This file is indexed.

/usr/include/dbstl_dbt.h is in libdb6.0-stl-dev 6.0.19-3ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
/*-
 * See the file LICENSE for redistribution information.
 *
 * Copyright (c) 2009, 2013 Oracle and/or its affiliates.  All rights reserved.
 *
 * $Id$
 */

#ifndef _DB_STL_DBT_H
#define _DB_STL_DBT_H

#include <assert.h>
#include <string>

#include "dbstl_common.h"
#include "dbstl_exception.h"
#include "dbstl_utility.h"

//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//
// DataItem class template definition
//
// 1. DataItem is a Dbt wrapper, it provides both typed data to/from memory
// chunk mapping as well as iostream support. Note that iostream functionality
// is not yet implemented.
// 2. DataItem is used inside dbstl to provide consistent Dbt object memory
// management.
// 3. DataItem is not only capable of mapping fixed size objects, but also
// varying length objects and objects not located in a consecutive chunk of
// memory, with the condition that user configures the required methods in
// DbstlElemTraits.
// 4. DataItem can not be a class template because inside it, the "member
// function template override" support is needed.
//
START_NS(dbstl)

using std::string;
#ifdef HAVE_WSTRING
using std::wstring;
#endif

class DataItem
{
private:
	typedef DataItem self;

	////////////////////////////////////////////////////////////////////
	////////////////////////////////////////////////////////////////////
	//
	// DataItem memory management
	//
	// The dbt_ member is the current dbt, data is stored in the dbt's 
	// referenced memory, it may
	// deep copy from constructor and from other Dbt, depending on
	// the constructors "onstack" parameter --- if true, this object
	// is only used as a stack object inside a function,
	// so do shallow copy; otherwise do deep copy.
	// There is always a DB_DBT_USERMEM flag set to the dbt,
	// its ulen data member stores the length of referenced memory,
	// its size data member stores the actual size of data;
	// If onstack is true, its dlen is INVALID_DLEN, and freemem()
	// will not free such memory because this object only reference
	// other object's memory, its the referenced object's responsibility
	// to free their memory.
	//
	// A DataItem object is not used everywhere, so it is impossible for
	// such an object to have two kinds of usages as above at the same
	// time, so we are safe doing so.
	Dbt dbt_;

	// Free dbt_'s referenced memory if that memory is allocated in heap
	// and owned by dbt_.
	inline void freemem()
	{
		void *buf = dbt_.get_data();

		if (buf != NULL && (dbt_.get_flags() & DB_DBT_USERMEM) != 0
		    && dbt_.get_dlen() != INVALID_DLEN)
			free(buf);
		memset(&dbt_, 0, sizeof(dbt_));
	}

public:

	// Deep copy, because dbt2.data pointed memory may be short lived.
	inline void set_dbt(const DbstlDbt&dbt2, bool onstack)
	{
		void *buf;
		u_int32_t s1, s2;
		DBT *pdbt2, *pdbt;
	       
		pdbt2 = (DBT *)&dbt2;
		pdbt = (DBT *)&dbt_;

		if (!onstack) {
			buf = pdbt->data;
			s1 = pdbt->ulen;
			s2 = pdbt2->size;
			if(s2 > s1) {
				buf = DbstlReAlloc(buf, s2);
				pdbt->size = s2;
				pdbt->data = buf;
				pdbt->ulen = s2;
				pdbt->flags |= DB_DBT_USERMEM;
			} else
				pdbt->size = s2;
			memcpy(buf, pdbt2->data, s2);
		} else {
			freemem();
			dbt_ = (const Dbt)dbt2;
			pdbt->dlen = (INVALID_DLEN);
		}
	}

	// Deep copy, because dbt2.data pointed memory may be short lived.
	inline void set_dbt(const Dbt&dbt2, bool onstack)
	{
		void *buf;
		u_int32_t s1, s2;
		DBT *pdbt2, *pdbt;
	       
		pdbt2 = (DBT *)&dbt2;
		pdbt = (DBT *)&dbt_;

		if (!onstack) {
			buf = pdbt->data;
			s1 = pdbt->ulen;
			s2 = pdbt2->size;
			if(s2 > s1) {
				buf = DbstlReAlloc(buf, s2);
				pdbt->size = s2;
				pdbt->data = buf;
				pdbt->ulen = s2;
				pdbt->flags |= DB_DBT_USERMEM;
			} else
				pdbt->size = s2;
			memcpy(buf, pdbt2->data, s2);
		} else {
			freemem();
			dbt_ = dbt2;
			pdbt->dlen = (INVALID_DLEN);
		}
	}

	inline void set_dbt(const DBT&dbt2, bool onstack)
	{
		void *buf;
		u_int32_t s1, s2;
		DBT *pdbt = (DBT *)&dbt_;

		if (!onstack) {
			buf = pdbt->data;
			s1 = pdbt->ulen;
			s2 = dbt2.size;
			if(s2 > s1) {
				buf = DbstlReAlloc(buf, s2);
				pdbt->size = s2;
				pdbt->data = buf;
				pdbt->ulen = s2;
				pdbt->flags |= DB_DBT_USERMEM;
			} else
				pdbt->size = s2;
			memcpy(buf, dbt2.data, s2);
		} else {
			freemem();
			// The following is right because Dbt derives from
			// DBT with no extra members or any virtual functions.
			memcpy(&dbt_, &dbt2, sizeof(dbt2));
			pdbt->dlen = INVALID_DLEN;
		}
	}

	// Return to the initial state.
	inline void reset()
	{
		void *buf = dbt_.get_data();
		if (buf) {
			memset(buf, 0, dbt_.get_ulen());
			dbt_.set_size(0);
		}
	}

	inline Dbt& get_dbt()
	{
		return dbt_;
	}

	// Return data of this object. If no data return -1, if it has data
	// return 0.
	//
	// !!!XXX Note that the type parameter T can only be in this function
	// because "template type parameter overload" applies only to a
	// functions template argument list, rather than that of classes.
	// If you put the "template<Typename T>" to this class's declaration,
	// making it a class template, then when T is any of Dbt, DBT, or
	// DataItem<T>, there will be two copies of this function. One will be
	// this function's instantiated version, the other one is one of the
	// three functions defined below.
	//
	template <Typename T>
	inline int get_data(T& data) const
	{
		int ret;
		typedef DbstlElemTraits<T> EM;
		typename EM::ElemRstoreFunct restore;
		void *pdata = NULL;

		if ((pdata = dbt_.get_data()) != NULL) {
			if ((restore = EM::instance()->
			    get_restore_function()) != NULL)
				restore(data, pdata);
			else
				data = *((T*)pdata);
			ret = 0;
		} else
			ret = -1;
		return ret;
	}

	////////////////////////////////////////////////////////////////////
	//
	// Begin functions supporting direct naked string storage.
	//
	// Always store the data, rather than the container object.
	//
	// The returned string lives no longer than the next iterator
	// movement call.
	//
	inline int get_data(char*& data) const
	{
		data = (char*)dbt_.get_data();
		return 0;
	}

	inline int get_data(string &data) const
	{
		data = (string::pointer) dbt_.get_data();
		return 0;
	}

	inline int get_data(wchar_t*& data) const
	{
		data = (wchar_t*)dbt_.get_data();
		return 0;
	}

#ifdef HAVE_WSTRING
	inline int get_data(wstring &data) const
	{
		data = (wstring::pointer) dbt_.get_data();
		return 0;
	}
#endif

	////////////////////////////////////////////////////////////////////

	// Supporting storing arbitrary type of sequence.
	template <Typename T>
	inline int get_data(T*& data) const
	{
		data = (T*)dbt_.get_data();
		return 0;
	}

	inline int get_data(DataItem& data) const
	{
		int ret;

		if (dbt_.get_data()) {
			data.set_dbt(dbt_, false);
			ret = 0;
		} else
			ret = -1;
		return ret;
	}

	////////////////////////////////////////////////////////////////////
	//
	// Begin functions supporting Dbt storage.
	//
	// This member function allows storing a Dbt type, so that user can
	// store the varying length data into Dbt.
	//
	// This method is required to copy a data element's bytes to another 
	// Dbt object, used inside by dbstl.
	// If there is no data return -1, if it has data return 0.
	//
	inline int get_data(Dbt& data) const
	{
		int ret;
		void *addr;
		u_int32_t sz;
		DBT *pdbt = (DBT *)&dbt_, *pdata = (DBT *)&data;

		if (pdbt->data) {
			addr = pdata->data;
			sz = pdbt->size;
			if (pdata->ulen < sz) {
				pdata->data = DbstlReAlloc(addr, sz);
				pdata->size = sz;
				pdata->ulen = sz;
				pdata->flags |= DB_DBT_USERMEM;
			} else
				pdata->size = sz;
			memcpy(pdata->data, pdbt->data, sz);
			ret = 0;
		} else
			ret = -1;
		return ret;
	}

	inline int get_data(DBT& data) const
	{
		int ret;
		void*addr;
		u_int32_t sz;

		if (dbt_.get_data()) {
			addr = data.data;
			if (data.ulen < (sz = dbt_.get_size())) {
				data.data = DbstlReAlloc(addr, sz);
				// User need to free this memory
				data.flags = data.flags | DB_DBT_USERMEM;
				data.size = sz;
				data.ulen = sz;
			} else
				data.size = sz;
			memcpy(data.data, dbt_.get_data(), sz);
			ret = 0;
		} else
			ret = -1;
		return ret;
	}

	inline int get_data(DbstlDbt& data) const
	{
		int ret;
		void *addr;
		u_int32_t sz;
		DBT *pdbt = (DBT *)&dbt_, *pdata = (DBT *)&data;

		if (pdbt->data) {
			addr = pdata->data;
			sz = pdbt->size;
			if (pdata->ulen < sz) {
				pdata->data = DbstlReAlloc(addr, sz);
				pdata->size = sz;
				pdata->ulen = sz;
				pdata->flags |= DB_DBT_USERMEM;
			} else
				pdata->size = sz;
			memcpy(pdata->data, pdbt->data, sz);
			ret = 0;
		} else
			ret = -1;
		return ret;
	}

	////////////////////////////////////////////////////////////////////

	// Deep copy in assignment and copy constructor.
	inline const DbstlDbt& operator=(const DbstlDbt& t2)
	{
		set_dbt(t2, false);
		return t2;
	}

	// Deep copy in assignment and copy constructor.
	inline const Dbt& operator=(const Dbt& t2)
	{
		set_dbt(t2, false);
		return t2;
	}

	// Deep copy in assignment and copy constructor.
	inline const DBT& operator=(const DBT& t2)
	{
		set_dbt(t2, false);
		return t2;
	}

	// Deep copy in assignment and copy constructor.
	template <Typename T>
	inline const T& operator = (const T&dt)
	{

		make_dbt(dt, false);
		return dt;
	}

	// Generic way of storing an object or variable. Note that DataItem
	// is not a class template but a class with function templates.
	// Variable t locates on a consecutive chunk of memory, and objects 
	// of T have the same size. 
	//
	template <Typename T>
	void make_dbt(const T& dt, bool onstack)
	{
		typedef DbstlElemTraits<T> EM;
		u_int32_t sz;
		typename EM::ElemSizeFunct sizef;
		typename EM::ElemCopyFunct copyf;
		DBT *pdbt = (DBT *)&dbt_;

		if ((sizef = EM::instance()->get_size_function()) != NULL)
			sz = sizef(dt);
		else
			sz = sizeof(dt);

		copyf = EM::instance()->get_copy_function();

		if (onstack &&  copyf == NULL) {
			freemem();
			pdbt->data = ((void*)&dt);
			// We have to set DB_DBT_USERMEM for DB_THREAD to work.
			pdbt->flags = (DB_DBT_USERMEM);
			pdbt->size = (sz);
			pdbt->ulen = (sz);
			// This is a flag that this memory can't be freed
			// because it is on stack.
			pdbt->dlen = (INVALID_DLEN);
			return;
		}

		// Not on stack, allocate enough space and "copy" the object
		// using shall copy or customized copy.
		if (pdbt->ulen < sz) {
			pdbt->data = (DbstlReAlloc(pdbt->data, sz));
			assert(pdbt->data != NULL);
			pdbt->size = (sz);
			pdbt->ulen = (sz);
			pdbt->flags = (DB_DBT_USERMEM);
		} else
			pdbt->size = (sz);

		if (copyf != NULL)
			copyf(pdbt->data, dt);
		else
			memcpy(pdbt->data, &dt, sz);
	}

	inline const char*&operator = (const char*&dt)
	{
		make_dbt(dt, false);
		return dt;
	}

	inline const wchar_t*&operator = (const wchar_t*&dt)
	{
		make_dbt(dt, false);
		return dt;
	}

	inline const string &operator=(const string &dt)
	{
		make_dbt(dt, false);
		return dt;
	}

#ifdef HAVE_WSTRING
	inline const wstring &operator=(const wstring &dt)
	{
		make_dbt(dt, false);
		return dt;
	}
#endif

	template <Typename T>
	inline const T*&operator = (const T*&dt)
	{
		make_dbt(dt, false);
		return dt;
	}

	inline const self& operator=(const self&dbt1)
	{
		ASSIGNMENT_PREDCOND(dbt1)
		this->set_dbt(dbt1.dbt_, false);
		return dbt1;
	}

	// Deep copy.
	inline DataItem(const self&dbt1)
	{
		set_dbt(dbt1.dbt_, false);
	}


	inline DataItem(u_int32_t sz)
	{
		void *buf;
		DBT *pdbt = (DBT *)&dbt_;

		buf = NULL;
		buf = DbstlMalloc(sz);
		memset(buf, 0, sz);
		pdbt->size = sz;
		pdbt->ulen = sz;
		pdbt->data = buf;
		pdbt->flags = DB_DBT_USERMEM;
	}

	// Deep copy. The onstack parameter means whether the object referenced
	// by this DataItem is on used with a function call where this DataItem
	// object is used. If so, we don't deep copy the object, simply refer
	// to its memory location. The meaining is the same for this parameter
	// in constructors that follow.
	inline DataItem(const Dbt&dbt2, bool onstack)
	{
		set_dbt(dbt2, onstack);
	}
	
	inline DataItem(const DbstlDbt&dbt2, bool onstack)
	{
		set_dbt(dbt2, onstack);
	}
	
	inline DataItem(const DBT&dbt2, bool onstack)
	{
		set_dbt(dbt2, onstack);
	}

	// Deep copy. There is a partial specialization for char*/wchar_t*/
	// string/wstring.
	template<Typename T>
	inline DataItem(const T& dt, bool onstack)
	{
		make_dbt(dt, onstack);
	}

	inline ~DataItem(void)
	{
		freemem();
	}

protected:

	// Store a char*/wchar_t* string. Need four versions for char*
	// and wchar_t* respectively to catch all
	// possibilities otherwise the most generic one will be called.
	// Note that the two const decorator matters when doing type
	// matching.
	inline void make_dbt_chars(const char *t, bool onstack)
	{
		DBT *d = (DBT *)&dbt_;
		u_int32_t sz;
		sz = ((t == NULL) ? 
		    sizeof(char) : 
		    (u_int32_t)((strlen(t) + 1) * sizeof(char)));
		if (!onstack) {
			if (d->ulen < sz) {
				d->flags |= DB_DBT_USERMEM;
				d->data = DbstlReAlloc(d->data, sz);
				d->ulen = sz;
			}
			d->size = sz;
			if (t != NULL)
				strcpy((char*)d->data, t);
			else
				memset(d->data, '\0', sizeof(char));
		} else {
			freemem();
			d->data = ((t == NULL) ? (void *)"" : (void *)t);
			d->size = sz;
			d->ulen = sz;
			d->flags = (DB_DBT_USERMEM);
			d->dlen = (INVALID_DLEN);
		}
	}

	inline void make_dbt_wchars(const wchar_t *t, bool onstack)
	{
		DBT *d = (DBT *)&dbt_;
		u_int32_t sz;
		sz = ((t == NULL) ? 
		    sizeof(wchar_t) : 
		    (u_int32_t)((wcslen(t) + 1) * sizeof(wchar_t)));
		if (!onstack) {					
			if (d->ulen < sz) {
				d->flags |= DB_DBT_USERMEM;
				d->data = DbstlReAlloc(d->data, sz);
				d->ulen = sz;
			}
			d->size = sz;
			if (t != NULL)
				wcscpy((wchar_t*)d->data, t);
			else
				memset(d->data, L'\0', sizeof(wchar_t));
		} else {
			freemem();
			d->data = ((t == NULL) ? (void *)L"" : (void *)t);
			d->size = sz;
			d->ulen = sz;
			d->flags = (DB_DBT_USERMEM);
			d->dlen = (INVALID_DLEN);
		}
	}

	inline void make_dbt(const char*& t, bool onstack)
	{
		make_dbt_chars(t, onstack);
	}

	inline void make_dbt(const char* const& t, bool onstack)
	{
		make_dbt_chars(t, onstack);
	}

	inline void make_dbt(char*& t, bool onstack)
	{
		make_dbt_chars(t, onstack);
	}

	inline void make_dbt(char* const& t, bool onstack)
	{
		make_dbt_chars(t, onstack);
	}

	inline void make_dbt(const string& t, bool onstack)
	{
		make_dbt_chars(t.c_str(), onstack);
	}

	inline void make_dbt(const wchar_t*& t, bool onstack)
	{
		make_dbt_wchars(t, onstack);
	}

	inline void make_dbt(const wchar_t* const& t, bool onstack)
	{
		make_dbt_wchars(t, onstack);
	}

	inline void make_dbt(wchar_t*& t, bool onstack)
	{
		make_dbt_wchars(t, onstack);
	}

	inline void make_dbt(wchar_t* const& t, bool onstack)
	{
		make_dbt_wchars(t, onstack);
	}

#ifdef HAVE_WSTRING
	inline void make_dbt(const wstring& t, bool onstack)
	{
		make_dbt_wchars(t.c_str(), onstack);
	}
#endif

	template <Typename T>
	void make_dbt_internal(const T*t, bool onstack)
	{
		typedef DbstlElemTraits<T> EM;
		u_int32_t i, sz, totalsz, sql;
		DBT *pdbt = (DBT *)&dbt_;
		typename EM::ElemSizeFunct szf = NULL;
		typename EM::SequenceLenFunct seqlenf = NULL;
		typename EM::SequenceCopyFunct seqcopyf = NULL;

		szf = EM::instance()->get_size_function();
		seqlenf = EM::instance()->get_sequence_len_function();
		seqcopyf = EM::instance()->get_sequence_copy_function();

		assert(seqlenf != NULL);
		sql = sz = (u_int32_t)seqlenf(t);
		if (szf)
			for (i = 0, totalsz = 0; i < sz; i++)
				totalsz += szf(t[i]);
		else
			totalsz = sz * sizeof(T);

		sz = totalsz;

		if (onstack && seqcopyf == NULL) {
			freemem();
			pdbt->data = (void *)t;
			pdbt->size = sz;
			pdbt->ulen = sz;
			pdbt->flags = DB_DBT_USERMEM;
			pdbt->dlen = INVALID_DLEN; // onstack flag;
		} else {
			// ulen stores the real length of the pointed memory.
			if (pdbt->ulen < sz) {
				pdbt->data = DbstlReAlloc(pdbt->data, sz);
				pdbt->ulen = sz;
				pdbt->flags |= DB_DBT_USERMEM;
			}
			pdbt->size = sz;

			EM::instance()->copy((T *)pdbt->data, t, sql);
		}
	}

	// Store a sequence of base type T. Need four versions to catch all
	// possibilities otherwise the most generic one will be called.
	template <Typename T>
	inline void make_dbt(const T*const&tt, bool onstack)
	{
		make_dbt_internal((const T*)tt, onstack);
	}
	template <Typename T>
	inline void make_dbt(T*const&tt, bool onstack)
	{
		make_dbt_internal((const T*)tt, onstack);
	}
	template <Typename T>
	inline void make_dbt(T*&tt, bool onstack)
	{
		make_dbt_internal((const T*)tt, onstack);
	}
	template <Typename T>
	inline void make_dbt(const T*&tt, bool onstack)
	{
		make_dbt_internal((const T*)tt, onstack);
	}


public:
	inline DataItem(const char*& t, bool onstack)
	{
		make_dbt_chars(t, onstack);
	}

	inline DataItem(const char* const& t, bool onstack)
	{
		make_dbt_chars(t, onstack);
	}

	inline DataItem(char*& t, bool onstack)
	{
		make_dbt_chars(t, onstack);
	}

	inline DataItem(char* const& t, bool onstack)
	{
		make_dbt_chars(t, onstack);
	}

	inline DataItem(const string& t, bool onstack)
	{
		make_dbt_chars(t.c_str(), onstack);
	}

	inline DataItem(const wchar_t*& t, bool onstack)
	{
		make_dbt_wchars(t, onstack);
	}

	inline DataItem(const wchar_t* const& t, bool onstack)
	{
		make_dbt_wchars(t, onstack);
	}

	inline DataItem(wchar_t*& t, bool onstack)
	{
		make_dbt_wchars(t, onstack);
	}

	inline DataItem(wchar_t* const& t, bool onstack)
	{
		make_dbt_wchars(t, onstack);
	}

#ifdef HAVE_WSTRING
	inline DataItem(const wstring& t, bool onstack)
	{
		make_dbt_wchars(t.c_str(), onstack);
	}
#endif
	template<Typename T>
	inline DataItem(T*&tt, bool onstack)
	{
		make_dbt_internal((const T*)tt, onstack);
	}

	template<Typename T>
	inline DataItem(const T*&tt, bool onstack)
	{
		make_dbt_internal((const T*)tt, onstack);
	}

	template<Typename T>
	inline DataItem(T*const&tt, bool onstack)
	{
		make_dbt_internal((const T*)tt, onstack);
	}

	template<Typename T>
	inline DataItem(const T*const&tt, bool onstack)
	{
		make_dbt_internal((const T*)tt, onstack);
	}


}; // DataItem<>

bool operator==(const Dbt&d1, const Dbt&d2);
bool operator==(const DBT&d1, const DBT&d2);
END_NS

#endif // !_DB_STL_DBT_H