This file is indexed.

/usr/include/CGAL/RS/ugcd/ugcd.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// Copyright (c) 2007 Inria Lorraine (France). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author: Luis PeƱaranda <luis.penaranda@gmx.com>

#ifndef CGAL_RS__UGCD_H
#define CGAL_RS__UGCD_H

#include <gmp.h>
#include "primes.h"

// let's assume that 300 is enough for degree 500 gcds
#define CGALRS_MOD_QTY 300

namespace CGAL{
namespace RS_MGCD{

class Ugcd:public Primes{
    public:
        static int ugcd (mpz_t *gcd,mpz_t *Anp,int degA,mpz_t *Bnp,int degB){
            mpz_t *A,*B;
            mpz_t lcgcd,cA,cB;
            mpz_ptr m,bound;
            // dG is initialized to zero only to avoid compiler complaints
            int dA,dB,dG=0,maxd,i,maxA,maxB;
            size_t modsize,modalloc;
            std::vector<CGALRS_PN* > p;
            CGALRS_PN *mA,*mB,*mG,*mod;
            CGALRS_PN lc=0,scaleG;

            if(degB>degA){
                if(!degA){
                    mpz_set_ui(gcd[0],1);
                    return 0;
                }else
                    return ugcd(gcd,Bnp,degB,Anp,degA);
            }
            if(!degB){
                mpz_set_ui(gcd[0],1);
                return 0;
            }

            // initialize the memory
            meminit();

            A=(mpz_t*)malloc((1+degA)*sizeof(mpz_t));
            B=(mpz_t*)malloc((1+degB)*sizeof(mpz_t));
            mpz_init_set(cA,Anp[degA]);
            for(i=0;i<degA;++i)
                mpz_gcd(cA,cA,Anp[i]);
            mpz_init_set(cB,Bnp[degB]);
            for(i=0;i<degB;++i)
                mpz_gcd(cB,cB,Bnp[i]);

            for(i=0;i<=degA;++i){
                mpz_init(A[i]);
                mpz_divexact(A[i],Anp[i],cA);
            }
            for(i=0;i<=degB;++i){
                mpz_init(B[i]);
                mpz_divexact(B[i],Bnp[i],cB);
            }

            // calculate the gcd of the principal coefficients
            mpz_init(lcgcd);
            mpz_gcd(lcgcd,A[degA],B[degB]);

            // find the limit of modular image computation
            maxA=degA;
            for(i=0;i<degA;++i)
                if(mpz_cmpabs(A[i],A[maxA])>0)
                    maxA=i;
            maxB=degB;
            for(i=0;i<degB;++i)
                if(mpz_cmpabs(B[i],B[maxB])>0)
                    maxB=i;
            mpz_pow_ui(cA,A[maxA],2);
            mpz_mul_ui(cA,cA,degA+1);
            mpz_mul_2exp(cA,cA,2*degA);
            mpz_sqrt(cA,cA);
            mpz_pow_ui(cB,B[maxB],2);
            mpz_mul_ui(cB,cB,degB+1);
            mpz_mul_2exp(cB,cB,2*degB);
            mpz_sqrt(cB,cB);
            if(mpz_cmp(cA,cB)<0){
                bound=(mpz_ptr)cA;
                m=(mpz_ptr)cB;
            }else{
                bound=(mpz_ptr)cB;
                m=(mpz_ptr)cA;
            }
            mpz_mul(bound,bound,lcgcd);
            mpz_mul_2exp(bound,bound,1);
            mpz_setbit(bound,0);

            mA=(CGALRS_PN*)palloc((1+degA)*sizeof(CGALRS_PN));
            mB=(CGALRS_PN*)palloc((1+degB)*sizeof(CGALRS_PN));
            maxd=degA;      // we know that degA>=degB
            mG=(CGALRS_PN*)palloc((1+maxd)*sizeof(CGALRS_PN));
            pr_init();
            mpz_set_ui(m,1);
            mod=(CGALRS_PN*)palloc(CGALRS_MOD_QTY*sizeof(CGALRS_PN));
            modalloc=CGALRS_MOD_QTY;
            modsize=0;

            while(mpz_cmp(m,bound)<=0){
                do{
                    p_set_prime(pr_next());
                    dA=pp_from_poly(mA,A,degA);
                    if(dA!=-1){
                        dB=pp_from_poly(mB,B,degB);
                        if(dB!=-1)
                            lc=mpz_fdiv_ui(lcgcd,p_prime());
                        // lc is the image of the principal coefficient
                    }
                }while(dA==-1||dB==-1||!lc
                        ||mpz_divisible_ui_p(A[degA],p_prime())
                        ||mpz_divisible_ui_p(B[degB],p_prime()));
                // now we calculate the gcd mod p_prime
                dG=pp_gcd(mG,mA,degA,mB,degB);
                scaleG=CGALRS_P_DIV(lc,mG[dG]);
                mG[dG]=lc;
                for(i=0;i<dG;++i)
                    mG[i]=p_mul(mG[i],scaleG);
                if(!dG){        // done, we know that the gcd is constant
                    mpz_set_ui(gcd[0],1);
                    dG=0;
                    goto cleanandexit;
                }
                if(dG<maxd){
                    CGALRS_mpz_set_pn(m,p_prime());
                    maxd=dG;
                    p.clear();
                    p.push_back(mG);
                    mod[0]=p_prime();
                    modsize=1;
                    mG=(CGALRS_PN*)palloc((1+maxd)*sizeof(CGALRS_PN));
                    // TODO: clean the  CGALRS_PN* that are in p
                }else{
                    if(dG==maxd){
                        CGALRS_mpz_mul_pn(m,m,p_prime());
                        if(modsize==modalloc){
                            modalloc*=2;
                            mod=(CGALRS_PN*)
                                prealloc(mod,modalloc*sizeof(CGALRS_PN));
                        }
                        mod[modsize]=p_prime();
                        ++modsize;
                        p.push_back(mG);
                        mG=(CGALRS_PN*)palloc((1+maxd)*sizeof(CGALRS_PN));
                    }
                }
            }

            pcra(gcd,mod,p,maxd,modsize);

            cleanandexit:

            CGALRS_PFREE(mA);
            CGALRS_PFREE(mB);
            CGALRS_PFREE(mG);
            CGALRS_PFREE(mod);
            // TODO: clean the CGALRS_PN* that are in p
            for(i=0;i<=degA;++i)
                mpz_clear(A[i]);
            for(i=0;i<=degB;++i)
                mpz_clear(B[i]);
            mpz_clear(m);
            mpz_clear(bound);
            mpz_clear(lcgcd);
            free(A);
            free(B);

            memrelease();

            return dG;
        };

}; // class Ugcd

} // namespace RS_MGCD
} // namespace CGAL

#endif  // CGAL_RS__UGCD_H