This file is indexed.

/usr/include/dune/common/poolallocator.hh is in libdune-common-dev 2.2.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
// -*- tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=8 sw=2 sts=2:
// $Id: poolallocator.hh 6785 2012-05-31 22:07:47Z sander $
#ifndef DUNE_COMMON_POOLALLOCATOR_HH
#define DUNE_COMMON_POOLALLOCATOR_HH

/** \file
 * \brief An stl-compliant pool allocator
 */

#include"alignment.hh"
#include"static_assert.hh"
#include"lcm.hh"
#include<typeinfo>
#include<iostream>
#include<cassert>
#include<new>

//forward declarations.

// we need to know the test function to declare it friend
template<std::size_t size, typename T>
struct testPoolMain;

namespace Dune
{
  
template<typename T, std::size_t s>
class Pool;

template<typename T, std::size_t s>
class PoolAllocator;

}

namespace std
{
  /*
  template<class T, std::size_t S>
  inline ostream& operator<<(ostream& os, Dune::Pool<T,S>& pool)
  {
    os<<"pool="<<&pool<<" allocated_="<<pool.allocated_;
    return os;
  }
  
  template<class T, std::size_t S>
  inline ostream& operator<<(ostream& os, Dune::PoolAllocator<T,S>& pool)
  {
    os<<pool.memoryPool_<<std::endl;
    return os;
  }
  */
}


namespace Dune
{  
  /**
   * @file 
   * This file implements the classes Pool and PoolAllocator providing
   * memory allocation for objects in chunks.
   * @author Markus Blatt
   */
    /** 
     * @addtogroup Common
     *
     * @{
     */

  /**
   * @brief A memory pool of objects.
   * 
   * The memory for the objects is organized in chunks.
   * Each chunks is capable of holding a specified number of 
   * objects. The allocated objects will be properly aligned
   * for fast access.
   * Deallocated objects are cached for reuse to prevent memory
   * fragmentation.
   * @warning If the size of the objects allocated is less than the
   * size of a pointer memory is wasted.
   * @warning Due to aligned issues at the number of bytes of the 
   * alignment prerequisite (< 4 bytes) are wasted. This effect
   * becomes negligible for big sizes of chunkSize.
   *
   * \tparam T The type that is allocated by us.
   * \tparam s The size of a memory chunk in bytes.
   */
  template<class T, std::size_t s>
  class Pool
  {
    // make the test function friend
    friend struct ::testPoolMain<s,T>;
    
    //friend std::ostream& std::operator<<<>(std::ostream&,Pool<T,s>&);
    template< class, std::size_t > friend class PoolAllocator;

  private:
    
    /** @brief Reference to next free element. */
    struct Reference
    {
      Reference *next_;
    };

  public:

    /** @brief The type of object we allocate memory for. */
    typedef T MemberType;
    enum 
    {
      /**
       * @brief The size of a union of Reference and MemberType.
       */
      unionSize = ((sizeof(MemberType) < sizeof(Reference)) ? 
        sizeof(Reference) : sizeof(MemberType)),
      
      /**
       * @brief Size requirement. At least one object has to
       * stored.
       */
      size = ((sizeof(MemberType) <= s && sizeof(Reference) <= s)? 
        s : unionSize),
      
      /**
       * @brief The alignment that suits both the MemberType and 
       * the Reference (i.e. their least common multiple).
       */
      alignment = Lcm<AlignmentOf<MemberType>::value,AlignmentOf<Reference>::value>::value,
      
      /**
       * @brief The aligned size of the type.
       *
       * This size is bigger than sizeof of the type and a multiple of
       * the alignment requirement.
       */
      alignedSize = ((unionSize % alignment == 0) ?
        unionSize : 
        ((unionSize / alignment + 1) * alignment)),
      
      /** 
       * @brief The size of each chunk memory chunk. 
       *
       * Will be adapted to be a multiple of the alignment plus
       * an offset to handle the case that the pointer to the memory
       * does not satisfy the alignment requirements.
       */
      chunkSize = ((size % alignment == 0)? 
        size : ((size / alignment + 1)* alignment)) 
      + alignment - 1,
      
      /**
       * @brief The number of element each chunk can hold.
       */
      elements = ((chunkSize - alignment + 1)/ alignedSize)
    };
    
  private:
    /** @brief Chunk of memory managed by the pool. */
    struct Chunk
    {

      //friend int testPool<s,T>();

      /** @brief The memory we hold. */
      char chunk_[chunkSize];

      /** 
       * @brief Adress the first properly aligned
       * position in the chunk.
       */
      char* memory_;
      
      /** @brief The next element */
      Chunk *next_;
      
      /** 
       * @brief Constructor.
       */
      Chunk()
      {
        // Make sure the alignment is correct!
        // long long should be 64bit safe!
        unsigned long long lmemory = reinterpret_cast<unsigned long long>(chunk_);
        if(lmemory % alignment != 0)
          lmemory = (lmemory / alignment + 1)
            * alignment;
        
        memory_ = reinterpret_cast<char *>(lmemory);
      }
    };
  
  public:
    /** @brief Constructor. */
    inline Pool();
    /** @brief Destructor. */
    inline ~Pool();
    /** 
     * @brief Get a new or recycled object 
     * @return A pointer to the object memory.
    */
    inline void* allocate();
    /** 
     * @brief Free an object.
     * @param o The pointer to memory block of the object.
     */
    inline void free(void* o);

    /**
     * @brief Print elements in pool for debugging.
     */
    inline void print(std::ostream& os);

  private:
  
    // Prevent Copying!
    Pool(const Pool<MemberType,s>&);

    void operator=(const Pool<MemberType,s>& pool) const;
    /** @brief Grow our pool.*/
    inline void grow();
    /** @brief The first free element. */
    Reference *head_;
    /** @brief Our memory chunks. */
    Chunk *chunks_;
    /* @brief The number of currently allocated elements. */
    //size_t allocated_;

  };

  /**
   * @brief An allocator managing a pool of objects for reuse.
   *
   * This allocator is specifically useful for small data types
   * where new and delete are too expensive. 
   *
   * It uses a pool of memory chunks where the objects will be allocated.
   * This means that assuming that N objects fit into memory only every N-th
   * request for an object will result in memory allocation.
   *
   * @warning It is not suitable
   * for the use in standard containers as it cannot allocate
   * arrays of arbitrary size
   *
   * \tparam T The type that will be allocated.
   * \tparam s The number of elements to fit into one memory chunk.
   */
  template<class T, std::size_t s>
  class PoolAllocator
  {
    //friend std::ostream& std::operator<<<>(std::ostream&,PoolAllocator<T,s>&);
    
  public:
    /**
     * @brief Type of the values we construct and allocate.
     */
    typedef T value_type;

    enum
    {
      /**
       * @brief The number of objects to fit into one memory chunk
       * allocated.
       */
      size=s*sizeof(value_type)
    };
    
    /**
     * @brief The pointer type.
     */
    typedef T* pointer;

    /**
     * @brief The constant pointer type.
     */
    typedef const T* const_pointer;

    /**
     * @brief The reference type.
     */
    typedef T& reference;

    /**
     * @brief The constant reference type.
     */
    typedef const T& const_reference;

    /**
     * @brief The size type.
     */
    typedef std::size_t size_type;
    
    /**
     * @brief The difference_type.
     */
    typedef std::ptrdiff_t difference_type;
    
    /**
     * @brief Constructor.
     */
    inline PoolAllocator();

    /**
     * @brief Coopy Constructor.
     */
    template<typename U, std::size_t u>
    inline PoolAllocator(const PoolAllocator<U,u>&)
    {}
    
    /**
     * @brief Allocates objects.
     * @param n The number of objects to allocate. Has to be one!
     * @param hint Ignored hint.
     * @return A pointer tp the allocated elements.
     */
    inline pointer allocate(std::size_t n, const_pointer hint=0);
    
    /**
     * @brief Free objects.
     *
     * Does not call the destructor!
     * @param n The number of objects to free. Has to be one!
     * @param p Pointer to the first object.
     */
    inline void deallocate(pointer p, std::size_t n);

    /**
     * @brief Construct an object.
     * @param p Pointer to the object.
     * @param value The value to initialize it to.
     */
    inline void construct(pointer p, const_reference value);

    /**
     * @brief Destroy an object without freeing memory.
     * @param p Pointer to the object.
     */
    inline void destroy(pointer p);

    /**
     * @brief Convert a reference to a pointer.
     */
    inline pointer  address(reference x) const { return &x; }

    
    /**
     * @brief Convert a reference to a pointer.
     */
    inline const_pointer address(const_reference x) const { return &x; }

    /**
     * @brief Not correctly implemented, yet!
     */
    inline int max_size() const throw(){ return 1;}
    
    /**
     * @brief Rebind the allocator to another type.
     */
    template<class U>
    struct rebind
    {
      typedef PoolAllocator<U,s> other;
    };

    /** @brief The type of the memory pool we use. */
    typedef Pool<T,size> PoolType;

  private:
    /**
     * @brief The underlying memory pool.
     */
    static PoolType memoryPool_;
  };

  // specialization for void
  template <std::size_t s> 
  class PoolAllocator<void,s> 
  {
  public:
    typedef void*       pointer;
    typedef const void* const_pointer;
    // reference to void members are impossible.
    typedef void value_type;
    template <class U> struct rebind 
    { 
      typedef PoolAllocator<U,s> other; 
    };

    template<typename T, std::size_t t>
    PoolAllocator(const PoolAllocator<T,t>&)
    {}
    
  };


  template<typename T1, std::size_t t1, typename T2, std::size_t t2>
  bool operator==(const PoolAllocator<T1,t1>&, const PoolAllocator<T2,t2>&)
  {
    return false;
  }
  

  template<typename T1, std::size_t t1, typename T2, std::size_t t2>
  bool operator!=(const PoolAllocator<T1,t1>&, const PoolAllocator<T2,t2>&)
  {
    return true;
  }

  template<typename T, std::size_t t1, std::size_t t2>
  bool operator==(const PoolAllocator<T,t1>&, const PoolAllocator<T,t2>&)
  {
    return Pool<T,t1>::chunkSize == Pool<T,t2>::chunkSize;
  }
  

  template<typename T, std::size_t t1, std::size_t t2>
  bool operator!=(const PoolAllocator<T,t1>&, const PoolAllocator<T,t2>&)
  {
    return Pool<T,t1>::chunkSize != Pool<T,t2>::chunkSize;
  }


  template<typename T, std::size_t t1, std::size_t t2>
  bool operator==(const PoolAllocator<T,t1>&, const PoolAllocator<void,t2>&)
  {
    return false;
  }
  

  template<typename T, std::size_t t1, std::size_t t2>
  bool operator!=(const PoolAllocator<T,t1>&, const PoolAllocator<void,t2>&)
  {
    return true;
  }

  template<typename T, std::size_t t1, std::size_t t2>
  bool operator==(const PoolAllocator<void,t1>&, const PoolAllocator<T,t2>&)
  {
    return false;
  }
  

  template<typename T, std::size_t t1, std::size_t t2>
  bool operator!=(const PoolAllocator<void,t1>&, const PoolAllocator<T,t2>&)
  {
    return true;
  }
  template<std::size_t t1, std::size_t t2>
  bool operator==(const PoolAllocator<void,t1>&, const PoolAllocator<void,t2>&)
  {
    return true;
  }

  template<std::size_t t1, std::size_t t2>
  bool operator!=(const PoolAllocator<void,t1>&, const PoolAllocator<void,t2>&)
  {
    return false;
  }

  template<class T, std::size_t S>
  inline Pool<T,S>::Pool()
    :head_(0), chunks_(0)//, allocated_(0)
  {
    dune_static_assert(sizeof(T)<=unionSize, "Library Error: type T is too big");
    dune_static_assert(sizeof(Reference)<=unionSize, "Library Error: type of referene is too big");
    dune_static_assert(unionSize<=alignedSize, "Library Error: alignedSize too small");
    dune_static_assert(sizeof(T)<=chunkSize, "Library Error: chunkSize must be able to hold at least one value");
    dune_static_assert(sizeof(Reference)<=chunkSize, "Library Error: chunkSize must be able to hold at least one reference");
    dune_static_assert((chunkSize - (alignment - 1)) % alignment == 0, "Library Error: compiler cannot calculate!");
    dune_static_assert(elements>=1, "Library Error: we need to hold at least one element!");
    dune_static_assert(elements*alignedSize<=chunkSize, "Library Error: aligned elements must fit into chuck!");
    /*    std::cout<<"s= "<<S<<" : T: "<<sizeof(T)<<" Reference: "<<sizeof(Reference)<<" union: "<<unionSize<<" alignment: "<<alignment<<
          "aligned: "<<alignedSize<<" chunk: "<< chunkSize<<" elements: "<<elements<<std::endl;*/
  }
  
  template<class T, std::size_t S>
  inline Pool<T,S>::~Pool()
  {
    /*
    if(allocated_!=0)
      std::cerr<<"There are still "<<allocated_<<" allocated elements by the Pool<"<<typeid(T).name()<<","<<S<<"> "
	       <<static_cast<void*>(this)<<"! This is a memory leak and might result in segfaults"
	       <<std::endl;
    */
    // delete the allocated chunks.
    Chunk *current=chunks_;
    
    while(current!=0)
    {
      Chunk *tmp = current;
      current = current->next_;
      delete tmp;
    }
  }

  template<class T, std::size_t S>
  inline void Pool<T,S>::print(std::ostream& os)
  {
    Chunk* current=chunks_;
    while(current){
      os<<current<<" ";
      current=current->next_;
    }
    os<<current<<" ";
  }
  
  template<class T, std::size_t S>
  inline void Pool<T,S>::grow()
  {
    Chunk *newChunk = new Chunk;
    newChunk->next_ = chunks_;
    chunks_ = newChunk;
    
    char* start = chunks_->memory_;
    char* last  = &start[elements*alignedSize];
    Reference* ref = new (start) (Reference);

    // grow is only called if head==0, 
    assert(!head_);

    head_ = ref;
      
    for(char* element=start+alignedSize; element<last; element=element+alignedSize){
      Reference* next = new (element) (Reference);
      ref->next_ = next;
      ref = next;
    }
    ref->next_=0;
  }

  template<class T, std::size_t S>
  inline void Pool<T,S>::free(void* b)
  {
    if(b){
    Reference* freed = static_cast<Reference*>(b);
    freed->next_ = head_;
    head_ = freed;
    //--allocated_;
    }else
      std::cerr<< "Tried to free null pointer! "<<b<<std::endl;
  }

  template<class T, std::size_t S>
  inline void* Pool<T,S>::allocate()
  {
    if(!head_)
      grow();
      
    Reference* p = head_;
    head_ = p->next_;
    //++allocated_;
    return p;
  }

  template<class T, std::size_t s> 
  typename PoolAllocator<T,s>::PoolType PoolAllocator<T,s>::memoryPool_;

  template<class T, std::size_t s> 
  inline PoolAllocator<T,s>::PoolAllocator()
  { }

  template<class T, std::size_t s>
  inline typename PoolAllocator<T,s>::pointer
  PoolAllocator<T,s>::allocate(std::size_t n, const_pointer hint)
  {
    if(n==1)
      return static_cast<T*>(memoryPool_.allocate());
    else
      throw std::bad_alloc();
  }

  template<class T, std::size_t s>
  inline void PoolAllocator<T,s>::deallocate(pointer p, std::size_t n)
  {
    for(size_t i=0; i<n; i++)
      memoryPool_.free(p++);
  }
  
  template<class T, std::size_t s>
  inline void PoolAllocator<T,s>::construct(pointer p, const_reference value)
  {
    ::new (static_cast<void*>(p)) T(value);
  }

  template<class T, std::size_t s>
  inline void PoolAllocator<T,s>::destroy(pointer p)
  {
    p->~T();
  }

  /** @} */
}
#endif