This file is indexed.

/usr/include/CGAL/Compact_container.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
// Copyright (c) 2003,2004,2007-2010  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s)     : Sylvain Pion

#ifndef CGAL_COMPACT_CONTAINER_H
#define CGAL_COMPACT_CONTAINER_H

#include <CGAL/basic.h>
#include <CGAL/Default.h>

#include <iterator>
#include <algorithm>
#include <vector>
#include <cstring>

#include <CGAL/memory.h>
#include <CGAL/iterator.h>

#include <boost/mpl/if.hpp>

// An STL like container with the following properties :
// - to achieve compactness, it requires access to a pointer stored in T,
//   specified by a traits.  This pointer is supposed to be 4 bytes aligned
//   when the object is alive, otherwise, the container uses the 2 least
//   significant bits to store information in the pointer.
// - Ts are allocated in arrays of increasing size, which are linked together
//   by their first and last element.
// - the iterator looks at the famous 2 bits to know if it has to deal with
//   a free/used/boundary element.

// TODO :
// - Add .resize() (and proper copy of capacity_).
// - Add preconditions in input that real pointers need to have clean bits.
//   Also for the allocated memory alignment, and sizeof().
// - Do a benchmark before/after.
// - Check the end result with Valgrind.
// - The bit squatting mechanism will be reused for the conflict flag, maybe
//   it could be put out of the class.

// TODO low priority :
// - rebind<> the allocator
// - Exception safety guarantees
// - Thread safety guarantees
// - std requirements on iterators says all defined operations are constant
//   time amortized (it's not true here, maybe it could be with some work...)
// - all this is expected especially when there are not so many free objects
//   compared to the allocated elements.
// - Should block_size be selectable/hintable by .reserve() ?
// - would be nice to have a temporary_free_list (still active elements, but
//   which are going to be freed soon).  Probably it prevents compactness.
// - eventually something to copy this data structure, providing a way to
//   update the pointers (give access to a hash_map, at least a function that
//   converts an old pointer to the new one ?).  Actually it doesn't have to
//   be stuck to a particular DS, because for a list it's useful too...
// - Currently, end() can be invalidated on insert() if a new block is added.
//   It would be nice to fix this.  We could insert the new block at the
//   beginning instead ?  That would drop the property that iterator order
//   is preserved.  Maybe it's not a problem if end() is not preserved, after
//   all nothing is going to dereference it, it's just for comparing with
//   end() that it can be a problem.
//   Another way would be to have end() point to the end of an always
//   empty block (containing no usable element), and insert new blocks just
//   before this one.
//   Instead of having the blocks linked between them, the start/end pointers
//   could point back to the container, so that we can do more interesting
//   things (e.g. freeing empty blocks automatically) ?

namespace CGAL {

#define CGAL_INIT_COMPACT_CONTAINER_BLOCK_SIZE 14
#define CGAL_INCREMENT_COMPACT_CONTAINER_BLOCK_SIZE 16 
  
// The following base class can be used to easily add a squattable pointer
// to a class (maybe you loose a bit of compactness though).
// TODO : Shouldn't adding these bits be done automatically and transparently,
//        based on the traits class info ?
class Compact_container_base
{
  void * p;
public:
  Compact_container_base()
  : p(NULL) {}
  void *   for_compact_container() const { return p; }
  void * & for_compact_container()       { return p; }
};

// The traits class describes the way to access the pointer.
// It can be specialized.
template < class T >
struct Compact_container_traits {
  static void *   pointer(const T &t) { return t.for_compact_container(); }
  static void * & pointer(T &t)       { return t.for_compact_container(); }
};

namespace internal {
  template < class DSC, bool Const >
  class CC_iterator;
}

template < class T, class Allocator_ = Default >
class Compact_container
{
  typedef Allocator_                                Al;
  typedef typename Default::Get< Al, CGAL_ALLOCATOR(T) >::type Allocator;
  typedef Compact_container <T, Al>                 Self;
  typedef Compact_container_traits <T>              Traits;
public:
  typedef T                                         value_type;
  typedef Allocator                                 allocator_type;
  typedef typename Allocator::reference             reference;
  typedef typename Allocator::const_reference       const_reference;
  typedef typename Allocator::pointer               pointer;
  typedef typename Allocator::const_pointer         const_pointer;
  typedef typename Allocator::size_type             size_type;
  typedef typename Allocator::difference_type       difference_type;
  typedef internal::CC_iterator<Self, false>        iterator;
  typedef internal::CC_iterator<Self, true>         const_iterator;
  typedef std::reverse_iterator<iterator>           reverse_iterator;
  typedef std::reverse_iterator<const_iterator>     const_reverse_iterator;

  friend class internal::CC_iterator<Self, false>;
  friend class internal::CC_iterator<Self, true>;

  explicit Compact_container(const Allocator &a = Allocator())
  : alloc(a)
  {
    init();
  }

  template < class InputIterator >
  Compact_container(InputIterator first, InputIterator last,
                    const Allocator & a = Allocator())
  : alloc(a)
  {
    init();
    std::copy(first, last, CGAL::inserter(*this));
  }

  // The copy constructor and assignment operator preserve the iterator order
  Compact_container(const Compact_container &c)
  : alloc(c.get_allocator())
  {
    init();
    block_size = c.block_size;
    std::copy(c.begin(), c.end(), CGAL::inserter(*this));
  }

  Compact_container & operator=(const Compact_container &c)
  {
    if (&c != this) {
      Self tmp(c);
      swap(tmp);
    }
    return *this;
  }

  ~Compact_container()
  {
    clear();
  }

  void swap(Self &c)
  {
    std::swap(alloc, c.alloc);
    std::swap(capacity_, c.capacity_);
    std::swap(size_, c.size_);
    std::swap(block_size, c.block_size);
    std::swap(first_item, c.first_item);
    std::swap(last_item, c.last_item);
    std::swap(free_list, c.free_list);
    all_items.swap(c.all_items);
  }

  iterator begin() { return iterator(first_item, 0, 0); }
  iterator end()   { return iterator(last_item, 0); }

  const_iterator begin() const { return const_iterator(first_item, 0, 0); }
  const_iterator end()   const { return const_iterator(last_item, 0); }

  reverse_iterator rbegin() { return reverse_iterator(end()); }
  reverse_iterator rend()   { return reverse_iterator(begin()); }

  const_reverse_iterator
  rbegin() const { return const_reverse_iterator(end()); }
  const_reverse_iterator
  rend()   const { return const_reverse_iterator(begin()); }

  // Boost.Intrusive interface
  iterator iterator_to(reference value) const {
    return iterator(&value, 0);
  }
  const_iterator iterator_to(const_reference value) const {
    return const_iterator(&value, 0);
  }
  static iterator s_iterator_to(reference value) {
    return iterator(&value, 0);
  }
  static const_iterator s_iterator_to(const_reference value) {
    return const_iterator(&value, 0);
  }

  // Special insert methods that construct the objects in place
  // (just forward the arguments to the constructor, to optimize a copy).
#ifndef CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES
  template < typename... Args >
  iterator
  emplace(const Args&... args)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(args...);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    return iterator(ret, 0);
  }
#else
  // inserts a default constructed item.
  iterator emplace()
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type();
    CGAL_assertion(type(ret) == USED);
    ++size_;
    return iterator(ret, 0);
  }

  template < typename T1 >
  iterator
  emplace(const T1 &t1)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(t1);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    return iterator(ret, 0);
  }

  template < typename T1, typename T2 >
  iterator
  emplace(const T1 &t1, const T2 &t2)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(t1, t2);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    return iterator(ret, 0);
  }

  template < typename T1, typename T2, typename T3 >
  iterator
  emplace(const T1 &t1, const T2 &t2, const T3 &t3)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(t1, t2, t3);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    return iterator(ret, 0);
  }

  template < typename T1, typename T2, typename T3, typename T4 >
  iterator
  emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(t1, t2, t3, t4);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    return iterator(ret, 0);
  }

  template < typename T1, typename T2, typename T3, typename T4, typename T5 >
  iterator
  emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4,
	  const T5 &t5)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(t1, t2, t3, t4, t5);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    return iterator(ret, 0);
  }

  template < typename T1, typename T2, typename T3, typename T4,
             typename T5, typename T6 >
  iterator
  emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4,
          const T5 &t5, const T6 &t6)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(t1, t2, t3, t4, t5, t6);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    return iterator(ret, 0);
  }

  template < typename T1, typename T2, typename T3, typename T4,
             typename T5, typename T6, typename T7 >
  iterator
  emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4,
          const T5 &t5, const T6 &t6, const T7 &t7)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(t1, t2, t3, t4, t5, t6, t7);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    return iterator(ret, 0);
  }

  template < typename T1, typename T2, typename T3, typename T4,
             typename T5, typename T6, typename T7, typename T8 >
  iterator
  emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4,
          const T5 &t5, const T6 &t6, const T7 &t7, const T8 &t8)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(t1, t2, t3, t4, t5, t6, t7, t8);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    return iterator(ret, 0);
  }
#endif // CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES

  iterator insert(const T &t)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    alloc.construct(ret, t);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    return iterator(ret, 0);
  }

  template < class InputIterator >
  void insert(InputIterator first, InputIterator last)
  {
    for (; first != last; ++first)
      insert(*first);
  }

  template < class InputIterator >
  void assign(InputIterator first, InputIterator last)
  {
    clear(); // erase(begin(), end()); // ?
    insert(first, last);
  }

  void erase(iterator x)
  {
    CGAL_precondition(type(&*x) == USED);
    alloc.destroy(&*x);
#ifndef CGAL_NO_ASSERTIONS
    std::memset(&*x, 0, sizeof(T));
#endif
    put_on_free_list(&*x);
    --size_;
  }

  void erase(iterator first, iterator last) {
    while (first != last)
      erase(first++);
  }

  void clear();

  // Merge the content of d into *this.  d gets cleared.
  // The complexity is O(size(free list = capacity-size)).
  void merge(Self &d);

  size_type size() const
  {
    CGAL_expensive_assertion(size_ ==
                             (size_type) std::distance(begin(), end()));
    return size_;
  }

  size_type max_size() const
  {
    return alloc.max_size();
  }

  size_type capacity() const
  {
    return capacity_;
  }

  // void resize(size_type sz, T c = T()); // TODO  makes sense ???

  bool empty() const
  {
    return size_ == 0;
  }

  allocator_type get_allocator() const
  {
    return alloc;
  }

  // Returns whether the iterator "cit" is in the range [begin(), end()].
  // Complexity : O(#blocks) = O(sqrt(capacity())).
  // This function is mostly useful for purposes of efficient debugging at
  // higher levels.
  bool owns(const_iterator cit) const
  {
    // We use the block structure to provide an efficient version :
    // we check if the address is in the range of each block,
    // and then test whether it is valid (not a free element).

    if (cit == end())
      return true;

    const_pointer c = &*cit;

    for (typename All_items::const_iterator it = all_items.begin(), itend = all_items.end();
         it != itend; ++it) {
      const_pointer p = it->first;
      size_type s = it->second;

      // Are we in the address range of this block (excluding first and last
      // elements) ?
      if (c <= p || (p+s-1) <= c)
        continue;

      CGAL_assertion_msg( (c-p)+p == c, "wrong alignment of iterator");

      return type(c) == USED;
    }
    return false;
  }

  bool owns_dereferencable(const_iterator cit) const
  {
    return cit != end() && owns(cit);
  }

  /** Reserve method to ensure that the capacity of the Compact_container be
   * greater or equal than a given value n.
   */ 
  void reserve(size_type n)
  {
    if ( capacity_>=n ) return;
    size_type tmp = block_size;
    block_size = (std::max)( n - capacity_, block_size );
    allocate_new_block();
    block_size = tmp+CGAL_INCREMENT_COMPACT_CONTAINER_BLOCK_SIZE;
  }
  
private:

  void allocate_new_block();

  void put_on_free_list(pointer x)
  {
    set_type(x, free_list, FREE);
    free_list = x;
  }

  // Definition of the bit squatting :
  // =================================
  // ptr is composed of a pointer part and the last 2 bits.
  // Here is the meaning of each of the 8 cases.
  //
  //                          value of the last 2 bits as "Type"
  // pointer part     0              1                2              3
  //         NULL     user elt       unused           free_list end  start/end
  //      != NULL     user elt       block boundary   free elt       unused
  //
  // meaning of ptr : user stuff     next/prev block  free_list      unused

  enum Type { USED = 0, BLOCK_BOUNDARY = 1, FREE = 2, START_END = 3 };

  // The bit squatting is implemented by casting pointers to (char *), then
  // subtracting to NULL, doing bit manipulations on the resulting integer,
  // and converting back.

  static char * clean_pointer(char * p)
  {
    return ((p - (char *) NULL) & ~ (std::ptrdiff_t) START_END) + (char *) NULL;
  }

  // Returns the pointee, cleaned up from the squatted bits.
  static pointer clean_pointee(const_pointer ptr)
  {
    return (pointer) clean_pointer((char *) Traits::pointer(*ptr));
  }

  // Get the type of the pointee.
  static Type type(const_pointer ptr)
  {
    char * p = (char *) Traits::pointer(*ptr);
    return (Type) (p - clean_pointer(p));
  }

  // Sets the pointer part and the type of the pointee.
  static void set_type(pointer ptr, void * p, Type t)
  {
    // This out of range compare is always true and causes lots of
    // unnecessary warnings.
    // CGAL_precondition(0 <= t && t < 4); 
    Traits::pointer(*ptr) = (void *) ((clean_pointer((char *) p)) + (int) t);
  }

  // We store a vector of pointers to all allocated blocks and their sizes.
  // Knowing all pointers, we don't have to walk to the end of a block to reach
  // the pointer to the next block.
  // Knowing the sizes allows to deallocate() without having to compute the size
  // by walking through the block till its end.
  // This opens up the possibility for the compiler to optimize the clear()
  // function considerably when has_trivial_destructor<T>.
  typedef std::vector<std::pair<pointer, size_type> >  All_items;

  void init()
  {
    block_size = CGAL_INIT_COMPACT_CONTAINER_BLOCK_SIZE;
    capacity_  = 0;
    size_      = 0;
    free_list  = NULL;
    first_item = NULL;
    last_item  = NULL;
    all_items  = All_items();
  }

  allocator_type   alloc;
  size_type        capacity_;
  size_type        size_;
  size_type        block_size;
  pointer          free_list;
  pointer          first_item;
  pointer          last_item;
  All_items        all_items;
};

template < class T, class Allocator >
void Compact_container<T, Allocator>::merge(Self &d)
{
  CGAL_precondition(&d != this);

  // Allocators must be "compatible" :
  CGAL_precondition(get_allocator() == d.get_allocator());

  // Concatenate the free_lists.
  if (free_list == NULL) {
    free_list = d.free_list;
  } else if (d.free_list != NULL) {
    pointer p = free_list;
    while (clean_pointee(p) != NULL)
      p = clean_pointee(p);
    set_type(p, d.free_list, FREE);
  }
  // Concatenate the blocks.
  if (last_item == NULL) { // empty...
    first_item = d.first_item;
    last_item  = d.last_item;
  } else if (d.last_item != NULL) {
    set_type(last_item, d.first_item, BLOCK_BOUNDARY);
    set_type(d.first_item, last_item, BLOCK_BOUNDARY);
    last_item = d.last_item;
  }
  // Add the sizes.
  size_ += d.size_;
  // Add the capacities.
  capacity_ += d.capacity_;
  // It seems reasonnable to take the max of the block sizes.
  block_size = (std::max)(block_size, d.block_size);
  // Clear d.
  d.init();
}

template < class T, class Allocator >
void Compact_container<T, Allocator>::clear()
{
  for (typename All_items::iterator it = all_items.begin(), itend = all_items.end();
       it != itend; ++it) {
    pointer p = it->first;
    size_type s = it->second;
    for (pointer pp = p + 1; pp != p + s - 1; ++pp) {
      if (type(pp) == USED)
        alloc.destroy(pp);
    }
    alloc.deallocate(p, s);
  }
  init();
}

template < class T, class Allocator >
void Compact_container<T, Allocator>::allocate_new_block()
{
  pointer new_block = alloc.allocate(block_size + 2);
  all_items.push_back(std::make_pair(new_block, block_size + 2));
  capacity_ += block_size;
  // We don't touch the first and the last one.
  // We mark them free in reverse order, so that the insertion order
  // will correspond to the iterator order...
  for (size_type i = block_size; i >= 1; --i)
    put_on_free_list(new_block + i);
  // We insert this new block at the end.
  if (last_item == NULL) // First time
  {
      first_item = new_block;
      last_item  = new_block + block_size + 1;
      set_type(first_item, NULL, START_END);
  }
  else
  {
      set_type(last_item, new_block, BLOCK_BOUNDARY);
      set_type(new_block, last_item, BLOCK_BOUNDARY);
      last_item = new_block + block_size + 1;
  }
  set_type(last_item, NULL, START_END);
  // Increase the block_size for the next time.
  block_size += CGAL_INCREMENT_COMPACT_CONTAINER_BLOCK_SIZE;
}

template < class T, class Allocator >
inline
bool operator==(const Compact_container<T, Allocator> &lhs,
                const Compact_container<T, Allocator> &rhs)
{
  return lhs.size() == rhs.size() &&
    std::equal(lhs.begin(), lhs.end(), rhs.begin());
}

template < class T, class Allocator >
inline
bool operator!=(const Compact_container<T, Allocator> &lhs,
                const Compact_container<T, Allocator> &rhs)
{
  return ! (lhs == rhs);
}

template < class T, class Allocator >
inline
bool operator< (const Compact_container<T, Allocator> &lhs,
                const Compact_container<T, Allocator> &rhs)
{
  return std::lexicographical_compare(lhs.begin(), lhs.end(),
                                      rhs.begin(), rhs.end());
}

template < class T, class Allocator >
inline
bool operator> (const Compact_container<T, Allocator> &lhs,
                const Compact_container<T, Allocator> &rhs)
{
  return rhs < lhs;
}

template < class T, class Allocator >
inline
bool operator<=(const Compact_container<T, Allocator> &lhs,
                const Compact_container<T, Allocator> &rhs)
{
  return ! (lhs > rhs);
}

template < class T, class Allocator >
inline
bool operator>=(const Compact_container<T, Allocator> &lhs,
                const Compact_container<T, Allocator> &rhs)
{
  return ! (lhs < rhs);
}

namespace internal {

  template < class DSC, bool Const >
  class CC_iterator
  {
    typedef typename DSC::iterator                    iterator;
    typedef CC_iterator<DSC, Const>                   Self;
  public:
    typedef typename DSC::value_type                  value_type;
    typedef typename DSC::size_type                   size_type;
    typedef typename DSC::difference_type             difference_type;
    typedef typename boost::mpl::if_c< Const, const value_type*,
                                       value_type*>::type pointer;
    typedef typename boost::mpl::if_c< Const, const value_type&,
                                       value_type&>::type reference;
    typedef std::bidirectional_iterator_tag           iterator_category;

    // the initialization with NULL is required by our Handle concept.
    CC_iterator()
    {
      m_ptr.p = NULL;
    }

    // Either a harmless copy-ctor,
    // or a conversion from iterator to const_iterator.
    CC_iterator (const iterator &it)
    {
      m_ptr.p = &(*it);
    }

    // Same for assignment operator (otherwise MipsPro warns)
    CC_iterator & operator= (const iterator &it)
    {
      m_ptr.p = &(*it);
      return *this;
    }

    // Construction from NULL
    CC_iterator (Nullptr_t CGAL_assertion_code(n))
    {
      CGAL_assertion (n == NULL);
      m_ptr.p = NULL;
    }

  private:

    union {
      pointer      p;
      void        *vp;
    } m_ptr;

    // Only Compact_container should access these constructors.
    friend class Compact_container<value_type, typename DSC::Al>;

    // For begin()
    CC_iterator(pointer ptr, int, int)
    {
      m_ptr.p = ptr;
      if (m_ptr.p == NULL) // empty container.
        return;

      ++(m_ptr.p); // if not empty, p = start
      if (DSC::type(m_ptr.p) == DSC::FREE)
        increment();
    }

    // Construction from raw pointer and for end().
    CC_iterator(pointer ptr, int)
    {
      m_ptr.p = ptr;
    }

    // NB : in case empty container, begin == end == NULL.
    void increment()
    {
      // It's either pointing to end(), or valid.
      CGAL_assertion_msg(m_ptr.p != NULL,
	 "Incrementing a singular iterator or an empty container iterator ?");
      CGAL_assertion_msg(DSC::type(m_ptr.p) != DSC::START_END,
	 "Incrementing end() ?");

      // If it's not end(), then it's valid, we can do ++.
      do {
        ++(m_ptr.p);
        if (DSC::type(m_ptr.p) == DSC::USED ||
            DSC::type(m_ptr.p) == DSC::START_END)
          return;

        if (DSC::type(m_ptr.p) == DSC::BLOCK_BOUNDARY)
          m_ptr.p = DSC::clean_pointee(m_ptr.p);
      } while (true);
    }

    void decrement()
    {
      // It's either pointing to end(), or valid.
      CGAL_assertion_msg(m_ptr.p != NULL,
	 "Decrementing a singular iterator or an empty container iterator ?");
      CGAL_assertion_msg(DSC::type(m_ptr.p - 1) != DSC::START_END,
	 "Decrementing begin() ?");

      // If it's not begin(), then it's valid, we can do --.
      do {
        --m_ptr.p;
        if (DSC::type(m_ptr.p) == DSC::USED ||
            DSC::type(m_ptr.p) == DSC::START_END)
          return;

        if (DSC::type(m_ptr.p) == DSC::BLOCK_BOUNDARY)
          m_ptr.p = DSC::clean_pointee(m_ptr.p);
      } while (true);
    }

  public:

    Self & operator++()
    {
      CGAL_assertion_msg(m_ptr.p != NULL,
	 "Incrementing a singular iterator or an empty container iterator ?");
      CGAL_assertion_msg(DSC::type(m_ptr.p) == DSC::USED,
                         "Incrementing an invalid iterator.");
      increment();
      return *this;
    }

    Self & operator--()
    {
      CGAL_assertion_msg(m_ptr.p != NULL,
	 "Decrementing a singular iterator or an empty container iterator ?");
      CGAL_assertion_msg(DSC::type(m_ptr.p) == DSC::USED
		      || DSC::type(m_ptr.p) == DSC::START_END,
                         "Decrementing an invalid iterator.");
      decrement();
      return *this;
    }

    Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
    Self operator--(int) { Self tmp(*this); --(*this); return tmp; }

    reference operator*() const { return *(m_ptr.p); }

    pointer   operator->() const { return (m_ptr.p); }

    // For std::less...
    bool operator<(const CC_iterator& other) const
    {
      return (m_ptr.p < other.m_ptr.p);
    }

    bool operator>(const CC_iterator& other) const
    {
      return (m_ptr.p > other.m_ptr.p);
    }

    bool operator<=(const CC_iterator& other) const
    {
      return (m_ptr.p <= other.m_ptr.p);
    }

    bool operator>=(const CC_iterator& other) const
    {
      return (m_ptr.p >= other.m_ptr.p);
    }

    // Can itself be used for bit-squatting.
    void *   for_compact_container() const { return (m_ptr.vp); }
    void * & for_compact_container()       { return (m_ptr.vp); }
  };

  template < class DSC, bool Const1, bool Const2 >
  inline
  bool operator==(const CC_iterator<DSC, Const1> &rhs,
                  const CC_iterator<DSC, Const2> &lhs)
  {
    return &*rhs == &*lhs;
  }

  template < class DSC, bool Const1, bool Const2 >
  inline
  bool operator!=(const CC_iterator<DSC, Const1> &rhs,
                  const CC_iterator<DSC, Const2> &lhs)
  {
    return &*rhs != &*lhs;
  }

  // Comparisons with NULL are part of CGAL's Handle concept...
  template < class DSC, bool Const >
  inline
  bool operator==(const CC_iterator<DSC, Const> &rhs,
                  Nullptr_t CGAL_assertion_code(n))
  {
    CGAL_assertion( n == NULL);
    return &*rhs == NULL;
  }

  template < class DSC, bool Const >
  inline
  bool operator!=(const CC_iterator<DSC, Const> &rhs,
		  Nullptr_t CGAL_assertion_code(n))
  {
    CGAL_assertion( n == NULL);
    return &*rhs != NULL;
  }

} // namespace internal

} //namespace CGAL

#endif // CGAL_COMPACT_CONTAINER_H