This file is indexed.

/usr/include/CGAL/Kernel_d/PointHd.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
// Copyright (c) 2000,2001  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
// Author(s)     : Michael Seel

#ifndef CGAL_POINTHDXXX_H
#define CGAL_POINTHDXXX_H 

#include <CGAL/basic.h>
#include <CGAL/Origin.h>
#include <CGAL/Quotient.h>
#include <CGAL/Kernel_d/Tuple_d.h>
#include <CGAL/Kernel_d/VectorHd.h> 
#include <CGAL/Kernel_d/Aff_transformationHd.h>


namespace CGAL {
#define PointHd PointHd2

template <class RT, class LA> class PointHd;
template <class RT, class LA>
std::istream& operator>>(std::istream&, PointHd<RT,LA>&);
template <class RT, class LA>
std::ostream& operator<<(std::ostream&, const PointHd<RT,LA>&);


/*{\Moptions outfile=Point_d.man}*/
/*{\Manpage {Point_d} {R} {Points in d-space} {p}}*/
/*{\Msubst 
Hd<RT,LA>#_d<R>
PointHd#Point_d
Quotient<RT>#FT
}*/

template <class _RT, class _LA > 
class PointHd : public Handle_for< Tuple_d<_RT,_LA> > { 
  typedef Tuple_d<_RT,_LA> Tuple;
  typedef Handle_for<Tuple> Base;
  typedef PointHd<_RT,_LA> Self;

  using Base::ptr;

/*{\Mdefinition 
An instance of data type |\Mname| is a point of Euclidean space in
dimension $d$. A point $p = (p_0,\ldots,p_{ d - 1 })$ in
$d$-dimensional space can be represented by homogeneous coordinates
$(h_0,h_1,\ldots,h_d)$ of number type |RT| such that $p_i = h_i/h_d$,
which is of type |FT|. The homogenizing coordinate $h_d$ is positive.

We call $p_i$, $0 \leq i < d$ the $i$-th Cartesian coordinate and
$h_i$, $0 \le i \le d$, the $i$-th homogeneous coordinate. We call $d$
the dimension of the point.}*/

const typename _LA::Vector& vector_rep() const { return ptr()->v; }
_RT& entry(int i) { return ptr()->v[i]; }
const _RT& entry(int i) const { return ptr()->v[i]; }
void invert_rep() { ptr()->invert(); }
PointHd(const Base& b) : Base(b) {}

public: 
/*{\Mtypes 4}*/

typedef _RT RT;
/*{\Mtypemember the ring type.}*/
typedef Quotient<_RT> FT;
/*{\Mtypemember the field type.}*/
typedef _LA LA;
/*{\Mtypemember the linear algebra layer.}*/
typedef typename Tuple::Cartesian_const_iterator Cartesian_const_iterator;
/*{\Mtypemember a read-only iterator for the cartesian coordinates.}*/
typedef typename Tuple::const_iterator Homogeneous_const_iterator;
/*{\Mtypemember a read-only iterator for the homogeneous coordinates.}*/

friend class VectorHd<RT,LA>;
friend class HyperplaneHd<RT,LA>;

/*{\Mcreation 4}*/

PointHd(int d = 0) 
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in 
$d$-dimensional space.}*/
  : Base( Tuple(d+1) ) 
{ if ( d > 0 ) entry(d) = 1; }

PointHd(int d, const Origin&) 
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in 
$d$-dimensional space, initialized to the origin.}*/
  : Base( Tuple(d+1) )
{ entry(d) = 1; }

template <class InputIterator>
PointHd(int d, InputIterator first, InputIterator last) 
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in
dimension |d|.  If |size [first,last) == d| this creates a point with
Cartesian coordinates |set [first,last)|. If |size [first,last) ==
p+1| the range specifies the homogeneous coordinates $|H = set
[first,last)| = (\pm h_0, \pm h_1, \ldots, \pm h_d)$ where the sign
chosen is the sign of $h_d$.  \precond |d| is nonnegative,
|[first,last)| has |d| or |d+1| elements where the last has to be
non-zero, and the value type of |InputIterator| is |RT|.}*/
  : Base( Tuple(d+1,first,last) )
{ RT D = entry(d);
  if ( D == RT(0) ) entry(d) = 1;
  if ( D < RT(0) ) invert_rep();
}

template <class InputIterator>
PointHd (int d, InputIterator first, InputIterator last, 
         const RT& D) 
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in
dimension |d| initialized to the point with homogeneous coordinates as
defined by |H = set [first,last)| and |D|: $(\pm |H[0]|, \pm|H[1]|,
\ldots, \pm|H[d-1]|, \pm|D|)$. The sign chosen is the sign of
$D$. \precond |D| is non-zero, the iterator range defines a $d$-tuple
of |RT|, and the value type of |InputIterator| is |RT|. }*/
  : Base( Tuple(d+1,first,last,D) )
{ CGAL_assertion_msg(D!=RT(0),"PointHd::constructor: D must be nonzero.");
  if (D < RT(0)) invert_rep();
}

PointHd(int x, int y, int w = 1) : Base( Tuple((RT)x,(RT)y,(RT)w) )
{ CGAL_assertion_msg((w != 0),"PointHd::construction: w == 0.");
  if (w < 0) invert_rep();
}

PointHd(const RT& x, const RT& y, const RT& w = 1)
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in 
$2$-dimensional space.}*/ 
  : Base( Tuple(x,y,w,MatchHelper()) )
{ CGAL_assertion_msg((w!=0),"PointHd::construction: w == 0.");
  if (w < 0) invert_rep();
}

PointHd(int x, int y, int z, int w) : 
  Base( Tuple((RT)x,(RT)y,(RT)z,(RT)w) )
{ CGAL_assertion_msg((w!=0),"PointHd::construction: w == 0.");
  if (w < 0) invert_rep();
}

PointHd(const RT& x, const RT& y, const RT& z, const RT& w) 
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in 
$3$-dimensional space.}*/
  : Base( Tuple(x,y,z,w) )
{ CGAL_assertion_msg((w!=0),"PointHd::construction: w == 0.");
  if (w < 0) invert_rep();
}

PointHd(const PointHd<RT,LA>& p) : Base(p) {}
~PointHd() {}     

/*{\Moperations 4 3}*/

int dimension() const  { return ptr()->size()-1; }
/*{\Mop  returns the dimension of |\Mvar|. }*/

Quotient<RT> cartesian(int i) const
/*{\Mop returns the $i$-th Cartesian coordinate of |\Mvar|. 
   \precond $0 \leq i < d$.}*/
{ CGAL_assertion_msg((0<=i && i<dimension()),"PointHd::cartesian():\
  index out of range.");
  return Quotient<RT>(entry(i), entry(dimension())); 
}

Quotient<RT> operator[](int i) const  { return cartesian(i); }
/*{\Marrop returns the $i$-th Cartesian coordinate of |\Mvar|.
   \precond $0 \leq i < d$.}*/

RT homogeneous(int i) const 
/*{\Mop  returns the $i$-th homogeneous coordinate of |\Mvar|.
   \precond $0 \leq i \leq d$.}*/
{ CGAL_assertion_msg((0<=i && i<=(dimension())), 
    "PointHd::homogeneous():index out of range.");
  return entry(i);
}

Cartesian_const_iterator cartesian_begin() const 
/*{\Mop returns an iterator pointing to the zeroth Cartesian coordinate 
$p_0$ of |\Mvar|. }*/
{ return Cartesian_const_iterator(ptr()->begin(),ptr()->last()); }

Cartesian_const_iterator cartesian_end() const 
/*{\Mop returns an iterator pointing beyond the last Cartesian coordinate 
of |\Mvar|. }*/
{ return Cartesian_const_iterator(ptr()->last(),ptr()->last()); }

Homogeneous_const_iterator homogeneous_begin() const 
/*{\Mop returns an iterator pointing to the zeroth homogeneous coordinate 
$h_0$ of |\Mvar|. }*/
{ return ptr()->begin(); }

Homogeneous_const_iterator homogeneous_end() const 
/*{\Mop returns an iterator pointing beyond the last homogeneous coordinate 
of |\Mvar|. }*/
{ return ptr()->end(); }

PointHd<RT,LA> transform(const Aff_transformationHd<RT,LA>& t) const; 
/*{\Mop returns $t(p)$. }*/

/*{\Mtext \headerline{Arithmetic Operators, Tests and IO}}*/

inline VectorHd<RT,LA> operator-(const Origin& o) const; 
/*{\Mbinop  returns the vector $\vec{0p}$.}*/

VectorHd<RT,LA> operator-(const PointHd<RT,LA>& q) const 
/*{\Mbinop  returns $p - q$. \precond |p.dimension() == q.dimension()|.}*/
{ VectorHd<RT,LA> res(dimension()); 
  res.ptr()->homogeneous_sub(ptr(),q.ptr());
  return res; 
}

PointHd<RT,LA> operator+(const VectorHd<RT,LA>& v) const; 
/*{\Mbinop  returns $p + v$. \precond |p.dimension() == v.dimension()|.}*/

PointHd<RT,LA> operator-(const VectorHd<RT,LA>& v) const; 
/*{\Mbinop  returns $p - v$. \precond |p.dimension() == v.dimension()|.}*/

PointHd<RT,LA>& operator+=(const VectorHd<RT,LA>& v); 
/*{\Mbinop  adds |v| to |p|.\\
\precond |p.dimension() == v.dimension()|. }*/

PointHd<RT,LA>& operator-=(const VectorHd<RT,LA>& v); 
/*{\Mbinop  subtracts |v| from |p|.\\
\precond |p.dimension() == v.dimension()|. }*/

static Comparison_result cmp(
  const PointHd<RT,LA>& p1, const PointHd<RT,LA>& p2)
{ Compare_homogeneously<RT,LA> cmpobj;
  return cmpobj(p1.vector_rep(),p2.vector_rep());
}

bool operator==(const PointHd<RT,LA>& q) const
{ if (this->identical(q)) return true;
  if (dimension()!=q.dimension()) return false;
  return cmp(*this,q) == EQUAL; 
}

bool operator!=(const PointHd<RT,LA>& q) const
{ return !(*this==q); }

bool operator==(const Origin&) const
/*{\Mbinop returns true if |\Mvar| is the origin. }*/
{ for (int i = 0; i < dimension(); i++)
    if (homogeneous(i) != RT(0)) return false;
  return true;
}

friend std::istream& operator>> <>
  (std::istream&, PointHd<RT,LA>&);
friend std::ostream& operator<< <> 
  (std::ostream&, const PointHd<RT,LA>&);
/*{\Mtext \headerline{Downward compatibility}
We provide operations of the lower dimensional interface |x()|, |y()|,
|z()|, |hx()|, |hy()|, |hz()|, |hw()|.}*/

RT hx() const { return homogeneous(0); }
RT hy() const { return homogeneous(1); }
RT hz() const { return homogeneous(2); }
RT hw() const { return homogeneous(dimension()); }
Quotient<RT> x()  const { return Quotient<RT>(hx(),hw()); }
Quotient<RT> y()  const { return Quotient<RT>(hy(),hw()); }
Quotient<RT> z()  const { return Quotient<RT>(hz(),hw()); }


}; // PointHd


/*{\Mimplementation 
Points are implemented by arrays of |RT| items.  All operations like
creation, initialization, tests, point - vector arithmetic, input and
output on a point $p$ take time $O(|p.dimension()|)$. |dimension()|,
coordinate access and conversions take constant time.  The space
requirement for points is $O(|p.dimension()|)$.}*/

#undef PointHd 
} //namespace CGAL
#endif // CGAL_POINTHD_H 
//----------------------- end of file ----------------------------------