/usr/include/CGAL/Compact_container.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 | // Copyright (c) 2003,2004,2007-2010 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Sylvain Pion
#ifndef CGAL_COMPACT_CONTAINER_H
#define CGAL_COMPACT_CONTAINER_H
#include <CGAL/basic.h>
#include <CGAL/Default.h>
#include <iterator>
#include <algorithm>
#include <vector>
#include <cstring>
#include <CGAL/memory.h>
#include <CGAL/iterator.h>
#include <boost/mpl/if.hpp>
// An STL like container with the following properties :
// - to achieve compactness, it requires access to a pointer stored in T,
// specified by a traits. This pointer is supposed to be 4 bytes aligned
// when the object is alive, otherwise, the container uses the 2 least
// significant bits to store information in the pointer.
// - Ts are allocated in arrays of increasing size, which are linked together
// by their first and last element.
// - the iterator looks at the famous 2 bits to know if it has to deal with
// a free/used/boundary element.
// TODO :
// - Add .resize() (and proper copy of capacity_).
// - Add preconditions in input that real pointers need to have clean bits.
// Also for the allocated memory alignment, and sizeof().
// - Do a benchmark before/after.
// - Check the end result with Valgrind.
// - The bit squatting mechanism will be reused for the conflict flag, maybe
// it could be put out of the class.
// TODO low priority :
// - rebind<> the allocator
// - Exception safety guarantees
// - Thread safety guarantees
// - std requirements on iterators says all defined operations are constant
// time amortized (it's not true here, maybe it could be with some work...)
// - all this is expected especially when there are not so many free objects
// compared to the allocated elements.
// - Should block_size be selectable/hintable by .reserve() ?
// - would be nice to have a temporary_free_list (still active elements, but
// which are going to be freed soon). Probably it prevents compactness.
// - eventually something to copy this data structure, providing a way to
// update the pointers (give access to a hash_map, at least a function that
// converts an old pointer to the new one ?). Actually it doesn't have to
// be stuck to a particular DS, because for a list it's useful too...
// - Currently, end() can be invalidated on insert() if a new block is added.
// It would be nice to fix this. We could insert the new block at the
// beginning instead ? That would drop the property that iterator order
// is preserved. Maybe it's not a problem if end() is not preserved, after
// all nothing is going to dereference it, it's just for comparing with
// end() that it can be a problem.
// Another way would be to have end() point to the end of an always
// empty block (containing no usable element), and insert new blocks just
// before this one.
// Instead of having the blocks linked between them, the start/end pointers
// could point back to the container, so that we can do more interesting
// things (e.g. freeing empty blocks automatically) ?
namespace CGAL {
#define CGAL_INIT_COMPACT_CONTAINER_BLOCK_SIZE 14
#define CGAL_INCREMENT_COMPACT_CONTAINER_BLOCK_SIZE 16
// The following base class can be used to easily add a squattable pointer
// to a class (maybe you loose a bit of compactness though).
// TODO : Shouldn't adding these bits be done automatically and transparently,
// based on the traits class info ?
class Compact_container_base
{
void * p;
public:
Compact_container_base()
: p(NULL) {}
void * for_compact_container() const { return p; }
void * & for_compact_container() { return p; }
};
// The traits class describes the way to access the pointer.
// It can be specialized.
template < class T >
struct Compact_container_traits {
static void * pointer(const T &t) { return t.for_compact_container(); }
static void * & pointer(T &t) { return t.for_compact_container(); }
};
namespace internal {
template < class DSC, bool Const >
class CC_iterator;
}
template < class T, class Allocator_ = Default >
class Compact_container
{
typedef Allocator_ Al;
typedef typename Default::Get< Al, CGAL_ALLOCATOR(T) >::type Allocator;
typedef Compact_container <T, Al> Self;
typedef Compact_container_traits <T> Traits;
public:
typedef T value_type;
typedef Allocator allocator_type;
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type difference_type;
typedef internal::CC_iterator<Self, false> iterator;
typedef internal::CC_iterator<Self, true> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
friend class internal::CC_iterator<Self, false>;
friend class internal::CC_iterator<Self, true>;
explicit Compact_container(const Allocator &a = Allocator())
: alloc(a)
{
init();
}
template < class InputIterator >
Compact_container(InputIterator first, InputIterator last,
const Allocator & a = Allocator())
: alloc(a)
{
init();
std::copy(first, last, CGAL::inserter(*this));
}
// The copy constructor and assignment operator preserve the iterator order
Compact_container(const Compact_container &c)
: alloc(c.get_allocator())
{
init();
block_size = c.block_size;
std::copy(c.begin(), c.end(), CGAL::inserter(*this));
}
Compact_container & operator=(const Compact_container &c)
{
if (&c != this) {
Self tmp(c);
swap(tmp);
}
return *this;
}
~Compact_container()
{
clear();
}
void swap(Self &c)
{
std::swap(alloc, c.alloc);
std::swap(capacity_, c.capacity_);
std::swap(size_, c.size_);
std::swap(block_size, c.block_size);
std::swap(first_item, c.first_item);
std::swap(last_item, c.last_item);
std::swap(free_list, c.free_list);
all_items.swap(c.all_items);
}
iterator begin() { return iterator(first_item, 0, 0); }
iterator end() { return iterator(last_item, 0); }
const_iterator begin() const { return const_iterator(first_item, 0, 0); }
const_iterator end() const { return const_iterator(last_item, 0); }
reverse_iterator rbegin() { return reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator
rbegin() const { return const_reverse_iterator(end()); }
const_reverse_iterator
rend() const { return const_reverse_iterator(begin()); }
// Boost.Intrusive interface
iterator iterator_to(reference value) const {
return iterator(&value, 0);
}
const_iterator iterator_to(const_reference value) const {
return const_iterator(&value, 0);
}
static iterator s_iterator_to(reference value) {
return iterator(&value, 0);
}
static const_iterator s_iterator_to(const_reference value) {
return const_iterator(&value, 0);
}
// Special insert methods that construct the objects in place
// (just forward the arguments to the constructor, to optimize a copy).
#ifndef CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES
template < typename... Args >
iterator
emplace(const Args&... args)
{
if (free_list == NULL)
allocate_new_block();
pointer ret = free_list;
free_list = clean_pointee(ret);
new (ret) value_type(args...);
CGAL_assertion(type(ret) == USED);
++size_;
return iterator(ret, 0);
}
#else
// inserts a default constructed item.
iterator emplace()
{
if (free_list == NULL)
allocate_new_block();
pointer ret = free_list;
free_list = clean_pointee(ret);
new (ret) value_type();
CGAL_assertion(type(ret) == USED);
++size_;
return iterator(ret, 0);
}
template < typename T1 >
iterator
emplace(const T1 &t1)
{
if (free_list == NULL)
allocate_new_block();
pointer ret = free_list;
free_list = clean_pointee(ret);
new (ret) value_type(t1);
CGAL_assertion(type(ret) == USED);
++size_;
return iterator(ret, 0);
}
template < typename T1, typename T2 >
iterator
emplace(const T1 &t1, const T2 &t2)
{
if (free_list == NULL)
allocate_new_block();
pointer ret = free_list;
free_list = clean_pointee(ret);
new (ret) value_type(t1, t2);
CGAL_assertion(type(ret) == USED);
++size_;
return iterator(ret, 0);
}
template < typename T1, typename T2, typename T3 >
iterator
emplace(const T1 &t1, const T2 &t2, const T3 &t3)
{
if (free_list == NULL)
allocate_new_block();
pointer ret = free_list;
free_list = clean_pointee(ret);
new (ret) value_type(t1, t2, t3);
CGAL_assertion(type(ret) == USED);
++size_;
return iterator(ret, 0);
}
template < typename T1, typename T2, typename T3, typename T4 >
iterator
emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4)
{
if (free_list == NULL)
allocate_new_block();
pointer ret = free_list;
free_list = clean_pointee(ret);
new (ret) value_type(t1, t2, t3, t4);
CGAL_assertion(type(ret) == USED);
++size_;
return iterator(ret, 0);
}
template < typename T1, typename T2, typename T3, typename T4, typename T5 >
iterator
emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4,
const T5 &t5)
{
if (free_list == NULL)
allocate_new_block();
pointer ret = free_list;
free_list = clean_pointee(ret);
new (ret) value_type(t1, t2, t3, t4, t5);
CGAL_assertion(type(ret) == USED);
++size_;
return iterator(ret, 0);
}
template < typename T1, typename T2, typename T3, typename T4,
typename T5, typename T6 >
iterator
emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4,
const T5 &t5, const T6 &t6)
{
if (free_list == NULL)
allocate_new_block();
pointer ret = free_list;
free_list = clean_pointee(ret);
new (ret) value_type(t1, t2, t3, t4, t5, t6);
CGAL_assertion(type(ret) == USED);
++size_;
return iterator(ret, 0);
}
template < typename T1, typename T2, typename T3, typename T4,
typename T5, typename T6, typename T7 >
iterator
emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4,
const T5 &t5, const T6 &t6, const T7 &t7)
{
if (free_list == NULL)
allocate_new_block();
pointer ret = free_list;
free_list = clean_pointee(ret);
new (ret) value_type(t1, t2, t3, t4, t5, t6, t7);
CGAL_assertion(type(ret) == USED);
++size_;
return iterator(ret, 0);
}
template < typename T1, typename T2, typename T3, typename T4,
typename T5, typename T6, typename T7, typename T8 >
iterator
emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4,
const T5 &t5, const T6 &t6, const T7 &t7, const T8 &t8)
{
if (free_list == NULL)
allocate_new_block();
pointer ret = free_list;
free_list = clean_pointee(ret);
new (ret) value_type(t1, t2, t3, t4, t5, t6, t7, t8);
CGAL_assertion(type(ret) == USED);
++size_;
return iterator(ret, 0);
}
#endif // CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES
iterator insert(const T &t)
{
if (free_list == NULL)
allocate_new_block();
pointer ret = free_list;
free_list = clean_pointee(ret);
alloc.construct(ret, t);
CGAL_assertion(type(ret) == USED);
++size_;
return iterator(ret, 0);
}
template < class InputIterator >
void insert(InputIterator first, InputIterator last)
{
for (; first != last; ++first)
insert(*first);
}
template < class InputIterator >
void assign(InputIterator first, InputIterator last)
{
clear(); // erase(begin(), end()); // ?
insert(first, last);
}
void erase(iterator x)
{
CGAL_precondition(type(&*x) == USED);
alloc.destroy(&*x);
#ifndef CGAL_NO_ASSERTIONS
std::memset(&*x, 0, sizeof(T));
#endif
put_on_free_list(&*x);
--size_;
}
void erase(iterator first, iterator last) {
while (first != last)
erase(first++);
}
void clear();
// Merge the content of d into *this. d gets cleared.
// The complexity is O(size(free list = capacity-size)).
void merge(Self &d);
size_type size() const
{
CGAL_expensive_assertion(size_ ==
(size_type) std::distance(begin(), end()));
return size_;
}
size_type max_size() const
{
return alloc.max_size();
}
size_type capacity() const
{
return capacity_;
}
// void resize(size_type sz, T c = T()); // TODO makes sense ???
bool empty() const
{
return size_ == 0;
}
allocator_type get_allocator() const
{
return alloc;
}
// Returns whether the iterator "cit" is in the range [begin(), end()].
// Complexity : O(#blocks) = O(sqrt(capacity())).
// This function is mostly useful for purposes of efficient debugging at
// higher levels.
bool owns(const_iterator cit) const
{
// We use the block structure to provide an efficient version :
// we check if the address is in the range of each block,
// and then test whether it is valid (not a free element).
if (cit == end())
return true;
const_pointer c = &*cit;
for (typename All_items::const_iterator it = all_items.begin(), itend = all_items.end();
it != itend; ++it) {
const_pointer p = it->first;
size_type s = it->second;
// Are we in the address range of this block (excluding first and last
// elements) ?
if (c <= p || (p+s-1) <= c)
continue;
CGAL_assertion_msg( (c-p)+p == c, "wrong alignment of iterator");
return type(c) == USED;
}
return false;
}
bool owns_dereferencable(const_iterator cit) const
{
return cit != end() && owns(cit);
}
/** Reserve method to ensure that the capacity of the Compact_container be
* greater or equal than a given value n.
*/
void reserve(size_type n)
{
if ( capacity_>=n ) return;
size_type tmp = block_size;
block_size = (std::max)( n - capacity_, block_size );
allocate_new_block();
block_size = tmp+CGAL_INCREMENT_COMPACT_CONTAINER_BLOCK_SIZE;
}
private:
void allocate_new_block();
void put_on_free_list(pointer x)
{
set_type(x, free_list, FREE);
free_list = x;
}
// Definition of the bit squatting :
// =================================
// ptr is composed of a pointer part and the last 2 bits.
// Here is the meaning of each of the 8 cases.
//
// value of the last 2 bits as "Type"
// pointer part 0 1 2 3
// NULL user elt unused free_list end start/end
// != NULL user elt block boundary free elt unused
//
// meaning of ptr : user stuff next/prev block free_list unused
enum Type { USED = 0, BLOCK_BOUNDARY = 1, FREE = 2, START_END = 3 };
// The bit squatting is implemented by casting pointers to (char *), then
// subtracting to NULL, doing bit manipulations on the resulting integer,
// and converting back.
static char * clean_pointer(char * p)
{
return ((p - (char *) NULL) & ~ (std::ptrdiff_t) START_END) + (char *) NULL;
}
// Returns the pointee, cleaned up from the squatted bits.
static pointer clean_pointee(const_pointer ptr)
{
return (pointer) clean_pointer((char *) Traits::pointer(*ptr));
}
// Get the type of the pointee.
static Type type(const_pointer ptr)
{
char * p = (char *) Traits::pointer(*ptr);
return (Type) (p - clean_pointer(p));
}
// Sets the pointer part and the type of the pointee.
static void set_type(pointer ptr, void * p, Type t)
{
// This out of range compare is always true and causes lots of
// unnecessary warnings.
// CGAL_precondition(0 <= t && t < 4);
Traits::pointer(*ptr) = (void *) ((clean_pointer((char *) p)) + (int) t);
}
// We store a vector of pointers to all allocated blocks and their sizes.
// Knowing all pointers, we don't have to walk to the end of a block to reach
// the pointer to the next block.
// Knowing the sizes allows to deallocate() without having to compute the size
// by walking through the block till its end.
// This opens up the possibility for the compiler to optimize the clear()
// function considerably when has_trivial_destructor<T>.
typedef std::vector<std::pair<pointer, size_type> > All_items;
void init()
{
block_size = CGAL_INIT_COMPACT_CONTAINER_BLOCK_SIZE;
capacity_ = 0;
size_ = 0;
free_list = NULL;
first_item = NULL;
last_item = NULL;
all_items = All_items();
}
allocator_type alloc;
size_type capacity_;
size_type size_;
size_type block_size;
pointer free_list;
pointer first_item;
pointer last_item;
All_items all_items;
};
template < class T, class Allocator >
void Compact_container<T, Allocator>::merge(Self &d)
{
CGAL_precondition(&d != this);
// Allocators must be "compatible" :
CGAL_precondition(get_allocator() == d.get_allocator());
// Concatenate the free_lists.
if (free_list == NULL) {
free_list = d.free_list;
} else if (d.free_list != NULL) {
pointer p = free_list;
while (clean_pointee(p) != NULL)
p = clean_pointee(p);
set_type(p, d.free_list, FREE);
}
// Concatenate the blocks.
if (last_item == NULL) { // empty...
first_item = d.first_item;
last_item = d.last_item;
} else if (d.last_item != NULL) {
set_type(last_item, d.first_item, BLOCK_BOUNDARY);
set_type(d.first_item, last_item, BLOCK_BOUNDARY);
last_item = d.last_item;
}
// Add the sizes.
size_ += d.size_;
// Add the capacities.
capacity_ += d.capacity_;
// It seems reasonnable to take the max of the block sizes.
block_size = (std::max)(block_size, d.block_size);
// Clear d.
d.init();
}
template < class T, class Allocator >
void Compact_container<T, Allocator>::clear()
{
for (typename All_items::iterator it = all_items.begin(), itend = all_items.end();
it != itend; ++it) {
pointer p = it->first;
size_type s = it->second;
for (pointer pp = p + 1; pp != p + s - 1; ++pp) {
if (type(pp) == USED)
alloc.destroy(pp);
}
alloc.deallocate(p, s);
}
init();
}
template < class T, class Allocator >
void Compact_container<T, Allocator>::allocate_new_block()
{
pointer new_block = alloc.allocate(block_size + 2);
all_items.push_back(std::make_pair(new_block, block_size + 2));
capacity_ += block_size;
// We don't touch the first and the last one.
// We mark them free in reverse order, so that the insertion order
// will correspond to the iterator order...
for (size_type i = block_size; i >= 1; --i)
put_on_free_list(new_block + i);
// We insert this new block at the end.
if (last_item == NULL) // First time
{
first_item = new_block;
last_item = new_block + block_size + 1;
set_type(first_item, NULL, START_END);
}
else
{
set_type(last_item, new_block, BLOCK_BOUNDARY);
set_type(new_block, last_item, BLOCK_BOUNDARY);
last_item = new_block + block_size + 1;
}
set_type(last_item, NULL, START_END);
// Increase the block_size for the next time.
block_size += CGAL_INCREMENT_COMPACT_CONTAINER_BLOCK_SIZE;
}
template < class T, class Allocator >
inline
bool operator==(const Compact_container<T, Allocator> &lhs,
const Compact_container<T, Allocator> &rhs)
{
return lhs.size() == rhs.size() &&
std::equal(lhs.begin(), lhs.end(), rhs.begin());
}
template < class T, class Allocator >
inline
bool operator!=(const Compact_container<T, Allocator> &lhs,
const Compact_container<T, Allocator> &rhs)
{
return ! (lhs == rhs);
}
template < class T, class Allocator >
inline
bool operator< (const Compact_container<T, Allocator> &lhs,
const Compact_container<T, Allocator> &rhs)
{
return std::lexicographical_compare(lhs.begin(), lhs.end(),
rhs.begin(), rhs.end());
}
template < class T, class Allocator >
inline
bool operator> (const Compact_container<T, Allocator> &lhs,
const Compact_container<T, Allocator> &rhs)
{
return rhs < lhs;
}
template < class T, class Allocator >
inline
bool operator<=(const Compact_container<T, Allocator> &lhs,
const Compact_container<T, Allocator> &rhs)
{
return ! (lhs > rhs);
}
template < class T, class Allocator >
inline
bool operator>=(const Compact_container<T, Allocator> &lhs,
const Compact_container<T, Allocator> &rhs)
{
return ! (lhs < rhs);
}
namespace internal {
template < class DSC, bool Const >
class CC_iterator
{
typedef typename DSC::iterator iterator;
typedef CC_iterator<DSC, Const> Self;
public:
typedef typename DSC::value_type value_type;
typedef typename DSC::size_type size_type;
typedef typename DSC::difference_type difference_type;
typedef typename boost::mpl::if_c< Const, const value_type*,
value_type*>::type pointer;
typedef typename boost::mpl::if_c< Const, const value_type&,
value_type&>::type reference;
typedef std::bidirectional_iterator_tag iterator_category;
// the initialization with NULL is required by our Handle concept.
CC_iterator()
{
m_ptr.p = NULL;
}
// Either a harmless copy-ctor,
// or a conversion from iterator to const_iterator.
CC_iterator (const iterator &it)
{
m_ptr.p = &(*it);
}
// Same for assignment operator (otherwise MipsPro warns)
CC_iterator & operator= (const iterator &it)
{
m_ptr.p = &(*it);
return *this;
}
// Construction from NULL
CC_iterator (Nullptr_t CGAL_assertion_code(n))
{
CGAL_assertion (n == NULL);
m_ptr.p = NULL;
}
private:
union {
pointer p;
void *vp;
} m_ptr;
// Only Compact_container should access these constructors.
friend class Compact_container<value_type, typename DSC::Al>;
// For begin()
CC_iterator(pointer ptr, int, int)
{
m_ptr.p = ptr;
if (m_ptr.p == NULL) // empty container.
return;
++(m_ptr.p); // if not empty, p = start
if (DSC::type(m_ptr.p) == DSC::FREE)
increment();
}
// Construction from raw pointer and for end().
CC_iterator(pointer ptr, int)
{
m_ptr.p = ptr;
}
// NB : in case empty container, begin == end == NULL.
void increment()
{
// It's either pointing to end(), or valid.
CGAL_assertion_msg(m_ptr.p != NULL,
"Incrementing a singular iterator or an empty container iterator ?");
CGAL_assertion_msg(DSC::type(m_ptr.p) != DSC::START_END,
"Incrementing end() ?");
// If it's not end(), then it's valid, we can do ++.
do {
++(m_ptr.p);
if (DSC::type(m_ptr.p) == DSC::USED ||
DSC::type(m_ptr.p) == DSC::START_END)
return;
if (DSC::type(m_ptr.p) == DSC::BLOCK_BOUNDARY)
m_ptr.p = DSC::clean_pointee(m_ptr.p);
} while (true);
}
void decrement()
{
// It's either pointing to end(), or valid.
CGAL_assertion_msg(m_ptr.p != NULL,
"Decrementing a singular iterator or an empty container iterator ?");
CGAL_assertion_msg(DSC::type(m_ptr.p - 1) != DSC::START_END,
"Decrementing begin() ?");
// If it's not begin(), then it's valid, we can do --.
do {
--m_ptr.p;
if (DSC::type(m_ptr.p) == DSC::USED ||
DSC::type(m_ptr.p) == DSC::START_END)
return;
if (DSC::type(m_ptr.p) == DSC::BLOCK_BOUNDARY)
m_ptr.p = DSC::clean_pointee(m_ptr.p);
} while (true);
}
public:
Self & operator++()
{
CGAL_assertion_msg(m_ptr.p != NULL,
"Incrementing a singular iterator or an empty container iterator ?");
CGAL_assertion_msg(DSC::type(m_ptr.p) == DSC::USED,
"Incrementing an invalid iterator.");
increment();
return *this;
}
Self & operator--()
{
CGAL_assertion_msg(m_ptr.p != NULL,
"Decrementing a singular iterator or an empty container iterator ?");
CGAL_assertion_msg(DSC::type(m_ptr.p) == DSC::USED
|| DSC::type(m_ptr.p) == DSC::START_END,
"Decrementing an invalid iterator.");
decrement();
return *this;
}
Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
reference operator*() const { return *(m_ptr.p); }
pointer operator->() const { return (m_ptr.p); }
// For std::less...
bool operator<(const CC_iterator& other) const
{
return (m_ptr.p < other.m_ptr.p);
}
bool operator>(const CC_iterator& other) const
{
return (m_ptr.p > other.m_ptr.p);
}
bool operator<=(const CC_iterator& other) const
{
return (m_ptr.p <= other.m_ptr.p);
}
bool operator>=(const CC_iterator& other) const
{
return (m_ptr.p >= other.m_ptr.p);
}
// Can itself be used for bit-squatting.
void * for_compact_container() const { return (m_ptr.vp); }
void * & for_compact_container() { return (m_ptr.vp); }
};
template < class DSC, bool Const1, bool Const2 >
inline
bool operator==(const CC_iterator<DSC, Const1> &rhs,
const CC_iterator<DSC, Const2> &lhs)
{
return &*rhs == &*lhs;
}
template < class DSC, bool Const1, bool Const2 >
inline
bool operator!=(const CC_iterator<DSC, Const1> &rhs,
const CC_iterator<DSC, Const2> &lhs)
{
return &*rhs != &*lhs;
}
// Comparisons with NULL are part of CGAL's Handle concept...
template < class DSC, bool Const >
inline
bool operator==(const CC_iterator<DSC, Const> &rhs,
Nullptr_t CGAL_assertion_code(n))
{
CGAL_assertion( n == NULL);
return &*rhs == NULL;
}
template < class DSC, bool Const >
inline
bool operator!=(const CC_iterator<DSC, Const> &rhs,
Nullptr_t CGAL_assertion_code(n))
{
CGAL_assertion( n == NULL);
return &*rhs != NULL;
}
} // namespace internal
} //namespace CGAL
#endif // CGAL_COMPACT_CONTAINER_H
|