This file is indexed.

/usr/include/CCfits/ColumnVectorData.h is in libccfits-dev 2.4-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
//	Astrophysics Science Division,
//	NASA/ Goddard Space Flight Center
//	HEASARC
//	http://heasarc.gsfc.nasa.gov
//	e-mail: ccfits@legacy.gsfc.nasa.gov
//
//	Original author: Ben Dorman

#ifndef COLUMNVECTORDATA_H
#define COLUMNVECTORDATA_H 1
#ifdef _MSC_VER
#include "MSconfig.h"
#endif
#include "CCfits.h"

// valarray
#include <valarray>
// vector
#include <vector>
// Column
#include "Column.h"
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#ifdef SSTREAM_DEFECT
#include <strstream>
#else
#include <sstream>
#endif

#include <memory>
#include <numeric>
namespace CCfits {

        class Table;

}

#include "FITS.h"
#include "FITSUtil.h"
using std::complex;


namespace CCfits {



  template <typename T>
  class ColumnVectorData : public Column  //## Inherits: <unnamed>%38BAD1D4D370
  {

    public:
        ColumnVectorData(const ColumnVectorData< T > &right);
        ColumnVectorData (Table* p = 0);
        ColumnVectorData (int columnIndex, const string &columnName, ValueType type, const string &format, const string &unit, Table* p, int  rpt = 1, long w = 1, const string &comment = "");
        ~ColumnVectorData();

        virtual void readData (long firstrow, long nelements, long firstelem = 1);
        virtual ColumnVectorData<T>* clone () const;
        virtual void setDimen ();
        void setDataLimits (T* limits);
        const T minLegalValue () const;
        void minLegalValue (T value);
        const T maxLegalValue () const;
        void maxLegalValue (T value);
        const T minDataValue () const;
        void minDataValue (T value);
        const T maxDataValue () const;
        void maxDataValue (T value);
        const std::vector<std::valarray<T> >& data () const;
        void setData (const std::vector<std::valarray<T> >& value);
        const std::valarray<T>& data (int i) const;
        void data (int i, const std::valarray<T>& value);

      // Additional Public Declarations
        friend class Column;
    protected:
      // Additional Protected Declarations

    private:
        ColumnVectorData< T > & operator=(const ColumnVectorData< T > &right);

        virtual bool compare (const Column &right) const;
        void resizeDataObject (const std::vector<std::valarray<T> >& indata, size_t firstRow);
        //	Reads a specified number of column rows.
        //
        //	There are no default arguments. The function
        //	Column::read(firstrow,firstelem,nelements)
        //	 is designed for reading the whole column.
        virtual void readColumnData (long first, long last, T* nullValue = 0);
        virtual std::ostream& put (std::ostream& s) const;
        void writeData (const std::valarray<T>& indata, long numRows, long firstRow = 1, T* nullValue = 0);
        void writeData (const std::vector<std::valarray<T> >& indata, long firstRow = 1, T* nullValue = 0);
        //	Reads a specified number of column rows.
        //
        //	There are no default arguments. The function
        //	Column::read(firstrow,firstelem,nelements)
        //	 is designed for reading the whole column.
        virtual void readRow (size_t row, T* nullValue = 0);
        //	Reads a variable row..
        virtual void readVariableRow (size_t row, T* nullValue = 0);
        void readColumnData (long firstrow, long nelements, long firstelem, T* nullValue = 0);
        void writeData (const std::valarray<T>& indata, const std::vector<long>& vectorLengths, long firstRow = 1, T* nullValue = 0);
        void writeFixedRow (const std::valarray<T>& data, long row, long firstElem = 1, T* nullValue = 0);
        void writeFixedArray (T* data, long nElements, long nRows, long firstRow, T* nullValue = 0);
        //	Insert one or more blank rows into a FITS column.
        virtual void insertRows (long first, long number = 1);
        virtual void deleteRows (long first, long number = 1);
        void doWrite (T* array, long row, long rowSize, long firstElem, T* nullValue);

      // Additional Private Declarations

    private: //## implementation
      // Data Members for Class Attributes
        T m_minLegalValue;
        T m_maxLegalValue;
        T m_minDataValue;
        T m_maxDataValue;

      // Data Members for Associations
        std::vector<std::valarray<T> > m_data;

      // Additional Implementation Declarations

  };

  // Parameterized Class CCfits::ColumnVectorData 

  template <typename T>
  inline void ColumnVectorData<T>::readData (long firstrow, long nelements, long firstelem)
  {
    readColumnData(firstrow,nelements,firstelem,static_cast<T*>(0));
  }

  template <typename T>
  inline const T ColumnVectorData<T>::minLegalValue () const
  {
    return m_minLegalValue;
  }

  template <typename T>
  inline void ColumnVectorData<T>::minLegalValue (T value)
  {
    m_minLegalValue = value;
  }

  template <typename T>
  inline const T ColumnVectorData<T>::maxLegalValue () const
  {
    return m_maxLegalValue;
  }

  template <typename T>
  inline void ColumnVectorData<T>::maxLegalValue (T value)
  {
    m_maxLegalValue = value;
  }

  template <typename T>
  inline const T ColumnVectorData<T>::minDataValue () const
  {
    return m_minDataValue;
  }

  template <typename T>
  inline void ColumnVectorData<T>::minDataValue (T value)
  {
    m_minDataValue = value;
  }

  template <typename T>
  inline const T ColumnVectorData<T>::maxDataValue () const
  {
    return m_maxDataValue;
  }

  template <typename T>
  inline void ColumnVectorData<T>::maxDataValue (T value)
  {
    m_maxDataValue = value;
  }

  template <typename T>
  inline const std::vector<std::valarray<T> >& ColumnVectorData<T>::data () const
  {
    return m_data;
  }

  template <typename T>
  inline void ColumnVectorData<T>::setData (const std::vector<std::valarray<T> >& value)
  {
    m_data = value;
  }

  template <typename T>
  inline const std::valarray<T>& ColumnVectorData<T>::data (int i) const
  {
    return m_data[i - 1];
  }

  template <typename T>
  inline void ColumnVectorData<T>::data (int i, const std::valarray<T>& value)
  {
     if (m_data[i-1].size() != value.size())
        m_data[i-1].resize(value.size());
     m_data[i - 1] = value;
  }

  // Parameterized Class CCfits::ColumnVectorData 

  template <typename T>
  ColumnVectorData<T>::ColumnVectorData(const ColumnVectorData<T> &right)
      :Column(right),
       m_minLegalValue(right.m_minLegalValue),
       m_maxLegalValue(right.m_maxLegalValue),
       m_minDataValue(right.m_minDataValue),
       m_maxDataValue(right.m_maxDataValue),
       m_data(right.m_data)
  {
  }

  template <typename T>
  ColumnVectorData<T>::ColumnVectorData (Table* p)
    : Column(p),
       m_minLegalValue(0),
       m_maxLegalValue(0),
       m_minDataValue(0),
       m_maxDataValue(0),
       m_data() 
  {
  }

  template <typename T>
  ColumnVectorData<T>::ColumnVectorData (int columnIndex, const string &columnName, ValueType type, const string &format, const string &unit, Table* p, int  rpt, long w, const string &comment)
        : Column(columnIndex,columnName,type,format,unit,p,rpt,w,comment),
          m_minLegalValue(0),
          m_maxLegalValue(0),
          m_minDataValue(0),
          m_maxDataValue(0), 
          m_data()
  {
  }


  template <typename T>
  ColumnVectorData<T>::~ColumnVectorData()
  {
  // valarray destructor should do all the work.
  }


  template <typename T>
  bool ColumnVectorData<T>::compare (const Column &right) const
  {
          if ( !Column::compare(right) ) return false;
          const ColumnVectorData<T>& that = static_cast<const ColumnVectorData<T>&>(right);
          size_t n = m_data.size();
          // m_data is of type valarray<T>.
          if ( that.m_data.size() != n ) return false;
          for (size_t i = 0; i < n ; i++)
          {
                size_t nn = m_data[i].size();
                // first check size (also, == on 2 valarrays is only defined if they
                // are equal in size).
                if (that.m_data[i].size() != nn ) return false;

                std::valarray<bool> test = (m_data[i] == that.m_data[i]);
                for (size_t j = 0; j < nn ; j++ ) if ( !test[j] ) return false;
          }
          return true;
  }

  template <typename T>
  ColumnVectorData<T>* ColumnVectorData<T>::clone () const
  {
  return new ColumnVectorData<T>(*this);
  }

  template <typename T>
  void ColumnVectorData<T>::resizeDataObject (const std::vector<std::valarray<T> >& indata, size_t firstRow)
  {
    // the rows() call is the value before updating.
    // the updateRows() call at the end sets the call to return the
    // value from the fits pointer - which is changed by writeFixedArray
    // or writeFixedRow.

    const size_t lastInputRow(indata.size() + firstRow - 1);
    const size_t newLastRow = std::max(lastInputRow,static_cast<size_t>(rows()));

    // if the write instruction increases the rows, we need to add
    // rows to the data member and preserve its current contents.

    // rows() >= origNRows since it is the value for entire table, 
    // not just this column.
    const size_t origNRows(m_data.size());
    // This will always be an expansion. vector.resize() doesn't
    // invalidate any data on an expansion.
    if (newLastRow > origNRows) m_data.resize(newLastRow);

    if (varLength())
    {
       // The incoming data will determine each row size, thus
       // no need to preserve any existing values in the row.
       // Each value will eventually be overwritten.
       for (size_t iRow = firstRow-1; iRow < lastInputRow; ++iRow)
       {
          std::valarray<T>& current = m_data[iRow];
          const size_t newSize = indata[iRow - (firstRow-1)].size();
          if (current.size() != newSize)
             current.resize(newSize);          
       }
    }
    else
    {
       // All row sizes in m_data should ALWAYS be either repeat(),
       // or 0 if they haven't been initialized.  This is true regardless
       // of the incoming data row size.  

       // Perform LAZY initialization of m_data rows.  Only
       // expand a row valarray when it is first needed.
       for (size_t iRow = firstRow-1; iRow < lastInputRow; ++iRow)
       {
          if (m_data[iRow].size() != repeat())
             m_data[iRow].resize(repeat());
       }       
    }
  }

  template <typename T>
  void ColumnVectorData<T>::setDimen ()
  {
  int status(0);
  FITSUtil:: auto_array_ptr<char> dimValue (new char[FLEN_VALUE]);

#ifdef SSTREAM_DEFECT
  std::ostrstream key;
#else
  std::ostringstream key;
#endif
  key << "TDIM" << index();

#ifdef SSTREAM_DEFECT
  fits_read_key_str(fitsPointer(), key.str(), dimValue.get(),0,&status);
#else
  fits_read_key_str(fitsPointer(),const_cast<char*>(key.str().c_str()),dimValue.get(),0,&status);
#endif

  if (status == 0)
  {
        dimen(String(dimValue.get()));
  }
  }

  template <typename T>
  void ColumnVectorData<T>::readColumnData (long first, long last, T* nullValue)
  {
  makeHDUCurrent();


          if ( rows() < last ) 
          {
                std::cerr << "CCfits: More data requested than contained in table. ";
                std::cerr << "Extracting complete column.\n";
                last = rows();
          }

          long nelements = (last - first + 1)*repeat();


          readColumnData(first,nelements,1,nullValue);   
          if (first <= 1 && last == rows()) isRead(true);
  }

  template <typename T>
  std::ostream& ColumnVectorData<T>::put (std::ostream& s) const
  {
  // output header information
    Column::put(s);
    if ( FITS::verboseMode() )
    {
          s << " Column Legal limits: ( " << m_minLegalValue << "," << m_maxLegalValue << " )\n" 
          << " Column Data  limits: ( " << m_minDataValue << "," << m_maxDataValue << " )\n";
    }
    if (!m_data.empty())
    {
  	  for (size_t j = 0; j < m_data.size(); j++)
  	  {
                  size_t n = m_data[j].size();
		  if ( n )
        	  {
                          s << "Row " << j + 1 << " Vector Size " << n << '\n';
			  for (size_t k = 0; k < n - 1; k++)
        		  {
               		 	  s << m_data[j][k] << '\t';
        		  }
        		  s << m_data[j][n - 1] << '\n';
		  }
  	  }
    }

    return s;
  }

  template <typename T>
  void ColumnVectorData<T>::writeData (const std::valarray<T>& indata, long numRows, long firstRow, T* nullValue)
  {
     // This version of writeData is called by Column write functions which 
     // can only write the same number of elements to each row.  
     // For fixed width columns, this must be equal to the repeat value
     // or an exception is thrown.  For variable width, it only requires
     // that indata.size()/numRows is an int.

     // won't do anything if < 0, and will give divide check if == 0.
     if (numRows <= 0) throw InvalidNumberOfRows(numRows);

#ifdef SSTREAM_DEFECT
     std::ostrstream msgStr;
#else
     std::ostringstream msgStr;
#endif            
     if (indata.size() % static_cast<size_t>(numRows))
     {
        msgStr << "To use this write function, input array size"
           <<"\n must be exactly divisible by requested num rows: "
           << numRows;
        throw InsufficientElements(msgStr.str());
     }
     const size_t cellsize = indata.size()/static_cast<size_t>(numRows);

     if (!varLength() && cellsize != repeat() )
     {      
        msgStr << "column: " << name() 
               <<  "\n input data size: " << indata.size() 
               << " required: " << numRows*repeat();
        String msg(msgStr.str());
        throw InsufficientElements(msg);     
     }

     std::vector<std::valarray<T> > internalFormat(numRows);

     // support writing equal row lengths to variable columns.

     for (long j = 0; j < numRows; ++j)
     {
        internalFormat[j].resize(cellsize);
        internalFormat[j] = indata[std::slice(cellsize*j,cellsize,1)];
     }

     // change the size of m_data based on the first row to be written
     // and on the input data vector sizes.

     writeData(internalFormat,firstRow,nullValue);    
  }

  template <typename T>
  void ColumnVectorData<T>::writeData (const std::vector<std::valarray<T> >& indata, long firstRow, T* nullValue)
  {
     // This is called directly by Column's writeArrays functions, and indirectly
     // by both categories of write functions, ie. those which allow differing
     // lengths per row and those that don't.
    const size_t nInputRows(indata.size());   
    using  std::valarray;

    resizeDataObject(indata,firstRow); 
    // After the above call, can assume all m_data arrays to be written to 
    // have been properly resized whether we're dealing with fixed or
    // variable length.       

    if (varLength())
    {
       // firstRow is 1-based, but all these internal row variables 
       // will be 0-based.  
       const size_t endRow = nInputRows + firstRow-1;
       for (size_t iRow = firstRow-1; iRow < endRow; ++iRow)
       {
          m_data[iRow] = indata[iRow - (firstRow-1)];
          // doWrite wants 1-based rows.
          doWrite(&m_data[iRow][0], iRow+1, m_data[iRow].size(), 1, nullValue);
       }
       parent()->updateRows();
    }
    else
    {
       // Check for simplest case of all valarrays of size repeat().
       // If any are greater, throw an error.
       const size_t colRepeat = repeat();
       bool allEqualRepeat = true;
       for (size_t i=0; i<nInputRows; ++i)
       {
          const size_t sz = indata[i].size();
          if (sz > colRepeat)
          {
#ifdef SSTREAM_DEFECT
             std::ostrstream oss;
#else
             std::ostringstream oss;
#endif 
             oss << " vector column length " << colRepeat 
                <<", input valarray length " << sz;
             throw InvalidRowParameter(oss.str());               
          }
          if (sz < colRepeat)
             allEqualRepeat = false;
       }

       if (allEqualRepeat)
       {
          // concatenate the valarrays and write.
          const size_t nElements (colRepeat*nInputRows);
          FITSUtil::CVAarray<T> convert;
          FITSUtil::auto_array_ptr<T> pArray(convert(indata));
          T* array = pArray.get();

          // if T is complex, then CVAarray returns a 
          // C-array of complex objects. But FITS requires an array of complex's
          // value_type.

          // This writes to the file and also calls updateRows.
          writeFixedArray(array,nElements,nInputRows,firstRow,nullValue);            

          for (size_t j = 0; j < nInputRows ; ++j)
          {
              const valarray<T>& input   = indata[j];
              valarray<T>& current = m_data[j + firstRow - 1];
              // current should be resized by resizeDataObject.
              current = input;
          }
       }
       else
       {
          // Some input arrays have fewer than colRepeat elements. 
          const size_t endRow = nInputRows + firstRow-1;
          for (size_t iRow = firstRow-1; iRow<endRow; ++iRow)
          {
             // resizeDataObject should already have resized all
             // corresponding m_data rows to repeat().
             const valarray<T>& input = indata[iRow-(firstRow-1)];
             writeFixedRow(input, iRow, 1, nullValue);
          }
          parent()->updateRows();          
       }  

    } // end if !varLength
  }

  template <typename T>
  void ColumnVectorData<T>::readRow (size_t row, T* nullValue)
  {
          makeHDUCurrent();



          if ( row > static_cast<size_t>(rows()) ) 
          {
#ifdef SSTREAM_DEFECT
                  std::ostrstream msg;
#else
                  std::ostringstream msg;
#endif
                msg << " row requested: " << row << " row range: 1 - " << rows();                
#ifdef SSTREAM_DEFECT
                msg << std::ends;
#endif

                throw Column::InvalidRowNumber(msg.str()); 
          }

          // this is really for documentation purposes. I expect the optimizer will
          // remove this redundant definition .
          bool variable(type() < 0); 


          long nelements(repeat());

          if (variable)
          {
              readVariableRow(row,nullValue);
          }
          else
          {      
              readColumnData(row,nelements,1,nullValue);      
          }
  }

  template <typename T>
  void ColumnVectorData<T>::readVariableRow (size_t row, T* nullValue)
  {
      int status(0);
      long offset(0);
      long repeat(0);
      if (fits_read_descript(fitsPointer(),index(),static_cast<long>(row),
                      &repeat,&offset,&status)) throw FitsError(status);
      readColumnData(row,repeat,1,nullValue);   
  }

  template <typename T>
  void ColumnVectorData<T>::readColumnData (long firstrow, long nelements, long firstelem, T* nullValue)
  {
   int   status=0;

   FITSUtil::auto_array_ptr<T> pArray(new T[nelements]); 
   T*     array = pArray.get();
   int    anynul(0);



   if (fits_read_col(fitsPointer(), abs(type()),index(), firstrow, firstelem,
                          nelements, nullValue, array, &anynul, &status) != 0)  
       throw FitsError(status);

   size_t countRead = 0;
   const size_t ONE = 1;

   if (m_data.size() != static_cast<size_t>(rows())) m_data.resize(rows());
   size_t vectorSize(0);
   if (!varLength())
   {

        vectorSize = std::max(repeat(),ONE); // safety check.

   }
   else
   {
        // assume that the user specified the correct length for 
        // variable columns. This should be ok since readVariableColumns
        // uses fits_read_descripts to return this information from the
        // fits pointer, and this is passed as nelements here.
        vectorSize = nelements;       
   }
   size_t n = nelements; 

   int i = firstrow;
   int ii = i - 1;
   while ( countRead < n)
   {
         std::valarray<T>& current = m_data[ii];
         if (current.size() != vectorSize) current.resize(vectorSize);
         int elementsInFirstRow = vectorSize-firstelem + 1;
         bool lastRow = ( (nelements - countRead) < vectorSize);
         if (lastRow)
         {
               int elementsInLastRow = nelements - countRead;
               std::valarray<T> ttmp(array + vectorSize*(ii-firstrow) + elementsInFirstRow,
                                                     elementsInLastRow);
               for (int kk = 0; kk < elementsInLastRow; kk++) current[kk] = ttmp[kk];
               countRead += elementsInLastRow;

         }
         // what to do with complete rows
         else 
         {
                if (firstelem == 1 || (firstelem > 1 && i > firstrow) )
                {
                        std::valarray<T> ttmp(array + vectorSize*(ii - firstrow) + 
                                        elementsInFirstRow,vectorSize);
                        current = ttmp;
			ii++;
			i++;
                        countRead += vectorSize;   
                }   
                else
                { 
                        if (i == firstrow)
                        {
                                std::valarray<T> ttmp(array,elementsInFirstRow);
                                for (size_t kk = firstelem ; kk < vectorSize ; kk++)
                                      current[kk] = ttmp[kk-firstelem];   
                                countRead += elementsInFirstRow;
                                i++;
                                ii++;
                        }
                }
         }
    }
  }

  template <typename T>
  void ColumnVectorData<T>::writeData (const std::valarray<T>& indata, const std::vector<long>& vectorLengths, long firstRow, T* nullValue)
  {
     // Called from Column write functions which allow differing lengths
     // for each row.
    using namespace std;
    const size_t N(vectorLengths.size());
    vector<long> sums(N);
    // pre-calculate partial sums of vector lengths for use as array offsets.
    partial_sum(vectorLengths.begin(),vectorLengths.end(),sums.begin());
    // check that sufficient data have been supplied to carry out the entire operation.
    if (indata.size() < static_cast<size_t>(sums[N-1]) )
    {
#ifdef SSTREAM_DEFECT
        ostrstream msgStr;
#else
        ostringstream msgStr;
#endif            
        msgStr << " input data size: " << indata.size() << " vector length sum: " << sums[N-1];
#ifdef SSTREAM_DEFECT
        msgStr << std::ends;
#endif            

        String msg(msgStr.str());
        throw InsufficientElements(msg);     
    }

    vector<valarray<T> > vvArray(N);
    long& last = sums[0];
    vvArray[0].resize(last);
    for (long jj = 0; jj < last; ++jj) vvArray[0][jj] = indata[jj];

    for (size_t j = 1; j < N; ++j)
    {
               valarray<T>& __tmp = vvArray[j];
               // these  make the code much more readable
               long& first = sums[j-1];
               long& jlast = sums[j];
               __tmp.resize(jlast - first);
               for (long k = first; k < jlast; ++k)
               { 
                        __tmp[k - first] = indata[k];
               }
    }       

    writeData(vvArray,firstRow,nullValue);
  }

  template <typename T>
  void ColumnVectorData<T>::writeFixedRow (const std::valarray<T>& data, long row, long firstElem, T* nullValue)
  {

    // This is to be called only for FIXED length vector columns.  It will 
    // throw if data.size()+firstElem goes beyond the repeat value.
    // If data.size() is less than repeat, it leaves the remaining values
    // undisturbed both in the file and in m_data storage.

#ifdef SSTREAM_DEFECT
    std::ostrstream msgStr;
#else
    std::ostringstream msgStr;
#endif            
    if (varLength())
    {
       msgStr <<"Calling ColumnVectorData::writeFixedRow for a variable length column.\n";
       throw FitsFatal(msgStr.str()); 
    }

    std::valarray<T>& storedRow = m_data[row];    
    long inputSize = static_cast<long>(data.size());
    long storedSize(storedRow.size());
    if (storedSize != static_cast<long>(repeat()))
    {
       msgStr<<"stored array size vs. column width mismatch in ColumnVectorData::writeFixedRow.\n";
       throw FitsFatal(msgStr.str());
    }

    if (inputSize + firstElem - 1 > storedSize)
    { 
          msgStr << " requested write " << firstElem << " to " 
                 << firstElem  + inputSize - 1 << " exceeds vector length " << repeat();
       throw InvalidRowParameter(msgStr.str());        
    }

    // CANNOT give a strong exception safety guarantee because writing
    // data changes the file. Any corrective action that could be taken
    // [e.g. holding initial contents of the row and writing it back after
    // an exception is thrown] could in principle throw the same exception
    // we are trying to protect from.

    // routine does however give the weak guarantee (no resource leaks).    

    // It's never a good thing to cast away a const, but doWrite calls the 
    // CFITSIO write functions which take a non-const pointer (though
    // it shouldn't actually modify the array), and I'd rather not 
    // copy the entire valarray just to avoid this problem.
    std::valarray<T>& lvData = const_cast<std::valarray<T>&>(data);
    T* inPointer = &lvData[0];
    doWrite(inPointer, row+1, inputSize, firstElem, nullValue); 

    // Writing to disk was successful, now update FITS object and return.
    const size_t offset = static_cast<size_t>(firstElem) - 1;
    for (size_t iElem=0; iElem < static_cast<size_t>(inputSize); ++iElem)
    {
       // This doesn't require inPointer's non-constness.  It's just
       // used here to speed things up a bit.
       storedRow[iElem + offset] = inPointer[iElem];
    }
  }

  template <typename T>
  void ColumnVectorData<T>::writeFixedArray (T* data, long nElements, long nRows, long firstRow, T* nullValue)
  {
    int status(0);

    // check for sanity of inputs, then write to file.
    // this function writes only complete rows to a table with
    // fixed width rows.


    if ( nElements < nRows*static_cast<long>(repeat()) )
    {
#ifdef SSTREAM_DEFECT
        std::ostrstream msgStr;
#else
        std::ostringstream msgStr;
#endif
        msgStr << " input array size: " << nElements << " required " << nRows*repeat();
        String msg(msgStr.str());

            throw Column::InsufficientElements(msg);
    } 

    if (nullValue) 
    {
       if (fits_write_colnull(fitsPointer(),abs(type()),index(),firstRow,
                           1,nElements,data,nullValue,&status)) throw FitsError(status);
    }
    else
    {
       if (fits_write_col(fitsPointer(),abs(type()),index(),firstRow,
                           1,nElements,data,&status)) throw FitsError(status);
    }

    parent()->updateRows();
  }

  template <typename T>
  void ColumnVectorData<T>::insertRows (long first, long number)
  {
    typename std::vector<std::valarray<T> >::iterator in;
    if (first !=0) 
    {
            in = m_data.begin()+first;
    }
    else
    {
            in = m_data.begin();
    }           

    // non-throwing operations.
    m_data.insert(in,number,std::valarray<T>(T(),0));
  }

  template <typename T>
  void ColumnVectorData<T>::deleteRows (long first, long number)
  {
    // the following is an ugly workaround for a bug in g++ v3.0 that
    // does not erase vector elements cleanly in this case.

    long N = static_cast<long>(m_data.size());
    size_t newSize = static_cast<size_t>(N - number);      
    std::vector<std::valarray<T> > __tmp(newSize);

    long lastDeleted( number + first - 1 );
    long firstDeleted(first);
    long count(0);
    {
       for (long j = 1; j <= N; ++j)
       {
	  if (  (j - firstDeleted)*(lastDeleted - j) >= 0 )	
	  {                ++count; 
	  } 
	  else
	  {
             __tmp[j - 1 - count].resize(m_data[j - 1].size());
             __tmp[j - 1 - count] = m_data[j - 1];
	  }
       }                           
    }

    m_data.clear();
    m_data.resize(newSize);
    {
       for (size_t j = 0; j < newSize; ++j)
       {
	  m_data[j].resize(__tmp[j].size());
    	  m_data[j] = __tmp[j];
       }
    }
  }

  template <typename T>
  void ColumnVectorData<T>::setDataLimits (T* limits)
  {
    m_minLegalValue = limits[0];
    m_maxLegalValue = limits[1];
    m_minDataValue = std::max(limits[2],limits[0]);
    m_maxDataValue = std::min(limits[3],limits[1]);
  }

  template <typename T>
  void ColumnVectorData<T>::doWrite (T* array, long row, long rowSize, long firstElem, T* nullValue)
  {
    int status(0);
    // internal functioning of write_colnull forbids its use for writing
    // variable width columns. If a nullvalue argument was supplied it will
    // be ignored.
    if ( !varLength())
    {
        if (fits_write_colnull(fitsPointer(),type(),index(),row, firstElem, rowSize,
                    array, nullValue,&status)) throw FitsError(status);
    }
    else
    {
        if (fits_write_col(fitsPointer(),abs(type()),index(),row,firstElem,rowSize,
                    array,&status)) throw FitsError(status);

    }
  }

  // Additional Declarations

  // all functions that operate on complex data that call cfitsio 
  // need to be specialized. The signature containing complex<T>* objects
  // is unfortunate, perhaps, for this purpose, but the user will  access
  // rw operations through standard library containers.





#if SPEC_TEMPLATE_IMP_DEFECT || SPEC_TEMPLATE_DECL_DEFECT
template <>
inline void ColumnVectorData<complex<float> >::setDataLimits (complex<float>* limits)
        {
                m_minLegalValue = limits[0];
                m_maxLegalValue = limits[1];
                m_minDataValue =  limits[2];
                m_maxDataValue =  limits[3];
        }
#else
template <>
  void 
  ColumnVectorData<complex<float> >::setDataLimits (complex<float>* limits);
#endif

#if SPEC_TEMPLATE_IMP_DEFECT || SPEC_TEMPLATE_DECL_DEFECT
template <>
inline void ColumnVectorData<complex<double> >::setDataLimits (complex<double>* limits)
        {
                m_minLegalValue = limits[0];
                m_maxLegalValue = limits[1];
                m_minDataValue =  limits[2];
                m_maxDataValue =  limits[3];
        }
#else
 template <>
   void 
   ColumnVectorData<complex<double> >::setDataLimits (complex<double>* limits);
#endif


#if SPEC_TEMPLATE_IMP_DEFECT || SPEC_TEMPLATE_DECL_DEFECT
        template <>
        inline void ColumnVectorData<std::complex<float> >::readColumnData(long firstRow, 
                                long nelements, long firstElem, std::complex<float>* null )
        {
            int   status=0;
            float nulval (0);
            FITSUtil::auto_array_ptr<float> pArray(new float[2*nelements]); 
            float*     array = pArray.get();
            int    anynul(0);

            if (fits_read_col_cmp(fitsPointer(),index(),firstRow, firstElem,
                            nelements,nulval,array,&anynul,&status) ) throw FitsError(status);

            if (m_data.size() != static_cast<size_t>(rows())) m_data.resize(rows());

            std::valarray<std::complex<float> > readData(nelements);
            for (long j = 0; j < nelements; ++j)
            {
                    readData[j] = std::complex<float>(array[2*j],array[2*j+1]);
            }
            size_t countRead = 0;
            const size_t ONE = 1;

            if (m_data.size() != static_cast<size_t>(rows())) m_data.resize(rows());
            size_t vectorSize(0);
            if (!varLength())
            {
                 vectorSize = std::max(repeat(),ONE); // safety check.
            }
            else
            {
                 // assume that the user specified the correct length for 
                 // variable columns. This should be ok since readVariableColumns
                 // uses fits_read_descripts to return this information from the
                 // fits pointer, and this is passed as nelements here.
                 vectorSize = nelements;       
            }
            size_t n = nelements; 

            int i = firstRow;
            int ii = i - 1;
            while ( countRead < n)
            {
                    std::valarray<complex<float> >& current = m_data[ii];
                    if (current.size() != vectorSize) current.resize(vectorSize,0.);
                    int elementsInFirstRow = vectorSize-firstElem + 1;
                    bool lastRow = ( (nelements - countRead) < vectorSize);
                    if (lastRow)
                    {
                            int elementsInLastRow = nelements - countRead;
                            std::copy(&readData[countRead],&readData[0]+nelements,&current[0]);
                            countRead += elementsInLastRow;
                    }             
                    // what to do with complete rows. if firstElem == 1 the 
                    else 
                    {
                            if (firstElem == 1 || (firstElem > 1 && i > firstRow) )
                            {
                                    current = readData[std::slice(vectorSize*(ii-firstRow)+
                                                               elementsInFirstRow,vectorSize,1)];
			            ++ii;
			            ++i;
                                    countRead += vectorSize;   
                            }   
                            else
                            { 
                                    if (i == firstRow)
                                    {
                                            std::copy(&readData[0],&readData[0]+elementsInFirstRow,
                                                                            &current[firstElem]);
                                            countRead += elementsInFirstRow;
                                            ++i;
                                            ++ii;
                                    }
                            }
                    }
            }
    }
#else
template <>
void ColumnVectorData<complex<float> >::readColumnData(long firstRow, 
                        long nelements, 
                        long firstElem, complex<float>* null);
#endif

#if SPEC_TEMPLATE_IMP_DEFECT || SPEC_TEMPLATE_DECL_DEFECT
    template <>
    inline void ColumnVectorData<complex<double> >::readColumnData (long firstRow, 
              long nelements,long firstElem, 
              complex<double>* nullValue)
    {

        // duplicated for each complex type to work around imagined or
        // actual compiler deficiencies.
            int   status=0;
            double nulval (0);
            FITSUtil::auto_array_ptr<double> pArray(new double[2*nelements]); 
            double*     array = pArray.get();
            int    anynul(0);

            if (fits_read_col_dblcmp(fitsPointer(),index(),firstRow, firstElem,
                            nelements,nulval,array,&anynul,&status) ) throw FitsError(status);

            if (m_data.size() != static_cast<size_t>(rows())) m_data.resize(rows());

            std::valarray<std::complex<double> > readData(nelements);
            for (long j = 0; j < nelements; ++j)
            {
                    readData[j] = std::complex<double>(array[2*j],array[2*j+1]);
            }
            size_t countRead = 0;
            const size_t ONE = 1;

            if (m_data.size() != static_cast<size_t>(rows())) m_data.resize(rows());
            size_t vectorSize(0);
            if (!varLength())
            {
                 vectorSize = std::max(repeat(),ONE); // safety check.
            }
            else
            {
                 // assume that the user specified the correct length for 
                 // variable columns. This should be ok since readVariableColumns
                 // uses fits_read_descripts to return this information from the
                 // fits pointer, and this is passed as nelements here.
                 vectorSize = nelements;       
            }
            size_t n = nelements; 

            int i = firstRow;
            int ii = i - 1;
            while ( countRead < n)
            {
                    std::valarray<std::complex<double> >& current = m_data[ii];
                    if (current.size() != vectorSize) current.resize(vectorSize,0.);
                    int elementsInFirstRow = vectorSize-firstElem + 1;
                    bool lastRow = ( (nelements - countRead) < vectorSize);
                    if (lastRow)
                    {
                            int elementsInLastRow = nelements - countRead;
                            std::copy(&readData[countRead],&readData[0]+nelements,&current[0]);
                            countRead += elementsInLastRow;
                    }             
                    // what to do with complete rows. if firstElem == 1 the 
                    else 
                    {
                            if (firstElem == 1 || (firstElem > 1 && i > firstRow) )
                            {
                                    current = readData[std::slice(vectorSize*(ii-firstRow)+
                                                               elementsInFirstRow,vectorSize,1)];
			            ++ii;
			            ++i;
                                    countRead += vectorSize;   
                            }   
                            else
                            { 
                                    if (i == firstRow)
                                    {
                                            std::copy(&readData[0],&readData[0]+elementsInFirstRow,
                                                                            &current[firstElem]);
                                            countRead += elementsInFirstRow;
                                            ++i;
                                            ++ii;
                                    }
                            }
                    }
            }
    }
#else
template <>
void ColumnVectorData<complex<double> >::readColumnData (long firstRow, 
                        long nelements,
                        long firstElem, complex<double>* null);
#endif

#if SPEC_TEMPLATE_IMP_DEFECT || SPEC_TEMPLATE_DECL_DEFECT
        template <>
        inline void ColumnVectorData<complex<float> >::writeFixedArray 
                        (complex<float>* data, long nElements, long nRows, long firstRow, 
                         complex<float>* nullValue)
        {

                int status(0);

    // check for sanity of inputs, then write to file.
    // this function writes only complete rows to a table with
    // fixed width rows.


                if ( nElements < nRows*static_cast<long>(repeat()) )
                {
#ifdef SSTREAM_DEFECT
                        std::ostrstream msgStr;
#else
                        std::ostringstream msgStr;
#endif
                        msgStr << " input array size: " << nElements 
                                        << " required " << nRows*repeat();
#ifdef SSTREAM_DEFECT
                        msgStr << std::ends;
#endif


                        String msg(msgStr.str());

                        throw Column::InsufficientElements(msg);
                } 

                FITSUtil::auto_array_ptr<float> realData(new float[2*nElements]);

                for (int j = 0; j < nElements; ++j)
                {
                        realData[2*j] = data[j].real();
                        realData[2*j+1] = data[j].imag();       
                }



                if (fits_write_col_cmp(fitsPointer(),index(),firstRow,
                        1,nElements,realData.get(),&status)) throw FitsError(status);

                parent()->updateRows();
        }
#else
template <>
void ColumnVectorData<complex<float> >::writeFixedArray 
     (complex<float>* data, long nElements, long nRows, long firstRow, std::complex<float>* null);
#endif

#if SPEC_TEMPLATE_IMP_DEFECT || SPEC_TEMPLATE_DECL_DEFECT
        template <>
        inline void ColumnVectorData<complex<double> >::writeFixedArray 
                        (complex<double>* data, long nElements, long nRows, long firstRow, 
                         complex<double>* nullValue)
        {
                int status(0);

    // check for sanity of inputs, then write to file.
    // this function writes only complete rows to a table with
    // fixed width rows.


                if ( nElements < nRows*static_cast<long>(repeat()) )
                {
#ifdef SSTREAM_DEFECT
                        std::ostrstream msgStr;
#else
                        std::ostringstream msgStr;
#endif
                        msgStr << " input array size: " << nElements 
                                        << " required " << nRows*repeat();
#ifdef SSTREAM_DEFECT
                        msgStr << std::ends;
#endif

                        String msg(msgStr.str());

                        throw Column::InsufficientElements(msg);
                } 

                FITSUtil::auto_array_ptr<double> realData(new double[2*nElements]);

                for (int j = 0; j < nElements; ++j)
                {
                        realData[2*j] = data[j].real();
                        realData[2*j+1] = data[j].imag();       
                }



                if (fits_write_col_dblcmp(fitsPointer(),index(),firstRow,
                        1,nElements,realData.get(),&status)) throw FitsError(status);

                parent()->updateRows();

        }
#else
template <>
void ColumnVectorData<complex<double> >::writeFixedArray 
                (complex<double>* data, long nElements, long nRows, long firstRow, 
                 std::complex<double>* null);
#endif

#ifdef SPEC_TEMPLATE_DECL_DEFECT
  template <>
  inline void  
  ColumnVectorData<std::complex<float> >::doWrite 
  (std::complex<float>* data, long row, long rowSize, long firstElem, std::complex<float>* nullValue )
  {
    int status(0);
    FITSUtil::auto_array_ptr<float> carray( new float[2*rowSize]); 
    for ( long j = 0 ; j < rowSize; ++ j)
      {
	carray[2*j] = data[j].real();
	carray[2*j + 1] = data[j].imag();
      }
    if (fits_write_col_cmp(fitsPointer(),index(),row,firstElem,rowSize,
			   carray.get(),&status)) throw FitsError(status);
  }


  template <>
  inline void  
  ColumnVectorData<std::complex<double> >::doWrite
  (std::complex<double>* data, long row, long rowSize, long firstElem, std::complex<double>* nullValue )
  {
    int status(0);
    FITSUtil::auto_array_ptr<double> carray( new double[2*rowSize]); 
    for ( long j = 0 ; j < rowSize; ++ j)
      {
	carray[2*j] = data[j].real();
	carray[2*j + 1] = data[j].imag();
      }
    if (fits_write_col_dblcmp(fitsPointer(),index(),row,firstElem,rowSize,
			      carray.get(),&status)) throw FitsError(status);

  }

#else
template<>
void 
ColumnVectorData<complex<float> >::doWrite 
                ( complex<float>* data, long row, long rowSize, long firstElem, complex<float>* nullValue);

template<>
void 
ColumnVectorData<complex<double> >::doWrite 
                ( complex<double>* data, long row, long rowSize, long firstElem, complex<double>* nullValue );
#endif
} // namespace CCfits


#endif