This file is indexed.

/usr/include/CGAL/Kernel_d/DirectionHd.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// Copyright (c) 2000,2001  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Michael Seel

#ifndef CGAL_DIRECTIONHD_H
#define CGAL_DIRECTIONHD_H

#include <CGAL/basic.h>
#include <CGAL/Quotient.h>
#include <CGAL/Kernel_d/Tuple_d.h> 
#include <CGAL/Kernel_d/PointHd.h>
#include <CGAL/Kernel_d/VectorHd.h>
#include <CGAL/Kernel_d/Aff_transformationHd.h>

namespace CGAL {

template <class RT, class LA> class DirectionHd;
template <class RT, class LA>
std::istream& operator>>(std::istream&, DirectionHd<RT,LA>&);
template <class RT, class LA>
std::ostream& operator<<(std::ostream&, const DirectionHd<RT,LA>&);

/*{\Manpage{Direction_d}{R}{Directions in d-space}{dir}}*/
/*{\Msubst 
Hd<RT,LA>#_d<R>
VectorHd#Vector_d
DirectionHd#Direction_d
Quotient<RT>#FT
}*/

template <class _RT, class _LA>
class DirectionHd : public Handle_for< Tuple_d<_RT,_LA> > { 
  typedef Tuple_d<_RT,_LA> Tuple;
  typedef Handle_for<Tuple> Base;
  typedef DirectionHd<_RT,_LA> Self;

  using Base::ptr;

/*{\Mdefinition 
A |DirectionHd| is a vector in the $d$-dimensional vector space
where we forget about its length. We represent directions in
$d$-dimensional space as a tuple $(h_0,\ldots,h_d)$ of variables of
type |RT| which we call the homogeneous coordinates of the
direction. The coordinate $h_d$ must be positive.  The Cartesian
coordinates of a direction are $c_i = h_i/h_d$ for $0 \le i < d$,
which are of type |Quotient<RT>|.  Two directions are equal if their
Cartesian coordinates are positive multiples of each other. Directions
are in one-to-one correspondence to points on the unit sphere.}*/

const typename _LA::Vector& vector_rep() const { return ptr()->v; }
_RT& entry(int i) { return ptr()->v[i]; }
const _RT& entry(int i) const { return ptr()->v[i]; }
void invert_rep() { ptr()->invert(); }

public: 
/*{\Mtypes 4}*/

typedef _RT RT;
/*{\Mtypemember the ring type.}*/
typedef Quotient<_RT> FT;
/*{\Mtypemember the field type.}*/
typedef _LA LA;
/*{\Mtypemember the linear algebra layer.}*/
typedef typename Tuple::const_iterator Delta_const_iterator;
/*{\Mtypemember a read-only iterator for the deltas of |\Mvar|.}*/

class Base_direction {};
/*{\Mtypemember construction tag.}*/

friend class VectorHd<RT,LA>; 

/*{\Mcreation 4}*/

DirectionHd(int d = 0) : Base( Tuple(d+1) )  
/*{\Mcreate introduces a variable |\Mvar| of type |DirectionHd<RT,LA>| 
initialized to some direction in $d$-dimensional space.}*/
{ if (d>0) entry(d) = 1; }

DirectionHd(const VectorHd<RT,LA>& v);
/*{\Mcreate introduces a variable |\Mvar| of type |DirectionHd<RT,LA>| 
initialized to the direction of |v|.}*/

template <class InputIterator>
DirectionHd(int d, InputIterator first, InputIterator last) : 
  Base( Tuple(d+1,first,last,1) ) {}
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in dimension |d|
with representation tuple |set [first,last)|. \precond |d| is
nonnegative, |[first,last)| has |d| elements and the value type of 
|InputIterator| is |RT|.}*/

DirectionHd(int d, Base_direction, int i) : Base( Tuple(d+1) )
/*{\Mcreate returns a variable |\Mvar| of type |\Mname| initialized  
to the direction of the $i$-th base vector of dimension $d$.
\precond $0 \leq i < d$.}*/
{ entry(d) = 1; 
  if ( d==0 ) return;
  CGAL_assertion_msg((0<=i&&i<d), "DirectionHd::base: index out of range.");
  entry(i) = 1;
}

DirectionHd(const RT& x, const RT& y) : Base( Tuple(x,y,1) ) {}
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in 
$2$-dimensional space. }*/

DirectionHd(int a, int b) : 
  Base( Tuple(RT(a),RT(b),RT(1),MatchHelper()) ) {}

DirectionHd(const RT& x, const RT& y, const RT& z) : 
  Base( Tuple(x,y,z,1) ) {}
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in 
$3$-dimensional space. }*/

DirectionHd(int a, int b, int c) : 
  Base( Tuple(RT(a),RT(b),RT(c),RT(1)) ) {}

DirectionHd(const DirectionHd<RT,LA>& p) : Base(p)  {}
~DirectionHd() {}     

/*{\Moperations 5 3}*/

int dimension() const { return ptr()->size()-1; }
/*{\Mop returns the dimension of |\Mvar|. }*/ 

RT delta(int i) const  

/*{\Mop returns the $i$-th component of |\Mvar|. 
   \precond $0 \leq i < d$.}*/
{ CGAL_assertion_msg((0<=i && i<(dimension())), "DirectionHd::delta():\
  index out of range.");
  return entry(i);
}

RT D() { return entry(dimension()); }

RT operator[](int i) const  
/*{\Marrop returns the $i$-th delta of |\Mvar|. 
\precond $0 \leq i < d$.}*/
{ return delta(i); }

Delta_const_iterator deltas_begin() const { return ptr()->begin(); }
/*{\Mop  returns an iterator pointing to the first delta of |\Mvar|. }*/
Delta_const_iterator deltas_end() const { return ptr()->last(); }
/*{\Mop  returns an iterator pointing beyond the last delta of |\Mvar|. }*/

VectorHd<RT,LA> vector() const; 
/*{\Mop returns a vector pointing in direction |\Mvar|. }*/

bool  is_degenerate() const 
/*{\Mop returns true iff |\Mvar.vector()| is the zero vector.}*/
{ for (int i=0; i<dimension(); ++i) 
   if ( delta(i) != RT(0) ) return false;
  return true; }

DirectionHd<RT,LA> transform(const Aff_transformationHd<RT,LA>& t) const; 
/*{\Mop returns $t(p)$. }*/
DirectionHd<RT,LA>  opposite() const
/*{\Mop returns the direction opposite to |\Mvar|. }*/
{ DirectionHd<RT,LA> result(*this); // creates a copied object!
  result.copy_on_write(); // creates a copied object!
  result.ptr()->invert(dimension()); 
  return result; 
}

DirectionHd<RT,LA>  operator- () const
/*{\Munop returns the direction opposite to |\Mvar|.}*/
{ return opposite(); }

static Comparison_result cmp(
  const DirectionHd<RT,LA>& h1, const DirectionHd<RT,LA>& h2); 
bool operator==(const DirectionHd<RT,LA>& w) const
{ if ( this->identical(w) ) return true;
  if ( dimension()!=w.dimension() ) return false;
  return (DirectionHd<RT,LA>::cmp(*this,w) == EQUAL); 
}

bool operator!=(const DirectionHd<RT,LA>& w) const
{ return !operator==(w); }

/*{\Mtext \headerline{Downward compatibility}
We provide all operations of the lower dimensional interface |dx()|,
|dy()|, |dz()|.}*/
RT dx() const { return delta(0); }
RT dy() const { return delta(1); }
RT dz() const { return delta(2); }

friend std::istream& operator>> <>
  (std::istream& I, DirectionHd<RT,LA>& d);
friend std::ostream& operator<< <>
  (std::ostream& O, const DirectionHd<RT,LA>& d);

}; // end of class DirectionHd


/*{\Mimplementation 
Directions are implemented by arrays of integers as an item type.  All
operations like creation, initialization, tests, inversion, input and
output on a direction $d$ take time $O(|d.dimension()|)$. |dimension()|,
coordinate access and conversion take constant time.  The space
requirement is $O(|d.dimension()|)$.  }*/



} //namespace CGAL
#endif // CGAL_DIRECTIONHD_H
//----------------------- end of file ----------------------------------