
   * arguments here.  These overloaded definitions are not documented
   * seperately.
   */
  template<class Tuple, class Functor>
  typename ForEachType<Functor::template TypeEvaluator, Tuple>::Type
  genericTransformTuple(Tuple& t, Functor& f) {
    return genericTransformTupleBackend(t, f);
  }
#ifndef DOXYGEN
  template<class Tuple, class Functor>
  typename ForEachType<Functor::template TypeEvaluator, Tuple>::Type
  genericTransformTuple(const Tuple& t, Functor& f) {
    return genericTransformTupleBackend(t, f);
  }
  template<class Tuple, class Functor>
  typename ForEachType<Functor::template TypeEvaluator, Tuple>::Type
  genericTransformTuple(Tuple& t, const Functor& f) {
    return genericTransformTupleBackend(t, f);
  }
  template<class Tuple, class Functor>
  typename ForEachType<Functor::template TypeEvaluator, Tuple>::Type
  genericTransformTuple(const Tuple& t, const Functor& f) {
    return genericTransformTupleBackend(t, f);
  }
#endif // ! defined(DOXYGEN)

  ////////////////////////////////////////////////////////////////////////
  //
  // transformTuple() related stuff
  //

  //! helper class to implement transformTuple()
  /**
   * \tparam TE TypeEvaluator class template.
   * \tparam An Type of extra arguments to pass to \c TE<T>::apply().  \c void
   *            means "no argument".  Only trailing arguments may be void.
   *
   * This class stores references to a number of arguments it receives in the
   * constructor.  Later, its function call operator \c operator() may be
   * called with a parameter \c t of type \c T.  \c operator() will then call
   * the static method \c TE<T>::apply(t,args...), where \c args... is the
   * sequence of arguments the object was constructed with.  \c operator()
   * will convert the result to type \c TE<T>::Type and return it.
   *
   * \c TE should be an extended version of the \c TypeEvaluator class
   * template parameter of ForEachType, for instance:
   * \code
template <class T>
struct TypeEvaluator {
  typedef T* Type;
  static Type apply(T& t, void* a0) {
    return t ? &t : static_cast<T*>(a0);
  }
};
   * \endcode
   * This example is for a TransformTupleFunctor with one argument, i.e. \c
   * A0!=void and all other \c An=void.  For the type transformation, it will
   * transform a value of some type T into a pointer to T.  For the value
   * transformation, it will take a reference to a value of type T and return
   * the pointer to that value, unless the value evaluates to false in boolean
   * context.  If the value evaluates to false, it will instead return the
   * pointer from the extra argument.
   */
  template<template<class> class TE, class A0 = void, class A1 = void,
           class A2 = void, class A3 = void, class A4 = void, class A5 = void,
           class A6 = void, class A7 = void, class A8 = void, class A9 = void>
  class TransformTupleFunctor {
    A0& a0; A1& a1; A2& a2; A3& a3; A4& a4; A5& a5; A6& a6; A7& a7; A8& a8;
    A9& a9;

  public:
    //! export the TypeEvaluator template class for genericTransformTuple()
    template<class T> struct TypeEvaluator : public TE<T> {};

    //! constructor
    /**
     * The actual number of arguments varies between specializations, the
     * actual number of arguments here is equal to the number of non-\c void
     * class template arguments \c An.
     */
    TransformTupleFunctor(A0& a0_, A1& a1_, A2& a2_, A3& a3_, A4& a4_, A5& a5_,
                          A6& a6_, A7& a7_, A8& a8_, A9& a9_)
      : a0(a0_), a1(a1_), a2(a2_), a3(a3_), a4(a4_), a5(a5_), a6(a6_), a7(a7_),
        a8(a8_), a9(a9_)
    { }

    //! call \c TE<T>::apply(t,args...)
    /**
     * This calls the static apply method of the TypeEvaluator class
     * template.
     *
     * \note There is no need to overload \c operator() with at \c const \c T&
     * argument, since genericTransformTuple() will always use an lvalue
     * argument.
     */
    template<class T>
    typename TE<T>::Type operator()(T& t) const {
      return TE<T>::apply(t, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9);
    }
  };

  //! syntactic sugar for creation of TransformTupleFunctor objects
  /**
   * \code
#include <dune/common/utility.hh>
   * \endcode
   * \tparam TE TypeEvaluator class template.
   * \tparam A0 Type of extra arguments to pass to \c TE<T>::apply().  It
   *            should not be necessary to specify these template parameters
   *            explicitly since they can be deduced.
   * \tparam A1 Type of extra arguments to pass to \c TE<T>::apply().  It
   *            should not be necessary to specify these template parameters
   *            explicitly since they can be deduced.
   * \tparam A2 Type of extra arguments to pass to \c TE<T>::apply().  It
   *            should not be necessary to specify these template parameters
   *            explicitly since they can be deduced.
   * \tparam A3 Type of extra arguments to pass to \c TE<T>::apply().  It
   *            should not be necessary to specify these template parameters
   *            explicitly since they can be deduced.
   * \tparam A4 Type of extra arguments to pass to \c TE<T>::apply().  It
   *            should not be necessary to specify these template parameters
   *            explicitly since they can be deduced.
   * \tparam A5 Type of extra arguments to pass to \c TE<T>::apply().  It
   *            should not be necessary to specify these template parameters
   *            explicitly since they can be deduced.
   * \tparam A6 Type of extra arguments to pass to \c TE<T>::apply().  It
   *            should not be necessary to specify these template parameters
   *            explicitly since they can be deduced.
   * \tparam A7 Type of extra arguments to pass to \c TE<T>::apply().  It
   *            should not be necessary to specify these template parameters
   *            explicitly since they can be deduced.
   * \tparam A8 Type of extra arguments to pass to \c TE<T>::apply().  It
   *            should not be necessary to specify these template parameters
   *            explicitly since they can be deduced.
   * \tparam A9 Type of extra arguments to pass to \c TE<T>::apply().  It
   *            should not be necessary to specify these template parameters
   *            explicitly since they can be deduced.
   *
   * \param a0 Arguments to save references to in the TransformTupleFunctor.
   * \param a1 Arguments to save references to in the TransformTupleFunctor.
   * \param a2 Arguments to save references to in the TransformTupleFunctor.
   * \param a3 Arguments to save references to in the TransformTupleFunctor.
   * \param a4 Arguments to save references to in the TransformTupleFunctor.
   * \param a5 Arguments to save references to in the TransformTupleFunctor.
   * \param a6 Arguments to save references to in the TransformTupleFunctor.
   * \param a7 Arguments to save references to in the TransformTupleFunctor.
   * \param a8 Arguments to save references to in the TransformTupleFunctor.
   * \param a9 Arguments to save references to in the TransformTupleFunctor.
   *
   * There are overloads of this function (not documented seperately) for any
   * number of arguments, up to an implementation-defined arbitrary limit.
   * The number of arguments given determines the number of non-\c void
   * template arguments in the type of the returned TransformTupleFunctor.
   */
  template<template<class> class TE, class A0, class A1, class A2, class A3,
           class A4, class A5, class A6, class A7, class A8, class A9>
  TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9>
  makeTransformTupleFunctor(A0& a0, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5,
                            A6& a6, A7& a7, A8& a8, A9& a9) {
    return TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9>
      (a0, a1, a2, a3, a4, a5, a6, a7, a8, a9);
  }

#ifndef DOXYGEN
  // 0 argument
  template<template<class> class TE>
  struct TransformTupleFunctor<TE>
  {
    template<class T> struct TypeEvaluator : public TE<T> {};

    template<class T>
    typename TE<T>::Type operator()(T& t) const {
      return TE<T>::apply(t);
    }
  };
  template<template<class> class TE>
  TransformTupleFunctor<TE>
  makeTransformTupleFunctor() {
    return TransformTupleFunctor<TE>
      ();
  }

  // 1 argument
  template<template<class> class TE, class A0>
  class TransformTupleFunctor<TE, A0>
  {
    A0& a0;

  public:
    template<class T> struct TypeEvaluator : public TE<T> {};

    TransformTupleFunctor(A0& a0_)
      : a0(a0_)
    { }

    template<class T>
    typename TE<T>::Type operator()(T& t) const {
      return TE<T>::apply(t, a0);
    }
  };
  template<template<class> class TE, class A0>
  TransformTupleFunctor<TE, A0>
  makeTransformTupleFunctor(A0& a0) {
    return TransformTupleFunctor<TE, A0>
      (a0);
  }

  // 2 argument
  template<template<class> class TE, class A0, class A1>
  class TransformTupleFunctor<TE, A0, A1>
  {
    A0& a0; A1& a1;

  public:
    template<class T> struct TypeEvaluator : public TE<T> {};

    TransformTupleFunctor(A0& a0_, A1& a1_)
      : a0(a0_), a1(a1_)
    { }

    template<class T>
    typename TE<T>::Type operator()(T& t) const {
      return TE<T>::apply(t, a0, a1);
    }
  };
  template<template<class> class TE, class A0, class A1>
  TransformTupleFunctor<TE, A0, A1>
  makeTransformTupleFunctor(A0& a0, A1& a1) {
    return TransformTupleFunctor<TE, A0, A1>
      (a0, a1);
  }

  // 3 arguments
  template<template<class> class TE, class A0, class A1, class A2>
  class TransformTupleFunctor<TE, A0, A1, A2>
  {
    A0& a0; A1& a1; A2& a2;

  public:
    template<class T> struct TypeEvaluator : public TE<T> {};

    TransformTupleFunctor(A0& a0_, A1& a1_, A2& a2_)
      : a0(a0_), a1(a1_), a2(a2_)
    { }

    template<class T>
    typename TE<T>::Type operator()(T& t) const {
      return TE<T>::apply(t, a0, a1, a2);
    }
  };
  template<template<class> class TE, class A0, class A1, class A2>
  TransformTupleFunctor<TE, A0, A1, A2>
  makeTransformTupleFunctor(A0& a0, A1& a1, A2& a2) {
    return TransformTupleFunctor<TE, A0, A1, A2>
      (a0, a1, a2);
  }

  // 4 arguments
  template<template<class> class TE, class A0, class A1, class A2, class A3>
  class TransformTupleFunctor<TE, A0, A1, A2, A3>
  {
    A0& a0; A1& a1; A2& a2; A3& a3;

  public:
    template<class T> struct TypeEvaluator : public TE<T> {};

    TransformTupleFunctor(A0& a0_, A1& a1_, A2& a2_, A3& a3_)
      : a0(a0_), a1(a1_), a2(a2_), a3(a3_)
    { }

    template<class T>
    typename TE<T>::Type operator()(T& t) const {
      return TE<T>::apply(t, a0, a1, a2, a3);
    }
  };
  template<template<class> class TE, class A0, class A1, class A2, class A3>
  TransformTupleFunctor<TE, A0, A1, A2, A3>
  makeTransformTupleFunctor(A0& a0, A1& a1, A2& a2, A3& a3) {
    return TransformTupleFunctor<TE, A0, A1, A2, A3>
      (a0, a1, a2, a3);
  }

  // 5 arguments
  template<template<class> class TE, class A0, class A1, class A2, class A3,
           class A4>
  class TransformTupleFunctor<TE, A0, A1, A2, A3, A4>
  {
    A0& a0; A1& a1; A2& a2; A3& a3; A4& a4;

  public:
    template<class T> struct TypeEvaluator : public TE<T> {};

    TransformTupleFunctor(A0& a0_, A1& a1_, A2& a2_, A3& a3_, A4& a4_)
      : a0(a0_), a1(a1_), a2(a2_), a3(a3_), a4(a4_)
    { }

    template<class T>
    typename TE<T>::Type operator()(T& t) const {
      return TE<T>::apply(t, a0, a1, a2, a3, a4);
    }
  };
  template<template<class> class TE, class A0, class A1, class A2, class A3,
           class A4>
  TransformTupleFunctor<TE, A0, A1, A2, A3, A4>
  makeTransformTupleFunctor(A0& a0, A1& a1, A2& a2, A3& a3, A4& a4) {
    return TransformTupleFunctor<TE, A0, A1, A2, A3, A4>
      (a0, a1, a2, a3, a4);
  }

  // 6 arguments
  template<template<class> class TE, class A0, class A1, class A2, class A3,
           class A4, class A5>
  class TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5>
  {
    A0& a0; A1& a1; A2& a2; A3& a3; A4& a4; A5& a5;

  public:
    template<class T> struct TypeEvaluator : public TE<T> {};

    TransformTupleFunctor(A0& a0_, A1& a1_, A2& a2_, A3& a3_, A4& a4_, A5& a5_)
      : a0(a0_), a1(a1_), a2(a2_), a3(a3_), a4(a4_), a5(a5_)
    { }

    template<class T>
    typename TE<T>::Type operator()(T& t) const {
      return TE<T>::apply(t, a0, a1, a2, a3, a4, a5);
    }
  };
  template<template<class> class TE, class A0, class A1, class A2, class A3,
           class A4, class A5>
  TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5>
  makeTransformTupleFunctor(A0& a0, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
    return TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5>
      (a0, a1, a2, a3, a4, a5);
  }

  // 7 arguments
  template<template<class> class TE, class A0, class A1, class A2, class A3,
           class A4, class A5, class A6>
  class TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5, A6>
  {
    A0& a0; A1& a1; A2& a2; A3& a3; A4& a4; A5& a5; A6& a6;

  public:
    template<class T> struct TypeEvaluator : public TE<T> {};

    TransformTupleFunctor(A0& a0_, A1& a1_, A2& a2_, A3& a3_, A4& a4_, A5& a5_,
                          A6& a6_)
      : a0(a0_), a1(a1_), a2(a2_), a3(a3_), a4(a4_), a5(a5_), a6(a6_)
    { }

    template<class T>
    typename TE<T>::Type operator()(T& t) const {
      return TE<T>::apply(t, a0, a1, a2, a3, a4, a5, a6);
    }
  };
  template<template<class> class TE, class A0, class A1, class A2, class A3,
           class A4, class A5, class A6>
  TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5, A6>
  makeTransformTupleFunctor(A0& a0, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5,
                            A6& a6) {
    return TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5, A6>
      (a0, a1, a2, a3, a4, a5, a6);
  }

  // 8 arguments
  template<template<class> class TE, class A0, class A1, class A2, class A3,
           class A4, class A5, class A6, class A7>
  class TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5, A6, A7>
  {
    A0& a0; A1& a1; A2& a2; A3& a3; A4& a4; A5& a5; A6& a6; A7& a7;

  public:
    template<class T> struct TypeEvaluator : public TE<T> {};

    TransformTupleFunctor(A0& a0_, A1& a1_, A2& a2_, A3& a3_, A4& a4_, A5& a5_,
                          A6& a6_, A7& a7_)
      : a0(a0_), a1(a1_), a2(a2_), a3(a3_), a4(a4_), a5(a5_), a6(a6_), a7(a7_)
    { }

    template<class T>
    typename TE<T>::Type operator()(T& t) const {
      return TE<T>::apply(t, a0, a1, a2, a3, a4, a5, a6, a7);
    }
  };
  template<template<class> class TE, class A0, class A1, class A2, class A3,
           class A4, class A5, class A6, class A7>
  TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5, A6, A7>
  makeTransformTupleFunctor(A0& a0, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5,
                            A6& a6, A7& a7) {
    return TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5, A6, A7>
      (a0, a1, a2, a3, a4, a5, a6, a7);
  }

  // 9 arguments
  template<template<class> class TE, class A0, class A1, class A2, class A3,
           class A4, class A5, class A6, class A7, class A8>
  class TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5, A6, A7, A8>
  {
    A0& a0; A1& a1; A2& a2; A3& a3; A4& a4; A5& a5; A6& a6; A7& a7; A8& a8;

  public:
    template<class T> struct TypeEvaluator : public TE<T> {};

    TransformTupleFunctor(A0& a0_, A1& a1_, A2& a2_, A3& a3_, A4& a4_, A5& a5_,
                          A6& a6_, A7& a7_, A8& a8_)
      : a0(a0_), a1(a1_), a2(a2_), a3(a3_), a4(a4_), a5(a5_), a6(a6_), a7(a7_),
        a8(a8_)
    { }

    template<class T>
    typename TE<T>::Type operator()(T& t) const {
      return TE<T>::apply(t, a0, a1, a2, a3, a4, a5, a6, a7, a8);
    }
  };
  template<template<class> class TE, class A0, class A1, class A2, class A3,
           class A4, class A5, class A6, class A7, class A8>
  TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5, A6, A7, A8>
  makeTransformTupleFunctor(A0& a0, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5,
                            A6& a6, A7& a7, A8& a8) {
    return TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5, A6, A7, A8>
      (a0, a1, a2, a3, a4, a5, a6, a7, a8);
  }
#endif // ! defined(DOXYGEN)

  //! transform a tuple's value according to a user-supplied policy
  /**
   * \code
#include <dune/common/utility.hh>
   * \endcode
   * This function provides functionality similiar to genericTransformTuple(),
   * although less general and closer in spirit to ForEachType.
   *
   * \tparam TypeEvaluator Used as the \c TE template argument to
   *                       TransformTupleFunctor internally.
   * \tparam Tuple         Type of the tuple to transform.
   * \tparam A0            Types of extra argument to call the transformation
   *                       function with.
   * \tparam A1            Types of extra argument to call the transformation
   *                       function with.
   * \tparam A2            Types of extra argument to call the transformation
   *                       function with.
   * \tparam A3            Types of extra argument to call the transformation
   *                       function with.
   * \tparam A4            Types of extra argument to call the transformation
   *                       function with.
   * \tparam A5            Types of extra argument to call the transformation
   *                       function with.
   * \tparam A6            Types of extra argument to call the transformation
   *                       function with.
   * \tparam A7            Types of extra argument to call the transformation
   *                       function with.
   * \tparam A8            Types of extra argument to call the transformation
   *                       function with.
   * \tparam A9            Types of extra argument to call the transformation
   *                       function with.
   *
   * \note The \c Tuple and \c An template arguments can be deduced from the
   *       function arguments, so they can usually be omitted.
   *
   * \param orig Tuple value to be transformed.
   * \param a0   Extra argument values to provide to the transformation
   *             function.
   * \param a1   Extra argument values to provide to the transformation
   *             function.
   * \param a2   Extra argument values to provide to the transformation
   *             function.
   * \param a3   Extra argument values to provide to the transformation
   *             function.
   * \param a4   Extra argument values to provide to the transformation
   *             function.
   * \param a5   Extra argument values to provide to the transformation
   *             function.
   * \param a6   Extra argument values to provide to the transformation
   *             function.
   * \param a7   Extra argument values to provide to the transformation
   *             function.
   * \param a8   Extra argument values to provide to the transformation
   *             function.
   * \param a9   Extra argument values to provide to the transformation
   *             function.
   *
   * This function is overloaded for any number of extra arguments, up to an
   * implementation-defined arbitrary limit.  The overloads are not documented
   * seperately.
   *
   * The \c TypeEvaluator class template should be suitable as the \c TE
   * template argument for TransformTupleFunctor.  It has the following form
   * (an extension of the \c TypeEvaluator template argument of ForEachType):
   * \code
template <class T>
struct TypeEvaluator {
  typedef UserDefined Type;

  template<class A0, class A1, class A2, class A3, class A4, class A5,
           class A6, class A7, class A8, class A9>
  static Type apply(T& t, A0& a0, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5,
                    A6& a6, A7& a7, A8& a8, A9& a9);
};
   * \endcode
   * For any given element type \c T of the tuple, the TypeEvaluator template
   * class should provide a member typedef \c Type which determines the type
   * of the transformed value and a static function \c apply(), taking the
   * value of the tuple element \c t and the extra arguments given to
   * transformTuple().  The signature of \c apply() does not have to match the
   * one given above exactly, as long as it can be called that way.
   *
   * \note Since transformTuple() takes non-const references to the extra
   *       arguments, it will only bind to lvalue extra arguments, unless you
   *       specify the corresconding template parameter as \c const \c
   *       SomeType.  Specifically this meands that you cannot simply use
   *       literals or function return values as extra arguments. Providing
   *       overloads for all possible combinations of rvalue and lvalue extra
   *       arguments would result in \f$2^{n+1}-1\f$ overloads where \f$n\f$
   *       is the implementation defined limit in the number of extra
   *       arguments.
   *
   * \sa genericTransforTuple(), ForEachType, AddRefTypeEvaluator, and
   *     AddPtrTypeEvaluator.
   */
  template<template<class> class TypeEvaluator, class Tuple, class A0,
           class A1, class A2, class A3, class A4, class A5, class A6,
           class A7, class A8, class A9>
  typename remove_const<typename ForEachType<TypeEvaluator, Tuple>::Type>::type
  transformTuple(Tuple& orig, A0& a0, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5,
                 A6& a6, A7& a7, A8& a8, A9& a9) {
    return genericTransformTuple
      ( orig,
        makeTransformTupleFunctor<TypeEvaluator>(a0, a1, a2, a3, a4, a5, a6,
                                                 a7, a8, a9));
  }

#ifndef DOXYGEN
  // 0 extra arguments
  template<template<class> class TypeEvaluator, class Tuple>
  typename remove_const<typename ForEachType<TypeEvaluator, Tuple>::Type>::type
  transformTuple(Tuple& orig) {
    return genericTransformTuple
      ( orig,
        makeTransformTupleFunctor<TypeEvaluator>());
  }

  // 1 extra argument
  template<template<class> class TypeEvaluator, class Tuple, class A0>
  typename remove_const<typename ForEachType<TypeEvaluator, Tuple>::Type>::type
  transformTuple(Tuple& orig, A0& a0) {
    return genericTransformTuple
      ( orig,
        makeTransformTupleFunctor<TypeEvaluator>(a0));
  }

  // 2 extra arguments
  template<template<class> class TypeEvaluator, class Tuple, class A0,
           class A1>
  typename remove_const<typename ForEachType<TypeEvaluator, Tuple>::Type>::type
  transformTuple(Tuple& orig, A0& a0, A1& a1) {
    return genericTransformTuple
      ( orig,
        makeTransformTupleFunctor<TypeEvaluator>(a0, a1));
  }

  // 3 extra arguments
  template<template<class> class TypeEvaluator, class Tuple, class A0,
           class A1, class A2>
  typename remove_const<typename ForEachType<TypeEvaluator, Tuple>::Type>::type
  transformTuple(Tuple& orig, A0& a0, A1& a1, A2& a2) {
    return genericTransformTuple
      ( orig,
        makeTransformTupleFunctor<TypeEvaluator>(a0, a1, a2));
  }

  // 4 extra arguments
  template<template<class> class TypeEvaluator, class Tuple, class A0,
           class A1, class A2, class A3>
  typename remove_const<typename ForEachType<TypeEvaluator, Tuple>::Type>::type
  transformTuple(Tuple& orig, A0& a0, A1& a1, A2& a2, A3& a3) {
    return genericTransformTuple
      ( orig,
        makeTransformTupleFunctor<TypeEvaluator>(a0, a1, a2, a3));
  }

  // 5 extra arguments
  template<template<class> class TypeEvaluator, class Tuple, class A0,
           class A1, class A2, class A3, class A4>
  typename remove_const<typename ForEachType<TypeEvaluator, Tuple>::Type>::type
  transformTuple(Tuple& orig, A0& a0, A1& a1, A2& a2, A3& a3, A4& a4) {
    return genericTransformTuple
      ( orig,
        makeTransformTupleFunctor<TypeEvaluator>(a0, a1, a2, a3, a4));
  }

  // 6 extra arguments
  template<template<class> class TypeEvaluator, class Tuple, class A0,
           class A1, class A2, class A3, class A4, class A5>
  typename remove_const<typename ForEachType<TypeEvaluator, Tuple>::Type>::type
  transformTuple(Tuple& orig, A0& a0, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
    return genericTransformTuple
      ( orig,
        makeTransformTupleFunctor<TypeEvaluator>(a0, a1, a2, a3, a4, a5));
  }

  // 7 extra arguments
  template<template<class> class TypeEvaluator, class Tuple, class A0,
           class A1, class A2, class A3, class A4, class A5, class A6>
  typename remove_const<typename ForEachType<TypeEvaluator, Tuple>::Type>::type
  transformTuple(Tuple& orig, A0& a0, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5,
                 A6& a6) {
    return genericTransformTuple
      ( orig,
        makeTransformTupleFunctor<TypeEvaluator>(a0, a1, a2, a3, a4, a5, a6));
  }

  // 8 extra arguments
  template<template<class> class TypeEvaluator, class Tuple, class A0,
           class A1, class A2, class A3, class A4, class A5, class A6,
           class A7>
  typename remove_const<typename ForEachType<TypeEvaluator, Tuple>::Type>::type
  transformTuple(Tuple& orig, A0& a0, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5,
                 A6& a6, A7& a7) {
    return genericTransformTuple
      ( orig,
        makeTransformTupleFunctor<TypeEvaluator>(a0, a1, a2, a3, a4, a5, a6,
                                                 a7));
  }

  // 9 extra arguments
  template<template<class> class TypeEvaluator, class Tuple, class A0,
           class A1, class A2, class A3, class A4, class A5, class A6,
           class A7, class A8>
  typename remove_const<typename ForEachType<TypeEvaluator, Tuple>::Type>::type
  transformTuple(Tuple& orig, A0& a0, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5,
                 A6& a6, A7& a7, A8& a8) {
    return genericTransformTuple
      ( orig,
        makeTransformTupleFunctor<TypeEvaluator>(a0, a1, a2, a3, a4, a5, a6,
                                                 a7, a8));
  }
#endif // not defined(DOXYGEN)

  ////////////////////////////////////////////////////////////////////////
  //
  // Sample TypeEvaluators
  //

  //! \c TypeEvaluator to turn a type \c T into a reference to \c T
  /**
   * This is suitable as the \c TypeEvaluator template parameter for
   * ForEachType and transformTuple().
   */
  template<class T>
  struct AddRefTypeEvaluator {
    typedef T& Type;
    static Type apply(T& t) { return t; }
  };

  //! \c TypeEvaluator to turn a type \c T into a pointer to \c T
  /**
   * This is suitable as the \c TypeEvaluator template parameter for
   * ForEachType and transformTuple().
   */
  template<class T>
  struct AddPtrTypeEvaluator {
    typedef typename remove_reference<T>::type* Type;
    static Type apply(T& t) { return &t; }
  };

  // Specialization, in case the type is already a reference
  template<class T>
  struct AddPtrTypeEvaluator<T&> {
    typedef typename remove_reference<T>::type* Type;
    static Type apply(T& t) { return &t; }
  };

  namespace
  {
    template<int i, typename T1,typename F>
    struct Visitor
    {
      static inline void visit(F& func, T1& t1)
      {
	func.visit(get<tuple_size<T1>::value-i>(t1));
	Visitor<i-1,T1,F>::visit(func, t1);
      }
    };
	
    template<typename T1,typename F>
    struct Visitor<0,T1,F>
    {
      static inline void visit(F& func, T1& t1)
      {}
    };

    template<int i, typename T1, typename T2,typename F>
    struct PairVisitor
    {
      static inline void visit(F& func, T1& t1, T2& t2)
      {
	func.visit(get<tuple_size<T1>::value-i>(t1), get<tuple_size<T2>::value-i>(t2));
	PairVisitor<i-1,T1,T2,F>::visit(func, t1, t2);
      }
    };
	
    template<typename T1, typename T2, typename F>
    struct PairVisitor<0,T1,T2,F>
    {
      static inline void visit(F& func, T1& t1, T2& t2)
      {}
    };
  }
  
  /**
   * @brief Helper template which implements iteration over all storage 
   * elements in a tuple.
   *
   * Compile-time constructs that allows to process all elements in a tuple.
   * The exact operation performed on an element is defined by a function
   * object, which needs to implement a visit method which is applicable to
   * all storage elements of a tuple.  Each tuple element is visited once, and
   * the iteration is done in ascending order.
   *
   * The following example implements a function object which counts the
   * elements in a tuple
   \code
   template <class T>
   struct Counter {
   Counter() : result_(0) {}
   
   template <class T>
   void visit(T& elem) { ++result_; }

   int result_;
   };
   \endcode
   * The number of elements in the tuple are stored in the member variable 
   * result_. The Counter can be used as follows, assuming a tuple t of type
   * MyTuple is given:
   \code
   Counter c;
   ForEachValue<MyTuple> forEach(t);

   forEach.apply(c);
   std::cout << "Number of elements is: " << c.result_ << std::endl;
   \endcode
   */
  template <class TupleType>
  class ForEachValue {
  public:
    //! \brief Constructor
    //! \param tuple The tuple which we want to process.
    ForEachValue(TupleType& tuple) : tuple_(tuple) {}
    
    //! \brief Applies a function object to each storage element of the tuple.
    //! \param f Function object.
    template <class Functor>
    void apply(Functor& f) const {
      Visitor<tuple_size<TupleType>::value,TupleType,Functor>::visit(f, tuple_);
    }
  private:
    TupleType& tuple_;
  };

  //- Definition ForEachValuePair class
  // Assertion: both tuples have the same length and the contained types are
  // compatible in the sense of the applied function object
  /**
   * @brief Extension of ForEachValue to two tuples...
   *
   * This class provides the framework to process two tuples at once. It works
   * the same as ForEachValue, just that the corresponding function object
   * takes one argument from the first tuple and one argument from the second.
   *
   * \note You have to ensure that the two tuples you provide are compatible
   * in the sense that they have the same length and that the objects passed
   * to the function objects are related in meaningful way. The best way to
   * enforce it is to build the second tuple from the existing first tuple
   * using ForEachType.
   */
  template <class TupleType1, class TupleType2>
  class ForEachValuePair {
  public:
    //! Constructor
    //! \param t1 First tuple.
    //! \param t2 Second tuple.
    ForEachValuePair(TupleType1& t1, TupleType2& t2) :
      tuple1_(t1),
      tuple2_(t2)
    {}

    //! Applies the function object f to the pair of tuples.
    //! \param f The function object to apply on the pair of tuples.
    template <class Functor>
    void apply(Functor& f) {
      PairVisitor<tuple_size<TupleType1>::value,TupleType1,TupleType2,Functor>
	::visit(f, tuple1_, tuple2_);
    }
  private:
    TupleType1& tuple1_;
    TupleType2& tuple2_;
  };

  //- Reverse element access
  /**
   * @brief Type for reverse element access.
   *
   * Counterpart to ElementType for reverse element access.
   */
  template <int N, class Tuple>
  struct AtType {
    typedef typename tuple_element<tuple_size<Tuple>::value - N - 1,
                                   Tuple>::type Type;
  };
  
  /**
   * @brief Reverse element access.
   *
   * While Element<...> gives you the arguments beginning at the front of a
   * tuple, At<...> starts at the end, which may be more convenient, depending
   * on how you built your tuple.
   */
  template <int N>
  struct At 
  {

    template<typename Tuple>
    static
    typename TupleAccessTraits<typename AtType<N, Tuple>::Type>::NonConstType
    get(Tuple& t)
    {
      return Dune::get<tuple_size<Tuple>::value - N - 1>(t);
    }
    
    template<typename Tuple>
    static
    typename TupleAccessTraits<typename AtType<N, Tuple>::Type>::ConstType
    get(const Tuple& t)
    {
      return Dune::get<tuple_size<Tuple>::value - N - 1>(t);
    }
  };

  /**
   * @brief Deletes all objects pointed to in a tuple of pointers.
   *
   * \warning Pointers cannot be set to NULL, so calling the Deletor twice
   * or accessing elements of a deleted tuple leads to unforeseeable results!
   */
  template <class Tuple>
  class PointerPairDeletor
  {
    struct Deletor {
      template<typename P> void visit(const P& p) { delete p; }
    };

  public:
    static void apply(Tuple& t) {
      static Deletor deletor;
      ForEachValue<Tuple>(t).apply(deletor);
    }
  };


  /**
   * @brief Finding the index of a certain type in a tuple
   *
   * \tparam Tuple     The tuple type to search in.
   * \tparam Predicate Predicate which tells FirstPredicateIndex which types
   *                   in Tuple to accept.  This should be a class template
   *                   taking a single type template argument.  When
   *                   instantiated, it should contain a static member
   *                   constant \c value which should be convertible to bool.
   *                   A type is accepted if \c value is \c true, otherwise it
   *                   is rejected and the next type is tried.  Look at IsType
   *                   for a sample implementation.
   * \tparam start     First index to try.  This can be adjusted to skip
   *                   leading tuple elements.
   * \tparam size      This parameter is an implementation detail and should
   *                   not be adjusted by the users of this class.  It should
   *                   always be equal to the size of the tuple.
   *
   * This class can search for a type in tuple.  It will apply the predicate
   * to each type in tuple in turn, and set its member constant \c value to
   * the index of the first type that was accepted by the predicate.  If none
   * of the types are accepted by the predicate, a static_assert is triggered.
   */
  template<class Tuple, template<class> class Predicate, std::size_t start = 0,
           std::size_t size = tuple_size<Tuple>::value>
  class FirstPredicateIndex :
    public SelectType<Predicate<typename tuple_element<start,
                                                       Tuple>::type>::value,
                      integral_constant<std::size_t, start>,
                      FirstPredicateIndex<Tuple, Predicate, start+1> >::Type
  {
    dune_static_assert(tuple_size<Tuple>::value == size, "The \"size\" "
                       "template parameter of FirstPredicateIndex is an "
                       "implementation detail and should never be set "
                       "explicitly!");
  };

#ifndef DOXYGEN
  template<class Tuple, template<class> class Predicate, std::size_t size>
  class FirstPredicateIndex<Tuple, Predicate, size, size>
  {
    dune_static_assert(AlwaysFalse<Tuple>::value, "None of the tuple element "
                       "types matches the predicate!");
  };
#endif // !DOXYGEN

  /**
   * @brief Generator for predicates accepting one particular type
   *
   * \tparam T The type to accept.
   *
   * The generated predicate class is useful together with
   * FirstPredicateIndex.  It will accept exactly the type that is given as
   * the \c T template parameter.
   */
  template<class T>
  struct IsType {
    //! @brief The actual predicate
    template<class U>
    struct Predicate : public is_same<T, U> {};
  };

  /**
   * @brief Find the first occurance of a type in a tuple
   *
   * \tparam Tuple The tuple type to search in.
   * \tparam T     Type to search for.
   * \tparam start First index to try.  This can be adjusted to skip leading
   *               tuple elements.
   *
   * This class can search for a particular type in tuple.  It will check each
   * type in the tuple in turn, and set its member constant \c value to the
   * index of the first occurance of type was found.  If the type was not
   * found, a static_assert is triggered.
   */
  template<class Tuple, class T, std::size_t start = 0>
  struct FirstTypeIndex :
    public FirstPredicateIndex<Tuple, IsType<T>::template Predicate, start>
  { };



  /**
   * \brief Helper template to append a type to a tuple
   *
   * \tparam Tuple The tuple type to extend
   * \tparam T     The type to be appended to the tuple
   *
   * With variadic templates the generic specialization would be:
   *
   \code
   template<class... TupleArgs, class T>
   struct PushBackTuple<typename Dune::tuple<TupleArgs...>, T>
   {
     typedef typename Dune::tuple<TupleArgs..., T> type;
   };
   \endcode
   *
   */
  template< class Tuple, class T>
  struct PushBackTuple
  {
    dune_static_assert(AlwaysFalse<Tuple>::value, "Attempt to use the "
                       "unspecialized version of PushBackTuple.  "
                       "PushBackTuple needs to be specialized for "
                       "each possible tuple size.  Naturally the number of "
                       "pre-defined specializations is limited arbitrarily.  "
                       "Maybe you need to raise this limit by defining some "
                       "more specializations?");

    /**
     * \brief For all specializations this is the type of a tuple with T appended.
     *
     * Suppose you have Tuple=tuple<T1, T2, ..., TN> then
     * this type is tuple<T1, T2, ..., TN, T>.
     */
    typedef Tuple type;
  };


#ifndef DOXYGEN

  template<class T>
  struct PushBackTuple< Dune::tuple<>, T>
  {
    typedef typename Dune::tuple<T> type;
  };

  template< class T1, class T>
  struct PushBackTuple< Dune::tuple<T1>, T>
  {
    typedef typename Dune::tuple<T1, T> type;
  };

  template< class T1, class T2, class T>
  struct PushBackTuple< Dune::tuple<T1, T2>, T>
  {
    typedef typename Dune::tuple<T1, T2, T> type;
  };

  template< class T1, class T2, class T3, class T>
  struct PushBackTuple< Dune::tuple<T1, T2, T3>, T>
  {
    typedef typename Dune::tuple<T1, T2, T3, T> type;
  };

  template< class T1, class T2, class T3, class T4, class T>
  struct PushBackTuple< Dune::tuple<T1, T2, T3, T4>, T>
  {
    typedef typename Dune::tuple<T1, T2, T3, T4, T> type;
  };

  template< class T1, class T2, class T3, class T4, class T5, class T>
  struct PushBackTuple< Dune::tuple<T1, T2, T3, T4, T5>, T>
  {
    typedef typename Dune::tuple<T1, T2, T3, T4, T5, T> type;
  };

  template< class T1, class T2, class T3, class T4, class T5, class T6, class T>
  struct PushBackTuple< Dune::tuple<T1, T2, T3, T4, T5, T6>, T>
  {
    typedef typename Dune::tuple<T1, T2, T3, T4, T5, T6, T> type;
  };

  template< class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T>
  struct PushBackTuple< Dune::tuple<T1, T2, T3, T4, T5, T6, T7>, T>
  {
    typedef typename Dune::tuple<T1, T2, T3, T4, T5, T6, T7, T> type;
  };

  template< class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T>
  struct PushBackTuple< Dune::tuple<T1, T2, T3, T4, T5, T6, T7, T8>, T>
  {
    typedef typename Dune::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T> type;
  };

#endif



  /**
   * \brief Helper template to prepend a type to a tuple
   *
   * \tparam Tuple The tuple type to extend
   * \tparam T     The type to be prepended to the tuple
   *
   * With variadic templates the generic specialization would be:
   *
   \code
   template<class... TupleArgs, class T>
   struct PushFrontTuple<typename Dune::tuple<TupleArgs...>, T>
   {
     typedef typename Dune::tuple<T, TupleArgs...> type;
   };
   \endcode
   *
   */
  template< class Tuple, class T>
  struct PushFrontTuple
  {
    dune_static_assert(AlwaysFalse<Tuple>::value, "Attempt to use the "
                       "unspecialized version of PushFrontTuple.  "
                       "PushFrontTuple needs to be specialized for "
                       "each possible tuple size.  Naturally the number of "
                       "pre-defined specializations is limited arbitrarily.  "
                       "Maybe you need to raise this limit by defining some "
                       "more specializations?");

    /**
     * \brief For all specializations this is the type of a tuple with T prepended.
     *
     * Suppose you have Tuple=tuple<T1, T2, ..., TN> then
     * this type is tuple<T, T1, T2, ..., TN>.
     */
    typedef Tuple type;
  };


#ifndef DOXYGEN

  template<class T>
  struct PushFrontTuple< Dune::tuple<>, T>
  {
    typedef typename Dune::tuple<T> type;
  };

  template< class T1, class T>
  struct PushFrontTuple< Dune::tuple<T1>, T>
  {
    typedef typename Dune::tuple<T, T1> type;
  };

  template< class T1, class T2, class T>
  struct PushFrontTuple< Dune::tuple<T1, T2>, T>
  {
    typedef typename Dune::tuple<T, T1, T2> type;
  };

  template< class T1, class T2, class T3, class T>
  struct PushFrontTuple< Dune::tuple<T1, T2, T3>, T>
  {
    typedef typename Dune::tuple<T, T1, T2, T3> type;
  };

  template< class T1, class T2, class T3, class T4, class T>
  struct PushFrontTuple< Dune::tuple<T1, T2, T3, T4>, T>
  {
    typedef typename Dune::tuple<T, T1, T2, T3, T4> type;
  };

  template< class T1, class T2, class T3, class T4, class T5, class T>
  struct PushFrontTuple< Dune::tuple<T1, T2, T3, T4, T5>, T>
  {
    typedef typename Dune::tuple<T, T1, T2, T3, T4, T5> type;
  };

  template< class T1, class T2, class T3, class T4, class T5, class T6, class T>
  struct PushFrontTuple< Dune::tuple<T1, T2, T3, T4, T5, T6>, T>
  {
    typedef typename Dune::tuple<T, T1, T2, T3, T4, T5, T6> type;
  };

  template< class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T>
  struct PushFrontTuple< Dune::tuple<T1, T2, T3, T4, T5, T6, T7>, T>
  {
    typedef typename Dune::tuple<T, T1, T2, T3, T4, T5, T6, T7> type;
  };

  template< class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T>
  struct PushFrontTuple< Dune::tuple<T1, T2, T3, T4, T5, T6, T7, T8>, T>
  {
    typedef typename Dune::tuple<T, T1, T2, T3, T4, T5, T6, T7, T8> type;
  };

#endif



  /**
   * \brief Apply reduce with meta binary function to template
   *
   * For a tuple\<T0,T1,...,TN-1,TN,...\> the exported result is
   *
   * F\< ... F\< F\< F\<Seed,T0\>\::type, T1\>\::type, T2\>\::type,  ... TN-1\>\::type
   *
   * \tparam F Binary meta function
   * \tparam Tuple Apply reduce operation to this tuple
   * \tparam Seed Initial value for reduce operation
   * \tparam N Reduce the first N tuple elements
   */
  template<
    template <class, class> class F,
    class Tuple,
    class Seed=tuple<>,
    int N=tuple_size<Tuple>::value>
  struct ReduceTuple
  {
    typedef typename ReduceTuple<F, Tuple, Seed, N-1>::type Accumulated;
    typedef typename tuple_element<N-1, Tuple>::type Value;

    //! Result of the reduce operation
    typedef typename F<Accumulated, Value>::type type;
  };

  /**
   * \brief Apply reduce with meta binary function to template
   *
   * Specialization for reduction of 0 elements.
   * The exported result type is Seed.
   *
   * \tparam F Binary meta function
   * \tparam Tuple Apply reduce operation to this tuple
   * \tparam Seed Initial value for reduce operation
   */
  template<
    template <class, class> class F,
    class Tuple,
    class Seed>
  struct ReduceTuple<F, Tuple, Seed, 0>
  {
    //! Result of the reduce operation
    typedef Seed type;
  };



  /**
   * \brief Join two tuples
   *
   * For Head=tuple<T0,...,TN> and Tail=tuple<S0,...,SM>
   * the exported result is tuple<T0,..,TN,S0,...,SM>.
   *
   * \tparam Head Head of resulting tuple
   * \tparam Tail Tail of resulting tuple
   */
  template<class Head, class Tail>
  struct JoinTuples
  {
    //! Result of the join operation
    typedef typename ReduceTuple< PushBackTuple, Tail, Head>::type type;
  };



  /**
   * \brief Flatten a tuple of tuples
   *
   * This flattens a tuple of tuples tuple<tuple<T0,...,TN>, tuple<S0,...,SM> >
   * and exports tuple<T0,..,TN,S0,...,SM>.
   *
   * \tparam TupleTuple A tuple of tuples
   */
  template<class TupleTuple>
  struct FlattenTuple
  {
    //! Result of the flatten operation
    typedef typename ReduceTuple< JoinTuples, TupleTuple>::type type;
  };

}

#endif