This file is indexed.

/usr/include/CGAL/Weighted_Minkowski_distance.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// Copyright (c) 2002,2011 Utrecht University (The Netherlands).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Hans Tangelder (<hanst@cs.uu.nl>)

// Note: Use p=0 to denote the weighted Linf-distance 
// For 0<p<1 Lp is not a metric

#ifndef CGAL_WEIGHTED_MINKOWSKI_DISTANCE_H
#define CGAL_WEIGHTED_MINKOWSKI_DISTANCE_H

#include <cmath>
#include <CGAL/Kd_tree_rectangle.h>

namespace CGAL {

  template <class SearchTraits>
  class Weighted_Minkowski_distance {
    SearchTraits traits;
    public:

    typedef typename SearchTraits::Point_d Point_d;
    typedef Point_d                        Query_item;
    typedef typename SearchTraits::FT      FT;
    typedef std::vector<FT>                Weight_vector;

    private:

    typedef typename SearchTraits::Cartesian_const_iterator_d Coord_iterator;
    FT power; 

    Weight_vector the_weights;

    public:


    // default constructor
    Weighted_Minkowski_distance(const SearchTraits& traits_=SearchTraits())
      : traits(traits_),power(2) 
    {}

    Weighted_Minkowski_distance(const int d,const SearchTraits& traits_=SearchTraits()) 
      : traits(traits_),power(2), the_weights(d)
    {
      for (int i = 0; i < d; ++i) the_weights[i]=FT(1);
    }

    //default copy constructor and destructor
    

    Weighted_Minkowski_distance (FT pow, int dim,
				 const Weight_vector& weights,
                                 const SearchTraits& traits_=SearchTraits()) 
      : traits(traits_),power(pow)
    {
      CGAL_assertion(power >= FT(0));
      CGAL_assertion(dim==weights.size());
      for (unsigned int i = 0; i < weights.size(); ++i)
	CGAL_assertion(weights[i]>=FT(0));
      the_weights.resize(weights.size());
      the_weights = weights;
    }

    template <class InputIterator>
    Weighted_Minkowski_distance (FT pow, int dim,
				 InputIterator begin, InputIterator end,
                                 const SearchTraits& traits_=SearchTraits()) 
      : traits(traits_),power(pow)
    {
      CGAL_assertion(power >= FT(0));
      the_weights.resize(dim);
      std::copy(begin, end, the_weights.begin());
      for (int i = 0; i < dim; ++i){
	the_weights[i] = *begin;
	++begin;
	CGAL_assertion(the_weights[i]>=FT(0));
      }
      CGAL_assertion(begin == end);
    }


    inline 
    FT 
    transformed_distance(const Query_item& q, const Point_d& p) const
    {
      FT distance = FT(0);
      typename SearchTraits::Construct_cartesian_const_iterator_d construct_it=
        traits.construct_cartesian_const_iterator_d_object();
      Coord_iterator qit = construct_it(q),
	             qe = construct_it(q,1), 
	             pit = construct_it(p);
      if (power == FT(0)) {
	for (unsigned int i = 0; qit != qe; ++qit, ++i)
	  if (the_weights[i] * CGAL::abs((*qit) - (*pit)) > distance)
	    distance = the_weights[i] * CGAL::abs((*qit)-(*pit));
      }
      else
	for (unsigned int i = 0; qit != qe; ++qit, ++i)
	  distance += 
	    the_weights[i] * std::pow(CGAL::abs((*qit)-(*pit)),power);
      return distance;
    }
    

    inline 
    FT 
    min_distance_to_rectangle(const Query_item& q,
			      const Kd_tree_rectangle<FT>& r) const 
    {
      FT distance = FT(0);
      typename SearchTraits::Construct_cartesian_const_iterator_d construct_it=
        traits.construct_cartesian_const_iterator_d_object();
      Coord_iterator qit = construct_it(q), qe = construct_it(q,1);
      if (power == FT(0))
	{
	  for (unsigned int i = 0; qit != qe; ++qit, ++i) {
	    if (the_weights[i]*(r.min_coord(i) - 
				(*qit)) > distance)
	      distance = the_weights[i] * (r.min_coord(i)-
					   (*qit));
	    if (the_weights[i] * ((*qit) - r.max_coord(i)) > 
		distance)
	      distance = the_weights[i] * 
		((*qit)-r.max_coord(i));
	  }
	}
      else
	{
	  for (unsigned int i = 0; qit != qe; ++qit, ++i) {
	    if ((*qit) < r.min_coord(i))
	      distance += the_weights[i] * 
		std::pow(r.min_coord(i)-(*qit),power);
	    if ((*qit) > r.max_coord(i))
	      distance += the_weights[i] * 
		std::pow((*qit)-r.max_coord(i),power);
	  }
	};
      return distance;
    }

    inline 
    FT
    max_distance_to_rectangle(const Query_item& q,
			      const Kd_tree_rectangle<FT>& r) const {
      FT distance=FT(0);
      typename SearchTraits::Construct_cartesian_const_iterator_d construct_it=
        traits.construct_cartesian_const_iterator_d_object();
      Coord_iterator qit = construct_it(q), qe = construct_it(q,1);
      if (power == FT(0))
	{
	  for (unsigned int i = 0; qit != qe; ++qit, ++i) {
	    if ((*qit) >= (r.min_coord(i) + 
			 r.max_coord(i))/FT(2.0)) {
	      if (the_weights[i] * ((*qit) - 
				    r.min_coord(i)) > distance)
		distance = the_weights[i] * 
		  ((*qit)-r.min_coord(i));
	      else
		if (the_weights[i] * 
		    (r.max_coord(i) - (*qit)) > distance)
		  distance = the_weights[i] * 
		    ( r.max_coord(i)-(*qit));
            }
	  }
	}
      else
	{
	  for (unsigned int i = 0; qit != qe; ++qit, ++i) {
	    if ((*qit) <= (r.min_coord(i)+r.max_coord(i))/FT(2.0))
	      distance += the_weights[i] * std::pow(r.max_coord(i)-(*qit),power);
	    else
	      distance += the_weights[i] * std::pow((*qit)-r.min_coord(i),power);
	  }
	};
      return distance;
    }
    
    inline 
    FT 
    new_distance(FT dist, FT old_off, FT new_off,
		 int cutting_dimension)  const 
    {
      FT new_dist;
      if (power == FT(0))
	{
	  if (the_weights[cutting_dimension]*CGAL::abs(new_off) 
	      > dist) 
	    new_dist= 
	      the_weights[cutting_dimension]*CGAL::abs(new_off);
	  else new_dist=dist;
	}
      else
	{
	  new_dist = dist + the_weights[cutting_dimension] * 
	    (std::pow(CGAL::abs(new_off),power)-std::pow(CGAL::abs(old_off),power));
	}
      return new_dist;
    }
    
    inline 
    FT 
    transformed_distance(FT d) const 
    {
      if (power <= FT(0)) return d;
      else return std::pow(d,power);
      
    }
    
    inline 
    FT 
    inverse_of_transformed_distance(FT d) const 
    {
      if (power <= FT(0)) return d;
      else return std::pow(d,1/power);
      
    }

  }; // class Weighted_Minkowski_distance

} // namespace CGAL

#endif // CGAL_WEIGHTED_MINKOWSKI_DISTANCE_H