This file is indexed.

/usr/include/dune/common/bigunsignedint.hh is in libdune-common-dev 2.2.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
// $Id: bigunsignedint.hh 6280 2010-11-29 23:40:59Z dedner $

#ifndef DUNE_BIGUNSIGNEDINT_HH
#define DUNE_BIGUNSIGNEDINT_HH

#include<iostream>
#include<limits>
#include<cstdlib>
#include<dune/common/exceptions.hh>

/**
 * @file 
 * @brief  Portable very large unsigned integers 
 * @author Peter Bastian
 */

namespace Dune
{
  /** @addtogroup Common
   *
   * @{
   */

#if HAVE_MPI
  template<class K>
  struct MPITraits;
#endif

  /**
   * @brief Portable very large unsigned integers 
   *
   * Implements (arbitrarily) large unsigned integers to be used as global
   * ids in some grid managers. Size is a template parameter.
   *
   * \tparam k Number of bits of the integer type
   */

  template<int k>
  class bigunsignedint {
  public:

	// unsigned short is 16 bits wide, n is the number of digits needed
    enum { bits=std::numeric_limits<unsigned short>::digits, n=k/bits+(k%bits!=0), 
	   hexdigits=4, bitmask=0xFFFF, compbitmask=0xFFFF0000, 
	   overflowmask=0x1 };

	//! Construct uninitialized
	bigunsignedint ();

	//! Construct from signed int
       bigunsignedint (int x);

	//! Construct from unsigned int
        bigunsignedint (std::size_t x);

	//! Print number in hex notation
	void print (std::ostream& s) const ;

	//! add
	bigunsignedint<k> operator+ (const bigunsignedint<k>& x) const;

	//! subtract
	bigunsignedint<k> operator- (const bigunsignedint<k>& x) const;

	//! multiply
	bigunsignedint<k> operator* (const bigunsignedint<k>& x) const;

	//! prefix increment
	bigunsignedint<k>& operator++ ();

	//! divide
        //! \warning This function is very slow and its usage should be
        //! prevented if possible
	bigunsignedint<k> operator/ (const bigunsignedint<k>& x) const;

	//! modulo
        //! \warning This function is very slow and its usage should be
        //! prevented if possible
	bigunsignedint<k> operator% (const bigunsignedint<k>& x) const;


	//! bitwise and
	bigunsignedint<k> operator& (const bigunsignedint<k>& x) const;

	//! bitwise exor
	bigunsignedint<k> operator^ (const bigunsignedint<k>& x) const;

	//! bitwise or
	bigunsignedint<k> operator| (const bigunsignedint<k>& x) const;

	//! bitwise komplement
	bigunsignedint<k> operator~ () const;


	//! left shift1/
	bigunsignedint<k> operator<< (int i) const;

	//! right shift
	bigunsignedint<k> operator>> (int i) const;


	//! less than
	bool operator< (const bigunsignedint<k>& x) const;

	//! less than or equal
	bool operator<= (const bigunsignedint<k>& x) const;

	//! greater than
	bool operator> (const bigunsignedint<k>& x) const;

	//! greater or equal
	bool operator>= (const bigunsignedint<k>& x) const;

	//! equal
	bool operator== (const bigunsignedint<k>& x) const;

	//! not equal
	bool operator!= (const bigunsignedint<k>& x) const;


	//! export to other types
//	operator unsigned int () const;
    unsigned int touint() const;
    /**
     * @brief Convert to a double.
     *
     * @warning Subject to rounding errors!
     */
    double todouble() const;

	friend class bigunsignedint<k/2>;
    friend struct std::numeric_limits< bigunsignedint<k> >;
    
  private:
	unsigned short digit[n];
#if HAVE_MPI
    friend class MPITraits<bigunsignedint<k> >;
#endif
    inline void assign(std::size_t x);
    
    
  } ;

  // Constructors
  template<int k>
  bigunsignedint<k>::bigunsignedint ()
  { 
    assign(0u);
  }

  template<int k>
  bigunsignedint<k>::bigunsignedint (int y)
  {
    std::size_t x = std::abs(y);
    assign(x);
  }

  template<int k>
  bigunsignedint<k>::bigunsignedint (std::size_t x)
  {
    assign(x);
  }
  template<int k>
  void bigunsignedint<k>::assign(std::size_t x)
  {
    int no=std::min(static_cast<int>(n),
		    static_cast<int>(std::numeric_limits<std::size_t>::digits/bits));
    
    for(int i=0; i<no; ++i){
	digit[i] = (x&bitmask);
	x=x>>bits;
    }
    for (unsigned int i=no; i<n; i++) digit[i]=0;
  }

  // export
  template<int k>
  inline unsigned int bigunsignedint<k>::touint () const
  {
	return (digit[1]<<bits)+digit[0];
  }

  template<int k>
  inline double bigunsignedint<k>::todouble() const
  {
    int firstInZeroRange=n;
    for(int i=n-1; i>=0; --i)
      if(digit[i]!=0)
	break;
      else
	--firstInZeroRange;
    int representableDigits=std::numeric_limits<double>::digits/bits;
    int lastInRepresentableRange=0;
    if(representableDigits<firstInZeroRange)
      lastInRepresentableRange=firstInZeroRange-representableDigits;
    double val=0;
    for(int i=firstInZeroRange-1; i>=lastInRepresentableRange; --i)
      val =val*(1<<bits)+digit[i];
    return val*(1<<(bits*lastInRepresentableRange));
  }
  // print
  template<int k>
  inline void bigunsignedint<k>::print (std::ostream& s) const
  {    
	bool leading=false;

	// print from left to right
	for (int i=n-1; i>=0; i--)
	  for (int d=hexdigits-1; d>=0; d--)
		{
		  // extract one hex digit
		  int current = (digit[i]>>(d*4))&0xF;
		  if (current!=0)
			{
			  //			  s.setf(std::ios::noshowbase);
			  s << std::hex << current;
			  leading = false;
			}
		  else if (!leading) s << std::hex << current;
		}
	if (leading) s << "0";
	s << std::dec;
  }

  template <int k>
  inline std::ostream& operator<< (std::ostream& s, const bigunsignedint<k>& x)
  {
	x.print(s);
	return s;
  }


  // Operators
  template <int k>
  inline bigunsignedint<k> bigunsignedint<k>::operator+ (const bigunsignedint<k>& x) const
  {
	bigunsignedint<k> result;
	int overflow=0;

	for (unsigned int i=0; i<n; i++)
	  {
		int sum = ((int)digit[i]) + ((int)x.digit[i]) + overflow;
		result.digit[i] = sum&bitmask;
		overflow = (sum>>bits)&overflowmask;
	  }
	return result;
  }

  template <int k>
  inline bigunsignedint<k> bigunsignedint<k>::operator- (const bigunsignedint<k>& x) const
  {
	bigunsignedint<k> result;
	int overflow=0;

	for (unsigned int i=0; i<n; i++)
	  {
		int diff = ((int)digit[i]) - (((int)x.digit[i]) + overflow);
		if (diff>=0)
		  result.digit[i] = (unsigned short) diff;
		else
		  {
			result.digit[i] = (unsigned short) (diff+bitmask);
  			overflow = 1;
		  }
	  }
	return result;
  }

  template <int k>
  inline bigunsignedint<k> bigunsignedint<k>::operator* (const bigunsignedint<k>& x) const
  {
	bigunsignedint<2*k> finalproduct(0);

	for (unsigned int m=0; m<n; m++) // digit in right factor
	  {
		bigunsignedint<2*k> singleproduct(0);
		unsigned int overflow(0);
		for (unsigned int i=0; i<n; i++) 
		  {
			unsigned int digitproduct = ((unsigned int)digit[i])*((unsigned int)x.digit[m])+overflow;
			singleproduct.digit[i+m] = (unsigned short) (digitproduct&bitmask);
			overflow = (digitproduct>>bits)&bitmask;
		  }
		finalproduct = finalproduct+singleproduct;
	  }

	bigunsignedint<k> result;
	for (unsigned int i=0; i<n; i++) result.digit[i] = finalproduct.digit[i];
	return result;
  }

  template <int k>
  inline  bigunsignedint<k>& bigunsignedint<k>::operator++ ()
  {
	int overflow=1;

	for (unsigned int i=0; i<n; i++)
	  {
		int sum = ((int)digit[i]) + overflow;
		digit[i] = sum&bitmask;
		overflow = (sum>>bits)&overflowmask;
	  }
	return *this;
  }

  template <int k>
  inline bigunsignedint<k> bigunsignedint<k>::operator/ (const bigunsignedint<k>& x) const
  {
    if(x==0)
      DUNE_THROW(Dune::MathError, "division by zero!");

	// better slow than nothing
	bigunsignedint<k> temp(*this);
	bigunsignedint<k> result(0);

	while (temp>=x)
	  {
		++result;
		temp = temp-x;
	  }

	return result;
  }

  template <int k>
  inline bigunsignedint<k> bigunsignedint<k>::operator% (const bigunsignedint<k>& x) const
  {
	// better slow than nothing
	bigunsignedint<k> temp(*this);
	bigunsignedint<k> result(0);

	while (temp>=x)
	  {
		++result;
		temp = temp-x;
	  }

	return temp;
  }


  template <int k>
  inline bigunsignedint<k> bigunsignedint<k>::operator& (const bigunsignedint<k>& x) const
  {
	bigunsignedint<k> result;
	for (unsigned int i=0; i<n; i++)
	  result.digit[i] = digit[i]&x.digit[i];
	return result;
  }

  template <int k>
  inline bigunsignedint<k> bigunsignedint<k>::operator^ (const bigunsignedint<k>& x) const
  {
	bigunsignedint<k> result;
	for (unsigned int i=0; i<n; i++)
	  result.digit[i] = digit[i]^x.digit[i];
	return result;
  }

  template <int k>
  inline bigunsignedint<k> bigunsignedint<k>::operator| (const bigunsignedint<k>& x) const
  {
	bigunsignedint<k> result;
	for (unsigned int i=0; i<n; i++)
	  result.digit[i] = digit[i]|x.digit[i];
	return result;
  }

  template <int k>
  inline bigunsignedint<k> bigunsignedint<k>::operator~ () const
  {
	bigunsignedint<k> result;
	for (unsigned int i=0; i<n; i++)
	  result.digit[i] = ~digit[i];
	return result;
  }

  template <int k>
  inline bigunsignedint<k> bigunsignedint<k>::operator<< (int shift) const
  {
	bigunsignedint<k> result(0);

	// multiples of bits
	int j=shift/bits;
	for (int i=n-1-j; i>=0; i--)
	  result.digit[i+j] = digit[i];

	// remainder
	j=shift%bits;
	for (int i=n-1; i>=0; i--)
	  {
		unsigned int temp = result.digit[i];
		temp = temp<<j;
		result.digit[i] = (unsigned short) (temp&bitmask);
		temp = temp>>bits;
		if (i+1<(int)n)
		  result.digit[i+1] = result.digit[i+1]|temp;
	  }	

	return result;
  }

  template <int k>
  inline bigunsignedint<k> bigunsignedint<k>::operator>> (int shift) const
  {
	bigunsignedint<k> result(0);

	// multiples of bits
	int j=shift/bits;
	for (unsigned int i=0; i<n-j; i++)
	  result.digit[i] = digit[i+j];

	// remainder
	j=shift%bits;
	for (unsigned int i=0; i<n; i++)
	  {
		unsigned int temp = result.digit[i];
		temp = temp<<(bits-j);
		result.digit[i] = (unsigned short) ((temp&compbitmask)>>bits);
		if (i>0)
		  result.digit[i-1] = result.digit[i-1] | (temp&bitmask);
	  }

	return result;
  }

  template <int k>
  inline bool bigunsignedint<k>::operator!= (const bigunsignedint<k>& x) const
  {
	for (unsigned int i=0; i<n; i++)
	  if (digit[i]!=x.digit[i]) return true;
	return false;
  }

  template <int k>
  inline bool bigunsignedint<k>::operator== (const bigunsignedint<k>& x) const
  {
	return !((*this)!=x);
  }

  template <int k>
  inline bool bigunsignedint<k>::operator< (const bigunsignedint<k>& x) const
  {
	for (int i=n-1; i>=0; i--) 
	  if (digit[i]<x.digit[i]) return true;
	  else if (digit[i]>x.digit[i]) return false;
	return false;
  }

  template <int k>
  inline bool bigunsignedint<k>::operator<= (const bigunsignedint<k>& x) const
  {
	for (int i=n-1; i>=0; i--) 
	  if (digit[i]<x.digit[i]) return true;
	  else if (digit[i]>x.digit[i]) return false;
	return true;
  }

  template <int k>
  inline bool bigunsignedint<k>::operator> (const bigunsignedint<k>& x) const
  {
	return !((*this)<=x);	
  }

  template <int k>
  inline bool bigunsignedint<k>::operator>= (const bigunsignedint<k>& x) const
  {
	return !((*this)<x);	
  }


  template <int k>
  inline bigunsignedint<k> operator+ (const bigunsignedint<k>& x, std::size_t y)
  {
	bigunsignedint<k> temp(y);
	return x+temp;
  }

  template <int k>
  inline bigunsignedint<k> operator- (const bigunsignedint<k>& x, std::size_t y)
  {
	bigunsignedint<k> temp(y);
	return x-temp;
  }

  template <int k>
  inline bigunsignedint<k> operator* (const bigunsignedint<k>& x, std::size_t y)
  {
	bigunsignedint<k> temp(y);
	return x*temp;
  }

  template <int k>
  inline bigunsignedint<k> operator/ (const bigunsignedint<k>& x, std::size_t y)
  {
	bigunsignedint<k> temp(y);
	return x/temp;
  }

  template <int k>
  inline bigunsignedint<k> operator% (const bigunsignedint<k>& x, std::size_t y)
  {
	bigunsignedint<k> temp(y);
	return x%temp;
  }

  template <int k>
  inline bigunsignedint<k> operator+ (std::size_t x, const bigunsignedint<k>& y)
  {
	bigunsignedint<k> temp(x);
	return temp+y;
  }

  template <int k>
  inline bigunsignedint<k> operator- (std::size_t x, const bigunsignedint<k>& y)
  {
	bigunsignedint<k> temp(x);
	return temp-y;
  }

  template <int k>
  inline bigunsignedint<k> operator* (std::size_t x, const bigunsignedint<k>& y)
  {
	bigunsignedint<k> temp(x);
	return temp*y;
  }

  template <int k>
  inline bigunsignedint<k> operator/ (std::size_t x, const bigunsignedint<k>& y)
  {
	bigunsignedint<k> temp(x);
	return temp/y;
  }

  template <int k>
  inline bigunsignedint<k> operator% (std::size_t x, const bigunsignedint<k>& y)
  {
	bigunsignedint<k> temp(x);
	return temp%y;
  }


  /** @} */
}

namespace std
{
  template<int k>
  struct numeric_limits<Dune::bigunsignedint<k> >
  {
  public:
    static const bool is_specialized = true;
    
    static Dune::bigunsignedint<k> min()
    {
      return static_cast<Dune::bigunsignedint<k> >(0);
    }

    static Dune::bigunsignedint<k> max()
    {
      Dune::bigunsignedint<k> max_;
      for(std::size_t i=0; i < Dune::bigunsignedint<k>::n; ++i)
        max_.digit[i]=std::numeric_limits<unsigned short>::max();
      return max_;
    }
    
    
    static const int digits = Dune::bigunsignedint<k>::bits *
    Dune::bigunsignedint<k>::n;
    static const bool is_signed = false;
    static const bool is_integer = true;
    static const bool is_exact = true;
    static const int radix = 2;
    
    static Dune::bigunsignedint<k> epsilon()
    {
      return static_cast<Dune::bigunsignedint<k> >(0);
    }

    static Dune::bigunsignedint<k> round_error()
    {
      return static_cast<Dune::bigunsignedint<k> >(0);
    }
    
    static const int min_exponent = 0;
    static const int min_exponent10 = 0;
    static const int max_exponent = 0;
    static const int max_exponent10 = 0;
    
    static const bool has_infinity = false;
    static const bool has_quiet_NaN = false;
    static const bool has_signaling_NaN = false; 
    
    static const float_denorm_style has_denorm = denorm_absent;
    static const bool has_denorm_loss = false;

    static Dune::bigunsignedint<k> infinity() throw()
    { 
      return static_cast<Dune::bigunsignedint<k> >(0); 
    }

    static Dune::bigunsignedint<k> quiet_NaN() throw()
    { 
      return static_cast<Dune::bigunsignedint<k> >(0); 
    }

    static Dune::bigunsignedint<k> signaling_NaN() throw()
    { 
      return static_cast<Dune::bigunsignedint<k> >(0); 
    }

    static Dune::bigunsignedint<k> denorm_min() throw()
    { 
      return static_cast<Dune::bigunsignedint<k> >(0); 
    }

    static const bool is_iec559 = false;
    static const bool is_bounded = true;
    static const bool is_modulo = true;

    static const bool traps = false;
    static const bool tinyness_before = false;
    static const float_round_style round_style = round_toward_zero;

  };
  
}

#endif