/usr/include/dune/common/densematrix.hh is in libdune-common-dev 2.2.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 | // -*- tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=8 sw=2 sts=2:
// $Id: fmatrix.hh 6128 2010-09-08 13:50:00Z christi $
#ifndef DUNE_DENSEMATRIX_HH
#define DUNE_DENSEMATRIX_HH
#include <cmath>
#include <cstddef>
#include <iostream>
#include <vector>
#include <dune/common/misc.hh>
#include <dune/common/exceptions.hh>
#include <dune/common/fvector.hh>
#include <dune/common/precision.hh>
#include <dune/common/static_assert.hh>
#include <dune/common/classname.hh>
namespace Dune
{
template<typename M> class DenseMatrix;
template<typename M>
struct FieldTraits< DenseMatrix<M> >
{
typedef const typename FieldTraits< typename DenseMatVecTraits<M>::value_type >::field_type field_type;
typedef const typename FieldTraits< typename DenseMatVecTraits<M>::value_type >::real_type real_type;
};
/*
work around a problem of FieldMatrix/FieldVector,
there is no unique way to obtain the size of a class
*/
template<class K, int N, int M> class FieldMatrix;
template<class K, int N> class FieldVector;
namespace {
template<class V>
struct VectorSize
{
static typename V::size_type size(const V & v) { return v.size(); }
};
template<class K, int N>
struct VectorSize< const FieldVector<K,N> >
{
typedef FieldVector<K,N> V;
static typename V::size_type size(const V & v) { return N; }
};
}
/**
@addtogroup DenseMatVec
@{
*/
/*! \file
\brief Implements a matrix constructed from a given type
representing a field and a compile-time given number of rows and columns.
*/
/**
\brief you have to specialize this function for any type T that should be assignable to a DenseMatrix
\tparam M Type of the matrix implementation class implementing the dense matrix
*/
template<typename M, typename T>
void istl_assign_to_fmatrix(DenseMatrix<M>& f, const T& t)
{
DUNE_THROW(NotImplemented, "You need to specialise the method istl_assign_to_fmatrix(DenseMatrix<M>& f, const T& t) "
<< "(with M being " << className<M>() << ") "
<< "for T == " << className<T>() << "!");
}
namespace
{
template<bool b>
struct DenseMatrixAssigner
{
template<typename M, typename T>
static void assign(DenseMatrix<M>& fm, const T& t)
{
istl_assign_to_fmatrix(fm, t);
}
};
template<>
struct DenseMatrixAssigner<true>
{
template<typename M, typename T>
static void assign(DenseMatrix<M>& fm, const T& t)
{
fm = static_cast<const typename DenseMatVecTraits<M>::value_type>(t);
}
};
}
/** @brief Error thrown if operations of a FieldMatrix fail. */
class FMatrixError : public Exception {};
/**
@brief A dense n x m matrix.
Matrices represent linear maps from a vector space V to a vector space W.
This class represents such a linear map by storing a two-dimensional
%array of numbers of a given field type K. The number of rows and
columns is given at compile time.
\tparam MAT type of the matrix implementation
*/
template<typename MAT>
class DenseMatrix
{
typedef DenseMatVecTraits<MAT> Traits;
// Curiously recurring template pattern
MAT & asImp() { return static_cast<MAT&>(*this); }
const MAT & asImp() const { return static_cast<const MAT&>(*this); }
public:
//===== type definitions and constants
//! type of derived matrix class
typedef typename Traits::derived_type derived_type;
//! export the type representing the field
typedef typename Traits::value_type value_type;
//! export the type representing the field
typedef typename Traits::value_type field_type;
//! export the type representing the components
typedef typename Traits::value_type block_type;
//! The type used for the index access and size operation
typedef typename Traits::size_type size_type;
//! The type used to represent a row (must fulfill the Dune::DenseVector interface)
typedef typename Traits::row_type row_type;
//! The type used to represent a reference to a row (usually row_type &)
typedef typename Traits::row_reference row_reference;
//! The type used to represent a reference to a constant row (usually const row_type &)
typedef typename Traits::const_row_reference const_row_reference;
//! We are at the leaf of the block recursion
enum {
//! The number of block levels we contain. This is 1.
blocklevel = 1
};
//===== access to components
//! random access
row_reference operator[] ( size_type i )
{
return asImp().mat_access(i);
}
const_row_reference operator[] ( size_type i ) const
{
return asImp().mat_access(i);
}
//! size method (number of rows)
size_type size() const
{
return rows();
}
//===== iterator interface to rows of the matrix
//! Iterator class for sequential access
typedef DenseIterator<DenseMatrix,row_type> Iterator;
//! typedef for stl compliant access
typedef Iterator iterator;
//! rename the iterators for easier access
typedef Iterator RowIterator;
//! rename the iterators for easier access
typedef typename row_type::Iterator ColIterator;
//! begin iterator
Iterator begin ()
{
return Iterator(*this,0);
}
//! end iterator
Iterator end ()
{
return Iterator(*this,rows());
}
//! @returns an iterator that is positioned before
//! the end iterator of the vector, i.e. at the last entry.
Iterator beforeEnd ()
{
return Iterator(*this,rows()-1);
}
//! @returns an iterator that is positioned before
//! the first entry of the vector.
Iterator beforeBegin ()
{
return Iterator(*this,-1);
}
//! Iterator class for sequential access
typedef DenseIterator<const DenseMatrix,const row_type> ConstIterator;
//! typedef for stl compliant access
typedef ConstIterator const_iterator;
//! rename the iterators for easier access
typedef ConstIterator ConstRowIterator;
//! rename the iterators for easier access
typedef typename row_type::ConstIterator ConstColIterator;
//! begin iterator
ConstIterator begin () const
{
return ConstIterator(*this,0);
}
//! end iterator
ConstIterator end () const
{
return ConstIterator(*this,rows());
}
//! @returns an iterator that is positioned before
//! the end iterator of the vector. i.e. at the last element
ConstIterator beforeEnd () const
{
return ConstIterator(*this,rows()-1);
}
//! @returns an iterator that is positioned before
//! the first entry of the vector.
ConstIterator beforeBegin () const
{
return ConstIterator(*this,-1);
}
//===== assignment from scalar
DenseMatrix& operator= (const field_type& f)
{
for (size_type i=0; i<rows(); i++)
(*this)[i] = f;
return *this;
}
template<typename T>
DenseMatrix& operator= (const T& t)
{
DenseMatrixAssigner<Conversion<T,field_type>::exists>::assign(*this, t);
return *this;
}
//===== vector space arithmetic
//! vector space addition
template <class Other>
DenseMatrix& operator+= (const DenseMatrix<Other>& y)
{
for (size_type i=0; i<rows(); i++)
(*this)[i] += y[i];
return *this;
}
//! vector space subtraction
template <class Other>
DenseMatrix& operator-= (const DenseMatrix<Other>& y)
{
for (size_type i=0; i<rows(); i++)
(*this)[i] -= y[i];
return *this;
}
//! vector space multiplication with scalar
DenseMatrix& operator*= (const field_type& k)
{
for (size_type i=0; i<rows(); i++)
(*this)[i] *= k;
return *this;
}
//! vector space division by scalar
DenseMatrix& operator/= (const field_type& k)
{
for (size_type i=0; i<rows(); i++)
(*this)[i] /= k;
return *this;
}
//! vector space axpy operation (*this += k y)
template <class Other>
DenseMatrix &axpy (const field_type &k, const DenseMatrix<Other> &y )
{
for( size_type i = 0; i < rows(); ++i )
(*this)[ i ].axpy( k, y[ i ] );
return *this;
}
//! Binary matrix comparison
template <class Other>
bool operator== (const DenseMatrix<Other>& y) const
{
for (size_type i=0; i<rows(); i++)
if ((*this)[i]!=y[i])
return false;
return true;
}
//! Binary matrix incomparison
template <class Other>
bool operator!= (const DenseMatrix<Other>& y) const
{
return !operator==(y);
}
//===== linear maps
//! y = A x
template<class X, class Y>
void mv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=M()) DUNE_THROW(FMatrixError,"Index out of range");
if (y.N()!=N()) DUNE_THROW(FMatrixError,"Index out of range");
#endif
for (size_type i=0; i<rows(); ++i)
{
y[i] = 0;
for (size_type j=0; j<cols(); j++)
y[i] += (*this)[i][j] * x[j];
}
}
//! y = A^T x
template< class X, class Y >
void mtv ( const X &x, Y &y ) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
//assert( &x != &y );
//This assert did not work for me. Compile error:
// comparison between distinct pointer types ‘const
// Dune::FieldVector<double, 3>*’ and ‘Dune::FieldVector<double, 2>*’ lacks a cast
if( x.N() != N() )
DUNE_THROW( FMatrixError, "Index out of range." );
if( y.N() != M() )
DUNE_THROW( FMatrixError, "Index out of range." );
#endif
for( size_type i = 0; i < cols(); ++i )
{
y[ i ] = 0;
for( size_type j = 0; j < rows(); ++j )
y[ i ] += (*this)[ j ][ i ] * x[ j ];
}
}
//! y += A x
template<class X, class Y>
void umv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=M())
DUNE_THROW(FMatrixError,"y += A x -- index out of range (sizes: x: " << x.N() << ", y: " << y.N() << ", A: " << this->N() << " x " << this->M() << ")" << std::endl);
if (y.N()!=N())
DUNE_THROW(FMatrixError,"y += A x -- index out of range (sizes: x: " << x.N() << ", y: " << y.N() << ", A: " << this->N() << " x " << this->M() << ")" << std::endl);
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[i] += (*this)[i][j] * x[j];
}
//! y += A^T x
template<class X, class Y>
void umtv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[j] += (*this)[i][j]*x[i];
}
//! y += A^H x
template<class X, class Y>
void umhv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[j] += conjugateComplex((*this)[i][j])*x[i];
}
//! y -= A x
template<class X, class Y>
void mmv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[i] -= (*this)[i][j] * x[j];
}
//! y -= A^T x
template<class X, class Y>
void mmtv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[j] -= (*this)[i][j]*x[i];
}
//! y -= A^H x
template<class X, class Y>
void mmhv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[j] -= conjugateComplex((*this)[i][j])*x[i];
}
//! y += alpha A x
template<class X, class Y>
void usmv (const field_type& alpha, const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[i] += alpha * (*this)[i][j] * x[j];
}
//! y += alpha A^T x
template<class X, class Y>
void usmtv (const field_type& alpha, const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[j] += alpha*(*this)[i][j]*x[i];
}
//! y += alpha A^H x
template<class X, class Y>
void usmhv (const field_type& alpha, const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[j] += alpha*conjugateComplex((*this)[i][j])*x[i];
}
//===== norms
//! frobenius norm: sqrt(sum over squared values of entries)
typename FieldTraits<value_type>::real_type frobenius_norm () const
{
typename FieldTraits<value_type>::real_type sum=(0.0);
for (size_type i=0; i<rows(); ++i) sum += (*this)[i].two_norm2();
return fvmeta::sqrt(sum);
}
//! square of frobenius norm, need for block recursion
typename FieldTraits<value_type>::real_type frobenius_norm2 () const
{
typename FieldTraits<value_type>::real_type sum=(0.0);
for (size_type i=0; i<rows(); ++i) sum += (*this)[i].two_norm2();
return sum;
}
//! infinity norm (row sum norm, how to generalize for blocks?)
typename FieldTraits<value_type>::real_type infinity_norm () const
{
if (size() == 0)
return 0.0;
ConstIterator it = begin();
typename remove_const< typename FieldTraits<value_type>::real_type >::type max = it->one_norm();
for (it = it + 1; it != end(); ++it)
max = std::max(max, it->one_norm());
return max;
}
//! simplified infinity norm (uses Manhattan norm for complex values)
typename FieldTraits<value_type>::real_type infinity_norm_real () const
{
if (size() == 0)
return 0.0;
ConstIterator it = begin();
typename remove_const< typename FieldTraits<value_type>::real_type >::type max = it->one_norm_real();
for (it = it + 1; it != end(); ++it)
max = std::max(max, it->one_norm_real());
return max;
}
//===== solve
/** \brief Solve system A x = b
*
* \exception FMatrixError if the matrix is singular
*/
template <class V>
void solve (V& x, const V& b) const;
/** \brief Compute inverse
*
* \exception FMatrixError if the matrix is singular
*/
void invert();
//! calculates the determinant of this matrix
field_type determinant () const;
//! Multiplies M from the left to this matrix
template<typename M2>
MAT& leftmultiply (const DenseMatrix<M2>& M)
{
assert(M.rows() == M.cols() && M.rows() == rows());
MAT C(asImp());
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++) {
(*this)[i][j] = 0;
for (size_type k=0; k<rows(); k++)
(*this)[i][j] += M[i][k]*C[k][j];
}
return asImp();
}
//! Multiplies M from the right to this matrix
template<typename M2>
MAT& rightmultiply (const DenseMatrix<M2>& M)
{
assert(M.rows() == M.cols() && M.cols() == cols());
MAT C(asImp());
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++) {
(*this)[i][j] = 0;
for (size_type k=0; k<cols(); k++)
(*this)[i][j] += C[i][k]*M[k][j];
}
return asImp();
}
#if 0
//! Multiplies M from the left to this matrix, this matrix is not modified
template<int l>
DenseMatrix<K,l,cols> leftmultiplyany (const FieldMatrix<K,l,rows>& M) const
{
FieldMatrix<K,l,cols> C;
for (size_type i=0; i<l; i++) {
for (size_type j=0; j<cols(); j++) {
C[i][j] = 0;
for (size_type k=0; k<rows(); k++)
C[i][j] += M[i][k]*(*this)[k][j];
}
}
return C;
}
//! Multiplies M from the right to this matrix, this matrix is not modified
template<int l>
FieldMatrix<K,rows,l> rightmultiplyany (const FieldMatrix<K,cols,l>& M) const
{
FieldMatrix<K,rows,l> C;
for (size_type i=0; i<rows(); i++) {
for (size_type j=0; j<l; j++) {
C[i][j] = 0;
for (size_type k=0; k<cols(); k++)
C[i][j] += (*this)[i][k]*M[k][j];
}
}
return C;
}
#endif
//===== sizes
//! number of rows
size_type N () const
{
return rows();
}
//! number of columns
size_type M () const
{
return cols();
}
//! number of rows
size_type rows() const
{
return asImp().mat_rows();
}
//! number of columns
size_type cols() const
{
return asImp().mat_cols();
}
//===== query
//! return true when (i,j) is in pattern
bool exists (size_type i, size_type j) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (i<0 || i>=rows()) DUNE_THROW(FMatrixError,"row index out of range");
if (j<0 || j>=cols()) DUNE_THROW(FMatrixError,"column index out of range");
#endif
return true;
}
private:
#ifndef DOXYGEN
struct ElimPivot
{
ElimPivot(std::vector<size_type> & pivot);
void swap(int i, int j);
template<typename T>
void operator()(const T&, int k, int i)
{}
std::vector<size_type> & pivot_;
};
template<typename V>
struct Elim
{
Elim(V& rhs);
void swap(int i, int j);
void operator()(const typename V::field_type& factor, int k, int i);
V* rhs_;
};
struct ElimDet
{
ElimDet(field_type& sign) : sign_(sign)
{ sign_ = 1; }
void swap(int i, int j)
{ sign_ *= -1; }
void operator()(const field_type&, int k, int i)
{}
field_type& sign_;
};
#endif // DOXYGEN
template<class Func>
void luDecomposition(DenseMatrix<MAT>& A, Func func) const;
};
#ifndef DOXYGEN
template<typename MAT>
DenseMatrix<MAT>::ElimPivot::ElimPivot(std::vector<size_type> & pivot)
: pivot_(pivot)
{
typedef typename std::vector<size_type>::size_type size_type;
for(size_type i=0; i < pivot_.size(); ++i) pivot_[i]=i;
}
template<typename MAT>
void DenseMatrix<MAT>::ElimPivot::swap(int i, int j)
{
pivot_[i]=j;
}
template<typename MAT>
template<typename V>
DenseMatrix<MAT>::Elim<V>::Elim(V& rhs)
: rhs_(&rhs)
{}
template<typename MAT>
template<typename V>
void DenseMatrix<MAT>::Elim<V>::swap(int i, int j)
{
std::swap((*rhs_)[i], (*rhs_)[j]);
}
template<typename MAT>
template<typename V>
void DenseMatrix<MAT>::
Elim<V>::operator()(const typename V::field_type& factor, int k, int i)
{
(*rhs_)[k] -= factor*(*rhs_)[i];
}
template<typename MAT>
template<typename Func>
inline void DenseMatrix<MAT>::luDecomposition(DenseMatrix<MAT>& A, Func func) const
{
typedef typename FieldTraits<value_type>::real_type
real_type;
real_type norm = A.infinity_norm_real(); // for relative thresholds
real_type pivthres = std::max( FMatrixPrecision< real_type >::absolute_limit(), norm * FMatrixPrecision< real_type >::pivoting_limit() );
real_type singthres = std::max( FMatrixPrecision< real_type >::absolute_limit(), norm * FMatrixPrecision< real_type >::singular_limit() );
// LU decomposition of A in A
for (size_type i=0; i<rows(); i++) // loop over all rows
{
typename FieldTraits<value_type>::real_type pivmax=fvmeta::absreal(A[i][i]);
// pivoting ?
if (pivmax<pivthres)
{
// compute maximum of column
size_type imax=i;
typename FieldTraits<value_type>::real_type abs(0.0);
for (size_type k=i+1; k<rows(); k++)
if ((abs=fvmeta::absreal(A[k][i]))>pivmax)
{
pivmax = abs; imax = k;
}
// swap rows
if (imax!=i){
for (size_type j=0; j<rows(); j++)
std::swap(A[i][j],A[imax][j]);
func.swap(i, imax); // swap the pivot or rhs
}
}
// singular ?
if (pivmax<singthres)
DUNE_THROW(FMatrixError,"matrix is singular");
// eliminate
for (size_type k=i+1; k<rows(); k++)
{
field_type factor = A[k][i]/A[i][i];
A[k][i] = factor;
for (size_type j=i+1; j<rows(); j++)
A[k][j] -= factor*A[i][j];
func(factor, k, i);
}
}
}
template<typename MAT>
template <class V>
inline void DenseMatrix<MAT>::solve(V& x, const V& b) const
{
// never mind those ifs, because they get optimized away
if (rows()!=cols())
DUNE_THROW(FMatrixError, "Can't solve for a " << rows() << "x" << cols() << " matrix!");
if (rows()==1) {
#ifdef DUNE_FMatrix_WITH_CHECKING
if (fvmeta::absreal((*this)[0][0])<FMatrixPrecision<>::absolute_limit())
DUNE_THROW(FMatrixError,"matrix is singular");
#endif
x[0] = b[0]/(*this)[0][0];
}
else if (rows()==2) {
field_type detinv = (*this)[0][0]*(*this)[1][1]-(*this)[0][1]*(*this)[1][0];
#ifdef DUNE_FMatrix_WITH_CHECKING
if (fvmeta::absreal(detinv)<FMatrixPrecision<>::absolute_limit())
DUNE_THROW(FMatrixError,"matrix is singular");
#endif
detinv = 1.0/detinv;
x[0] = detinv*((*this)[1][1]*b[0]-(*this)[0][1]*b[1]);
x[1] = detinv*((*this)[0][0]*b[1]-(*this)[1][0]*b[0]);
}
else if (rows()==3) {
field_type d = determinant();
#ifdef DUNE_FMatrix_WITH_CHECKING
if (fvmeta::absreal(d)<FMatrixPrecision<>::absolute_limit())
DUNE_THROW(FMatrixError,"matrix is singular");
#endif
x[0] = (b[0]*(*this)[1][1]*(*this)[2][2] - b[0]*(*this)[2][1]*(*this)[1][2]
- b[1] *(*this)[0][1]*(*this)[2][2] + b[1]*(*this)[2][1]*(*this)[0][2]
+ b[2] *(*this)[0][1]*(*this)[1][2] - b[2]*(*this)[1][1]*(*this)[0][2]) / d;
x[1] = ((*this)[0][0]*b[1]*(*this)[2][2] - (*this)[0][0]*b[2]*(*this)[1][2]
- (*this)[1][0] *b[0]*(*this)[2][2] + (*this)[1][0]*b[2]*(*this)[0][2]
+ (*this)[2][0] *b[0]*(*this)[1][2] - (*this)[2][0]*b[1]*(*this)[0][2]) / d;
x[2] = ((*this)[0][0]*(*this)[1][1]*b[2] - (*this)[0][0]*(*this)[2][1]*b[1]
- (*this)[1][0] *(*this)[0][1]*b[2] + (*this)[1][0]*(*this)[2][1]*b[0]
+ (*this)[2][0] *(*this)[0][1]*b[1] - (*this)[2][0]*(*this)[1][1]*b[0]) / d;
}
else {
V& rhs = x; // use x to store rhs
rhs = b; // copy data
Elim<V> elim(rhs);
MAT A(asImp());
luDecomposition(A, elim);
// backsolve
for(int i=rows()-1; i>=0; i--){
for (size_type j=i+1; j<rows(); j++)
rhs[i] -= A[i][j]*x[j];
x[i] = rhs[i]/A[i][i];
}
}
}
template<typename MAT>
inline void DenseMatrix<MAT>::invert()
{
// never mind those ifs, because they get optimized away
if (rows()!=cols())
DUNE_THROW(FMatrixError, "Can't invert a " << rows() << "x" << cols() << " matrix!");
if (rows()==1) {
#ifdef DUNE_FMatrix_WITH_CHECKING
if (fvmeta::absreal((*this)[0][0])<FMatrixPrecision<>::absolute_limit())
DUNE_THROW(FMatrixError,"matrix is singular");
#endif
(*this)[0][0] = 1.0/(*this)[0][0];
}
else if (rows()==2) {
field_type detinv = (*this)[0][0]*(*this)[1][1]-(*this)[0][1]*(*this)[1][0];
#ifdef DUNE_FMatrix_WITH_CHECKING
if (fvmeta::absreal(detinv)<FMatrixPrecision<>::absolute_limit())
DUNE_THROW(FMatrixError,"matrix is singular");
#endif
detinv = 1.0/detinv;
field_type temp=(*this)[0][0];
(*this)[0][0] = (*this)[1][1]*detinv;
(*this)[0][1] = -(*this)[0][1]*detinv;
(*this)[1][0] = -(*this)[1][0]*detinv;
(*this)[1][1] = temp*detinv;
}
else {
MAT A(asImp());
std::vector<size_type> pivot(rows());
luDecomposition(A, ElimPivot(pivot));
DenseMatrix<MAT>& L=A;
DenseMatrix<MAT>& U=A;
// initialize inverse
*this=field_type();
for(size_type i=0; i<rows(); ++i)
(*this)[i][i]=1;
// L Y = I; multiple right hand sides
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<i; j++)
for (size_type k=0; k<rows(); k++)
(*this)[i][k] -= L[i][j]*(*this)[j][k];
// U A^{-1} = Y
for (size_type i=rows(); i>0;){
--i;
for (size_type k=0; k<rows(); k++){
for (size_type j=i+1; j<rows(); j++)
(*this)[i][k] -= U[i][j]*(*this)[j][k];
(*this)[i][k] /= U[i][i];
}
}
for(size_type i=rows(); i>0; ){
--i;
if(i!=pivot[i])
for(size_type j=0; j<rows(); ++j)
std::swap((*this)[j][pivot[i]], (*this)[j][i]);
}
}
}
// implementation of the determinant
template<typename MAT>
inline typename DenseMatrix<MAT>::field_type
DenseMatrix<MAT>::determinant() const
{
// never mind those ifs, because they get optimized away
if (rows()!=cols())
DUNE_THROW(FMatrixError, "There is no determinant for a " << rows() << "x" << cols() << " matrix!");
if (rows()==1)
return (*this)[0][0];
if (rows()==2)
return (*this)[0][0]*(*this)[1][1] - (*this)[0][1]*(*this)[1][0];
if (rows()==3) {
// code generated by maple
field_type t4 = (*this)[0][0] * (*this)[1][1];
field_type t6 = (*this)[0][0] * (*this)[1][2];
field_type t8 = (*this)[0][1] * (*this)[1][0];
field_type t10 = (*this)[0][2] * (*this)[1][0];
field_type t12 = (*this)[0][1] * (*this)[2][0];
field_type t14 = (*this)[0][2] * (*this)[2][0];
return (t4*(*this)[2][2]-t6*(*this)[2][1]-t8*(*this)[2][2]+
t10*(*this)[2][1]+t12*(*this)[1][2]-t14*(*this)[1][1]);
}
MAT A(asImp());
field_type det;
try
{
luDecomposition(A, ElimDet(det));
}
catch (FMatrixError&)
{
return 0;
}
for (size_type i = 0; i < rows(); ++i)
det *= A[i][i];
return det;
}
#endif // DOXYGEN
namespace DenseMatrixHelp {
#if 0
//! invert scalar without changing the original matrix
template <typename K>
static inline K invertMatrix (const FieldMatrix<K,1,1> &matrix, FieldMatrix<K,1,1> &inverse)
{
inverse[0][0] = 1.0/matrix[0][0];
return matrix[0][0];
}
//! invert scalar without changing the original matrix
template <typename K>
static inline K invertMatrix_retTransposed (const FieldMatrix<K,1,1> &matrix, FieldMatrix<K,1,1> &inverse)
{
return invertMatrix(matrix,inverse);
}
//! invert 2x2 Matrix without changing the original matrix
template <typename K>
static inline K invertMatrix (const FieldMatrix<K,2,2> &matrix, FieldMatrix<K,2,2> &inverse)
{
// code generated by maple
field_type det = (matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0]);
field_type det_1 = 1.0/det;
inverse[0][0] = matrix[1][1] * det_1;
inverse[0][1] = - matrix[0][1] * det_1;
inverse[1][0] = - matrix[1][0] * det_1;
inverse[1][1] = matrix[0][0] * det_1;
return det;
}
//! invert 2x2 Matrix without changing the original matrix
//! return transposed matrix
template <typename K>
static inline K invertMatrix_retTransposed (const FieldMatrix<K,2,2> &matrix, FieldMatrix<K,2,2> &inverse)
{
// code generated by maple
field_type det = (matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0]);
field_type det_1 = 1.0/det;
inverse[0][0] = matrix[1][1] * det_1;
inverse[1][0] = - matrix[0][1] * det_1;
inverse[0][1] = - matrix[1][0] * det_1;
inverse[1][1] = matrix[0][0] * det_1;
return det;
}
//! invert 3x3 Matrix without changing the original matrix
template <typename K>
static inline K invertMatrix (const FieldMatrix<K,3,3> &matrix, FieldMatrix<K,3,3> &inverse)
{
// code generated by maple
field_type t4 = matrix[0][0] * matrix[1][1];
field_type t6 = matrix[0][0] * matrix[1][2];
field_type t8 = matrix[0][1] * matrix[1][0];
field_type t10 = matrix[0][2] * matrix[1][0];
field_type t12 = matrix[0][1] * matrix[2][0];
field_type t14 = matrix[0][2] * matrix[2][0];
field_type det = (t4*matrix[2][2]-t6*matrix[2][1]-t8*matrix[2][2]+
t10*matrix[2][1]+t12*matrix[1][2]-t14*matrix[1][1]);
field_type t17 = 1.0/det;
inverse[0][0] = (matrix[1][1] * matrix[2][2] - matrix[1][2] * matrix[2][1])*t17;
inverse[0][1] = -(matrix[0][1] * matrix[2][2] - matrix[0][2] * matrix[2][1])*t17;
inverse[0][2] = (matrix[0][1] * matrix[1][2] - matrix[0][2] * matrix[1][1])*t17;
inverse[1][0] = -(matrix[1][0] * matrix[2][2] - matrix[1][2] * matrix[2][0])*t17;
inverse[1][1] = (matrix[0][0] * matrix[2][2] - t14) * t17;
inverse[1][2] = -(t6-t10) * t17;
inverse[2][0] = (matrix[1][0] * matrix[2][1] - matrix[1][1] * matrix[2][0]) * t17;
inverse[2][1] = -(matrix[0][0] * matrix[2][1] - t12) * t17;
inverse[2][2] = (t4-t8) * t17;
return det;
}
//! invert 3x3 Matrix without changing the original matrix
template <typename K>
static inline K invertMatrix_retTransposed (const FieldMatrix<K,3,3> &matrix, FieldMatrix<K,3,3> &inverse)
{
// code generated by maple
field_type t4 = matrix[0][0] * matrix[1][1];
field_type t6 = matrix[0][0] * matrix[1][2];
field_type t8 = matrix[0][1] * matrix[1][0];
field_type t10 = matrix[0][2] * matrix[1][0];
field_type t12 = matrix[0][1] * matrix[2][0];
field_type t14 = matrix[0][2] * matrix[2][0];
field_type det = (t4*matrix[2][2]-t6*matrix[2][1]-t8*matrix[2][2]+
t10*matrix[2][1]+t12*matrix[1][2]-t14*matrix[1][1]);
field_type t17 = 1.0/det;
inverse[0][0] = (matrix[1][1] * matrix[2][2] - matrix[1][2] * matrix[2][1])*t17;
inverse[1][0] = -(matrix[0][1] * matrix[2][2] - matrix[0][2] * matrix[2][1])*t17;
inverse[2][0] = (matrix[0][1] * matrix[1][2] - matrix[0][2] * matrix[1][1])*t17;
inverse[0][1] = -(matrix[1][0] * matrix[2][2] - matrix[1][2] * matrix[2][0])*t17;
inverse[1][1] = (matrix[0][0] * matrix[2][2] - t14) * t17;
inverse[2][1] = -(t6-t10) * t17;
inverse[0][2] = (matrix[1][0] * matrix[2][1] - matrix[1][1] * matrix[2][0]) * t17;
inverse[1][2] = -(matrix[0][0] * matrix[2][1] - t12) * t17;
inverse[2][2] = (t4-t8) * t17;
return det;
}
//! calculates ret = A * B
template< class K, int m, int n, int p >
static inline void multMatrix ( const FieldMatrix< K, m, n > &A,
const FieldMatrix< K, n, p > &B,
FieldMatrix< K, m, p > &ret )
{
typedef typename FieldMatrix< K, m, p > :: size_type size_type;
for( size_type i = 0; i < m; ++i )
{
for( size_type j = 0; j < p; ++j )
{
ret[ i ][ j ] = K( 0 );
for( size_type k = 0; k < n; ++k )
ret[ i ][ j ] += A[ i ][ k ] * B[ k ][ j ];
}
}
}
//! calculates ret= A_t*A
template <typename K, int rows, int cols>
static inline void multTransposedMatrix(const FieldMatrix<K,rows,cols> &matrix, FieldMatrix<K,cols,cols>& ret)
{
typedef typename FieldMatrix<K,rows,cols>::size_type size_type;
for(size_type i=0; i<cols(); i++)
for(size_type j=0; j<cols(); j++)
{
ret[i][j]=0.0;
for(size_type k=0; k<rows(); k++)
ret[i][j]+=matrix[k][i]*matrix[k][j];
}
}
#endif
//! calculates ret = matrix * x
template <typename MAT, typename V1, typename V2>
static inline void multAssign(const DenseMatrix<MAT> &matrix, const DenseVector<V1> & x, DenseVector<V2> & ret)
{
assert(x.size() == matrix.cols());
assert(ret.size() == matrix.rows());
typedef typename DenseMatrix<MAT>::size_type size_type;
for(size_type i=0; i<matrix.rows(); ++i)
{
ret[i] = 0.0;
for(size_type j=0; j<matrix.cols(); ++j)
{
ret[i] += matrix[i][j]*x[j];
}
}
}
#if 0
//! calculates ret = matrix^T * x
template <typename K, int rows, int cols>
static inline void multAssignTransposed( const FieldMatrix<K,rows,cols> &matrix, const FieldVector<K,rows> & x, FieldVector<K,cols> & ret)
{
typedef typename FieldMatrix<K,rows,cols>::size_type size_type;
for(size_type i=0; i<cols(); ++i)
{
ret[i] = 0.0;
for(size_type j=0; j<rows(); ++j)
ret[i] += matrix[j][i]*x[j];
}
}
//! calculates ret = matrix * x
template <typename K, int rows, int cols>
static inline FieldVector<K,rows> mult(const FieldMatrix<K,rows,cols> &matrix, const FieldVector<K,cols> & x)
{
FieldVector<K,rows> ret;
multAssign(matrix,x,ret);
return ret;
}
//! calculates ret = matrix^T * x
template <typename K, int rows, int cols>
static inline FieldVector<K,cols> multTransposed(const FieldMatrix<K,rows,cols> &matrix, const FieldVector<K,rows> & x)
{
FieldVector<K,cols> ret;
multAssignTransposed( matrix, x, ret );
return ret;
}
#endif
} // end namespace DenseMatrixHelp
/** \brief Sends the matrix to an output stream */
template<typename MAT>
std::ostream& operator<< (std::ostream& s, const DenseMatrix<MAT>& a)
{
for (typename DenseMatrix<MAT>::size_type i=0; i<a.rows(); i++)
s << a[i] << std::endl;
return s;
}
/** @} end documentation */
} // end namespace Dune
#endif
|