/usr/include/CGAL/QP_solution.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 | // Copyright (c) 1997-2007 ETH Zurich (Switzerland).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licenseges holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Kaspar Fischer
// : Bernd Gaertner <gaertner@inf.ethz.ch>
// : Sven Schoenherr
// : Franz Wessendorp
#ifndef CGAL_QP_SOLUTION_H
#define CGAL_QP_SOLUTION_H
#include <iostream>
#include <vector>
#include <CGAL/basic.h>
#include <CGAL/Handle_for.h>
#include <CGAL/function_objects.h>
#include <CGAL/Algebraic_structure_traits.h>
#include <boost/bind.hpp>
#include <boost/function.hpp>
#include <boost/iterator/counting_iterator.hpp>
#include <boost/iterator/transform_iterator.hpp>
namespace CGAL {
// forward references
template <typename Q, typename ET, typename Tags>
class QP_solver;
namespace QP_solution_detail {
template <typename ET>
class Quotient_normalizer;
template <typename ET>
class Value_by_index;
template <typename ET>
class Unbounded_direction_by_index;
template <typename ET>
class Lambda_by_index;
}
// global status type
enum Quadratic_program_status
{
QP_UPDATE,
QP_INFEASIBLE,
QP_UNBOUNDED,
QP_OPTIMAL
};
// abstract base class of all QP-solvers
// -------------------------------------
template <class ET>
class QP_solver_base
{
public:
// types
typedef CGAL::Creator_2< ET, ET, Quotient<ET> >
U_Quotient_creator; // unnormalized quotient creator ET x ET -> (ET, ET)
typedef QP_solution_detail::Quotient_normalizer<ET>
Quotient_normalizer; // normalizer (ET, ET) -> (ET, ET)
typedef boost::function1< Quotient<ET>, ET >
Quotient_maker;
typedef std::vector<int>
Indices;
typedef Indices::iterator
Index_mutable_iterator;
typedef Indices::const_iterator
Index_const_iterator;
typedef typename QP_solution_detail::Value_by_index<ET> Value_by_index;
typedef typename boost::transform_iterator
<Value_by_index, boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t> >
Variable_numerator_iterator;
typedef boost::transform_iterator
<Quotient_maker, Variable_numerator_iterator>
Variable_value_iterator;
typedef typename QP_solution_detail::Unbounded_direction_by_index<ET>
Unbounded_direction_by_index;
typedef boost::transform_iterator
<Unbounded_direction_by_index, boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t> >
Unbounded_direction_iterator;
typedef typename QP_solution_detail::Lambda_by_index<ET>
Lambda_by_index;
typedef boost::transform_iterator
<Lambda_by_index, boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t> >
Lambda_numerator_iterator;
typedef boost::transform_iterator
<Quotient_maker,Lambda_numerator_iterator>
Lambda_iterator;
public:
// virtual access functions to solution that will
// be overridden by QP_solver below
// Solution
// --------
virtual ET solution_numerator() const = 0;
virtual ET solution_denominator() const = 0;
Quotient<ET> solution( ) const
{
// workaround to please Boost 1.33.1:
ET n = solution_numerator();
ET d = solution_denominator();
return
boost::bind
(Quotient_normalizer(), boost::bind
(U_Quotient_creator(), _1, _2))
(n, d);
// (solution_numerator(), solution_denominator());
}
virtual Quadratic_program_status status() const = 0;
virtual int iterations() const = 0;
// Variable values
// ---------------
virtual ET variable_numerator_value (int i) const = 0;
virtual const ET& variables_common_denominator( ) const = 0;
virtual int number_of_variables() const = 0;
// value type ET
Variable_numerator_iterator
original_variables_numerator_begin( ) const
{ return Variable_numerator_iterator
(boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t>(0),
Value_by_index(this));}
Variable_numerator_iterator
original_variables_numerator_end ( ) const
{ return Variable_numerator_iterator
(boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t>(number_of_variables()) ,
Value_by_index(this));}
// value type Quotient<ET>
Variable_value_iterator
original_variable_values_begin( ) const
{ return Variable_value_iterator
(original_variables_numerator_begin(),
boost::bind
(boost::bind
(Quotient_normalizer(), boost::bind
(U_Quotient_creator(), _1, _2)), _1, variables_common_denominator()));
}
Variable_value_iterator
original_variable_values_end ( ) const
{ return Variable_value_iterator
(original_variables_numerator_end(),
boost::bind
(boost::bind
(Quotient_normalizer(), boost::bind
(U_Quotient_creator(), _1, _2)), _1, variables_common_denominator()));
}
// Basic variables and constraints
// -------------------------------
virtual Index_const_iterator
basic_original_variable_indices_begin() const = 0;
virtual Index_const_iterator
basic_original_variable_indices_end() const = 0;
virtual int number_of_basic_original_variables() const = 0;
virtual Index_const_iterator
basic_constraint_indices_begin() const = 0;
virtual Index_const_iterator
basic_constraint_indices_end() const = 0;
virtual int number_of_basic_constraints() const = 0;
// Unboundedness
// -------------
virtual ET unbounded_direction_value(int i) const = 0;
Unbounded_direction_iterator unbounded_direction_begin() const
{ return Unbounded_direction_iterator
(boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t>(0),
Unbounded_direction_by_index(this));}
// Returns the past-the-end iterator corresponding to
// unbounded_direction_begin().
Unbounded_direction_iterator unbounded_direction_end() const
{ return Unbounded_direction_iterator
(boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t>(number_of_variables()),
Unbounded_direction_by_index(this));}
// Optimality
// ----------
virtual ET lambda_numerator(int i) const = 0;
virtual int number_of_constraints() const = 0;
// value type ET
Lambda_numerator_iterator
lambda_numerator_begin() const
{ return Lambda_numerator_iterator
(boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t>(0),
Lambda_by_index(this));}
Lambda_numerator_iterator
lambda_numerator_end() const
{ return Lambda_numerator_iterator
(boost::counting_iterator<std::size_t,boost::use_default,std::ptrdiff_t>(number_of_constraints()),
Lambda_by_index(this));}
// value type Quotient<ET>
Lambda_iterator
lambda_begin() const
{
return Lambda_iterator
(lambda_numerator_begin(),
boost::bind
(boost::bind
(Quotient_normalizer(), boost::bind
(U_Quotient_creator(), _1, _2)), _1, variables_common_denominator()));
}
Lambda_iterator
lambda_end() const
{
return Lambda_iterator
(lambda_numerator_end(),
boost::bind
(boost::bind
(Quotient_normalizer(), boost::bind
(U_Quotient_creator(), _1, _2)), _1, variables_common_denominator()));
}
// destruction
// -----------
virtual ~QP_solver_base() {}
};
// Quadratic_program_solution class: a handle for QP_solver_base<ET>
// -----------------------------------------------------------------
template <class ET_>
class Quadratic_program_solution: Handle_for<const QP_solver_base<ET_>*>
{
public:
typedef ET_ ET;
// interface types
// ===============
// variable values / indices
// -------------------------
typedef typename QP_solver_base<ET>::Variable_value_iterator
Variable_value_iterator;
typedef typename QP_solver_base<ET>::Variable_numerator_iterator
Variable_numerator_iterator;
typedef typename QP_solver_base<ET>::Index_const_iterator
Index_iterator;
// certificates
// ------------
typedef typename QP_solver_base<ET>::Unbounded_direction_iterator
Unboundedness_certificate_iterator;
typedef
typename QP_solver_base<ET>::Lambda_numerator_iterator
Optimality_certificate_numerator_iterator;
typedef typename QP_solver_base<ET>::Lambda_iterator
Optimality_certificate_iterator;
typedef typename QP_solver_base<ET>::Lambda_numerator_iterator
Infeasibility_certificate_iterator;
// methods
// -------
Quadratic_program_solution ()
: Handle_for<const QP_solver_base<ET>*>(), et0(0)
{
*(this->ptr()) = 0; // unitialized solution
}
Quadratic_program_solution (const QP_solver_base<ET>* s)
: Handle_for<const QP_solver_base<ET>*>(s), et0(0)
{}
Quadratic_program_solution&
operator= (const Quadratic_program_solution& sol)
{
if (this != &sol) {
// delete the old solver if necessary
if (!this->is_shared()) delete *(this->ptr());
this->Handle_for<const QP_solver_base<ET>*>::operator=(sol);
}
return *this;
}
~Quadratic_program_solution()
{
if (!this->is_shared()) delete *(this->ptr());
}
private:
const QP_solver_base<ET>* solver() const
{
return *(this->Ptr());
}
public:
bool is_void() const
{
return solver() == 0;
}
Quotient<ET> objective_value() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return solver()->solution();
}
ET objective_value_numerator() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return solver()->solution_numerator();
}
ET objective_value_denominator() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return solver()->solution_denominator();
}
Quadratic_program_status status() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return solver()->status();
}
bool is_optimal() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return status() == QP_OPTIMAL;
}
bool is_infeasible() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return status() == QP_INFEASIBLE;
}
bool is_unbounded() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return status() == QP_UNBOUNDED;
}
int number_of_iterations() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return solver()->iterations();
}
Variable_value_iterator variable_values_begin() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return solver()->original_variable_values_begin();
}
Variable_value_iterator variable_values_end() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return solver()->original_variable_values_end();
}
Variable_numerator_iterator variable_numerators_begin() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return solver()->original_variables_numerator_begin();
}
Variable_numerator_iterator variable_numerators_end() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return solver()->original_variables_numerator_end();
}
const ET& variables_common_denominator() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return solver()->variables_common_denominator();
}
Index_iterator basic_variable_indices_begin() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return solver()->basic_original_variable_indices_begin();
}
Index_iterator basic_variable_indices_end() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return solver()->basic_original_variable_indices_end();
}
int number_of_basic_variables() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return solver()->number_of_basic_original_variables();
}
Index_iterator basic_constraint_indices_begin() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return solver()->basic_constraint_indices_begin();
}
Index_iterator basic_constraint_indices_end() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return solver()->basic_constraint_indices_end();
}
int number_of_basic_constraints() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
return solver()->number_of_basic_constraints();
}
Optimality_certificate_numerator_iterator
optimality_certificate_numerators_begin() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
CGAL_qpe_assertion(status() == QP_OPTIMAL);
return solver()->lambda_numerator_begin();
}
Optimality_certificate_numerator_iterator
optimality_certificate_numerators_end() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
CGAL_qpe_assertion(status() == QP_OPTIMAL);
return solver()->lambda_numerator_end();
}
Optimality_certificate_iterator
optimality_certificate_begin() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
CGAL_qpe_assertion(status() == QP_OPTIMAL);
return solver()->lambda_begin();
}
Optimality_certificate_iterator
optimality_certificate_end() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
CGAL_qpe_assertion(status() == QP_OPTIMAL);
return solver()->lambda_end();
}
// infeasibility
// -------------
Infeasibility_certificate_iterator
infeasibility_certificate_begin() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
CGAL_qpe_assertion(status() == QP_INFEASIBLE);
return solver()->lambda_numerator_begin();
}
Infeasibility_certificate_iterator
infeasibility_certificate_end() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
CGAL_qpe_assertion(status() == QP_INFEASIBLE);
return solver()->lambda_numerator_end();
}
// unboundedness
// -------------
Unboundedness_certificate_iterator unboundedness_certificate_begin() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
CGAL_qpe_assertion(status() == QP_UNBOUNDED);
return solver()->unbounded_direction_begin();
}
Unboundedness_certificate_iterator unboundedness_certificate_end() const
{
CGAL_qpe_assertion_msg(!is_void(), "Solution not initialized");
CGAL_qpe_assertion(status() == QP_UNBOUNDED);
return solver()->unbounded_direction_end();
}
private:
ET et0; // 0
// validity
// --------
// error message returned by failing validation
std::string err_msg;
// the error message is set by the following function
bool error (const std::string& message)
{
err_msg = message;
return false;
}
public:
bool is_valid() const
{
return err_msg.empty();
}
const std::string& get_error() const
{
return err_msg;
}
// these four methods use the certificates to validate the solution
// of all four program types; in case this fails, the solution becomes
// invalid (and this explains why the methods are non-const)
template <class QuadraticProgram>
bool solves_quadratic_program
(const QuadraticProgram& qp)
{ return solves_program(qp, Tag_false(), Tag_false()); }
template <class LinearProgram>
bool solves_linear_program
(const LinearProgram& lp)
{ return solves_program(lp, Tag_true(), Tag_false()); }
template <class NonnegativeQuadraticProgram>
bool solves_nonnegative_quadratic_program
(const NonnegativeQuadraticProgram& qp)
{ return solves_program(qp, Tag_false(), Tag_true()); }
template <class NonnegativeLinearProgram>
bool solves_nonnegative_linear_program
(const NonnegativeLinearProgram& lp)
{ return solves_program(lp, Tag_true(), Tag_true()); }
// helper used by all four validation methods above; see
// QP_solver/QP_solution_impl.h for its implementation
template <class Program, typename Is_linear, typename Is_nonnegative>
bool solves_program (const Program& p,
Is_linear is_linear, Is_nonnegative is_nonnegative);
private:
// helpers used by the previous method
template <typename Program>
bool is_feasible (const Program& p,
typename std::vector<ET>& ax_minus_b,
Tag_true /*is_nonnegative*/);
template <typename Program>
bool is_feasible (const Program& p,
typename std::vector<ET>& ax_minus_b,
Tag_false /*is_nonnegative*/);
template <typename Program>
bool is_optimal_1 (const Program& p);
template <typename Program>
bool is_optimal_2 (const Program& p,
const typename std::vector<ET>& ax_minus_b);
template <typename Program>
bool is_optimal_3 (const Program& p, typename std::vector<ET>& two_Dx,
Tag_true /*is_linear*/, Tag_true /*is_nonnegative*/);
template <typename Program>
bool is_optimal_3 (const Program& p, typename std::vector<ET>& two_Dx,
Tag_false /*is_linear*/, Tag_true /*is_nonnegative*/);
template <typename Program>
bool is_optimal_3 (const Program& p, typename std::vector<ET>& two_Dx,
Tag_true /*is_linear*/, Tag_false /*is_nonnegative*/);
template <typename Program>
bool is_optimal_3 (const Program& p, typename std::vector<ET>& two_Dx,
Tag_false /*is_linear*/, Tag_false /*is_nonnegative*/);
template <typename Program>
bool is_infeasible_1 (const Program& p);
template <typename Program>
bool is_infeasible_2 (const Program& p,
typename std::vector<ET>& lambda_a,
Tag_true /*is_nonnegative*/);
template <typename Program>
bool is_infeasible_2 (const Program& p,
typename std::vector<ET>& lambda_a,
Tag_false /*is_nonnegative*/);
template <typename Program>
bool is_infeasible_3 (const Program& p,
const typename std::vector<ET>& /*lambda_a*/,
Tag_true /*is_nonnegative*/);
template <typename Program>
bool is_infeasible_3 (const Program& p,
const typename std::vector<ET>& lambda_a,
Tag_false /*is_nonnegative*/);
template <typename Program>
bool is_unbounded_1 (const Program& p);
template <typename Program>
bool is_unbounded_2 (const Program& p, Tag_true /*is_nonnegative*/);
template <typename Program>
bool is_unbounded_2 (const Program& p, Tag_false /*is_nonnegative*/);
template <typename Program>
bool is_unbounded_3 (const Program& p, Tag_true /*is_linear*/);
template <typename Program>
bool is_unbounded_3 (const Program& p, Tag_false /*is_linear*/);
template <typename Program>
bool is_value_correct
(const Program& p, typename std::vector<ET>& /*two_Dx*/,
Tag_true /*is_linear*/);
template <typename Program>
bool is_value_correct
(const Program& p, typename std::vector<ET>& two_Dx,
Tag_false /*is_linear*/);
template <typename Program>
bool are_constraints_feasible
(const Program& p, typename std::vector<ET>& ax);
template <typename Program>
bool are_bounds_feasible (const Program& p, Tag_true /*is_nonnegative*/);
template <typename Program>
bool are_bounds_feasible (const Program& p, Tag_false /*is_nonnegative*/);
template <typename Program, typename Z_iterator >
void add_Az
(const Program& p, Z_iterator z, typename std::vector<ET>& v);
template <typename Program, typename Z_iterator >
void add_two_Dz
(const Program& p, Z_iterator z, typename std::vector<ET>& v);
template <typename Program, typename Z_iterator >
void add_zA
(const Program& p, Z_iterator z, typename std::vector<ET>& v);
template <typename Program>
void add_c
(const Program& p, typename std::vector<ET>& v);
};
// output
template <typename ET>
std::ostream& operator<<
(std::ostream& o, const Quadratic_program_solution<ET>& s)
{
o << "status: ";
switch (s.status()) {
case QP_INFEASIBLE:
return o << "INFEASIBLE\n";
case QP_UNBOUNDED:
return o << "UNBOUNDED\n";
case QP_OPTIMAL:
o << "OPTIMAL\n";
break;
default:
CGAL_qpe_assertion(false);
}
o << "objective value: " << s.objective_value() << "\n";
o << "variable values:\n";
int j=0;
for ( typename Quadratic_program_solution<ET>::Variable_value_iterator
it = s.variable_values_begin();
it < s.variable_values_end(); ++it, ++j)
o << " " << j << ": " << *it << "\n";
return o;
}
// Details
namespace QP_solution_detail {
// Quotient_normalizer
// -------------------
template < typename ET>
class Quotient_normalizer {
public:
typedef CGAL::Quotient<ET> result_type;
private:
typedef CGAL::Algebraic_structure_traits<ET> AST;
typedef typename AST::Algebraic_category Category;
public:
typedef CGAL::Boolean_tag<
CGAL::is_same_or_derived<CGAL::Unique_factorization_domain_tag,Category>::value>
Has_gcd;
typedef CGAL::Boolean_tag<
CGAL::is_same_or_derived<CGAL::Integral_domain_tag,Category>::value>
Has_exact_division;
CGAL::Quotient<ET> normalize
(const CGAL::Quotient<ET>& q,
Tag_true /*has_gcd*/,
Tag_true /*has_exact_division*/) const
{
if (CGAL::is_zero (q.numerator()))
return CGAL::Quotient<ET>(ET(0), ET(1));
ET gcd = CGAL::gcd (q.numerator(), q.denominator());
return CGAL::Quotient<ET>
(CGAL::integral_division (q.numerator(), gcd),
CGAL::integral_division (q.denominator(), gcd));
}
CGAL::Quotient<ET> normalize
(const CGAL::Quotient<ET>& q,
Tag_true /*has_gcd*/,
Tag_false /*has_exact_division*/) const
{
return q;
}
CGAL::Quotient<ET> normalize
(const CGAL::Quotient<ET>& q,
Tag_false /*has_gcd*/,
Tag_true /*has_exact_division*/) const
{
return q;
}
CGAL::Quotient<ET> normalize
(const CGAL::Quotient<ET>& q,
Tag_false /*has_gcd*/,
Tag_false /*has_exact_division*/) const
{
return q;
}
CGAL::Quotient<ET> operator() (const CGAL::Quotient<ET>& q) const
{
return normalize (q, Has_gcd(), Has_exact_division());
}
};
// Value_by_index
// --------------
template < typename ET>
class Value_by_index : public std::unary_function< std::size_t, ET>
{
public:
typedef QP_solver_base<ET> QP;
typedef ET result_type;
Value_by_index(const QP* solver)
: s (solver)
{}
// returns value * denominator
result_type operator () ( std::size_t i) const
{
return s->variable_numerator_value(static_cast<int>(i));
}
const QP* s;
};
// Unbounded_direction_by_index
// ----------------------------
template < typename ET>
class Unbounded_direction_by_index : public std::unary_function< std::size_t, ET>
{
public:
typedef QP_solver_base<ET> QP;
typedef ET result_type;
Unbounded_direction_by_index(const QP* solver)
: s (solver)
{}
result_type operator () ( std::size_t i) const
{
return s->unbounded_direction_value(static_cast<int>(i));
}
const QP* s;
};
// Lambda_by_index
// ---------------
template < typename ET>
class Lambda_by_index : public std::unary_function< std::size_t, ET>
{
public:
typedef QP_solver_base<ET> QP;
typedef ET result_type;
Lambda_by_index(const QP* solver)
: s (solver)
{}
result_type operator () ( std::size_t i) const
{
return s->lambda_numerator(static_cast<int>(i));
}
const QP* s;
};
}
} //namespace CGAL
#include <CGAL/QP_solver/QP_solution_impl.h>
#endif// CGAL_QP_SOLUTION_H
|