This file is indexed.

/usr/include/boost/xpressive/regex_actions.hpp is in libboost1.55-dev 1.55.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
///////////////////////////////////////////////////////////////////////////////
/// \file regex_actions.hpp
/// Defines the syntax elements of xpressive's action expressions.
//
//  Copyright 2008 Eric Niebler. Distributed under the Boost
//  Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_XPRESSIVE_ACTIONS_HPP_EAN_03_22_2007
#define BOOST_XPRESSIVE_ACTIONS_HPP_EAN_03_22_2007

// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif

#include <boost/config.hpp>
#include <boost/preprocessor/punctuation/comma_if.hpp>
#include <boost/ref.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/or.hpp>
#include <boost/mpl/int.hpp>
#include <boost/mpl/assert.hpp>
#include <boost/noncopyable.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/throw_exception.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/is_const.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/type_traits/decay.hpp>
#include <boost/type_traits/remove_cv.hpp>
#include <boost/type_traits/remove_reference.hpp>
#include <boost/range/iterator_range.hpp>
#include <boost/xpressive/detail/detail_fwd.hpp>
#include <boost/xpressive/detail/core/state.hpp>
#include <boost/xpressive/detail/core/matcher/attr_matcher.hpp>
#include <boost/xpressive/detail/core/matcher/attr_end_matcher.hpp>
#include <boost/xpressive/detail/core/matcher/attr_begin_matcher.hpp>
#include <boost/xpressive/detail/core/matcher/predicate_matcher.hpp>
#include <boost/xpressive/detail/utility/ignore_unused.hpp>
#include <boost/xpressive/detail/static/type_traits.hpp>

// These are very often needed by client code.
#include <boost/typeof/std/map.hpp>
#include <boost/typeof/std/string.hpp>

// Doxygen can't handle proto :-(
#ifndef BOOST_XPRESSIVE_DOXYGEN_INVOKED
# include <boost/proto/core.hpp>
# include <boost/proto/transform.hpp>
# include <boost/xpressive/detail/core/matcher/action_matcher.hpp>
#endif

#if BOOST_MSVC
#pragma warning(push)
#pragma warning(disable : 4510) // default constructor could not be generated
#pragma warning(disable : 4512) // assignment operator could not be generated
#pragma warning(disable : 4610) // can never be instantiated - user defined constructor required
#endif

namespace boost { namespace xpressive
{

    namespace detail
    {
        template<typename T, typename U>
        struct action_arg
        {
            typedef T type;
            typedef typename add_reference<T>::type reference;

            reference cast(void *pv) const
            {
                return *static_cast<typename remove_reference<T>::type *>(pv);
            }
        };

        template<typename T>
        struct value_wrapper
          : private noncopyable
        {
            value_wrapper()
              : value()
            {}

            value_wrapper(T const &t)
              : value(t)
            {}

            T value;
        };

        struct check_tag
        {};

        struct BindArg
        {
            BOOST_PROTO_CALLABLE()
            template<typename Sig>
            struct result {};

            template<typename This, typename MatchResults, typename Expr>
            struct result<This(MatchResults, Expr)>
            {
                typedef Expr type;
            };

            template<typename MatchResults, typename Expr>
            Expr const & operator ()(MatchResults &what, Expr const &expr) const
            {
                what.let(expr);
                return expr;
            }
        };

        struct let_tag
        {};

        // let(_a = b, _c = d)
        struct BindArgs
          : proto::function<
                proto::terminal<let_tag>
              , proto::vararg<
                    proto::when<
                        proto::assign<proto::_, proto::_>
                      , proto::call<BindArg(proto::_data, proto::_)>
                    >
                >
            >
        {};

        struct let_domain
          : boost::proto::domain<boost::proto::pod_generator<let_> >
        {};

        template<typename Expr>
        struct let_
        {
            BOOST_PROTO_BASIC_EXTENDS(Expr, let_<Expr>, let_domain)
            BOOST_PROTO_EXTENDS_FUNCTION()
        };

        template<typename Args, typename BidiIter>
        void bind_args(let_<Args> const &args, match_results<BidiIter> &what)
        {
            BindArgs()(args, 0, what);
        }

        typedef boost::proto::functional::make_expr<proto::tag::function, proto::default_domain> make_function;
    }

    namespace op
    {
        /// \brief \c at is a PolymorphicFunctionObject for indexing into a sequence
        struct at
        {
            BOOST_PROTO_CALLABLE()
            template<typename Sig>
            struct result {};

            template<typename This, typename Cont, typename Idx>
            struct result<This(Cont &, Idx)>
            {
                typedef typename Cont::reference type;
            };

            template<typename This, typename Cont, typename Idx>
            struct result<This(Cont const &, Idx)>
            {
                typedef typename Cont::const_reference type;
            };

            template<typename This, typename Cont, typename Idx>
            struct result<This(Cont, Idx)>
            {
                typedef typename Cont::const_reference type;
            };

            /// \pre    \c Cont is a model of RandomAccessSequence
            /// \param  c The RandomAccessSequence to index into
            /// \param  idx The index
            /// \return <tt>c[idx]</tt>
            template<typename Cont, typename Idx>
            typename Cont::reference operator()(Cont &c, Idx idx BOOST_PROTO_DISABLE_IF_IS_CONST(Cont)) const
            {
                return c[idx];
            }

            /// \overload
            ///
            template<typename Cont, typename Idx>
            typename Cont::const_reference operator()(Cont const &c, Idx idx) const
            {
                return c[idx];
            }
        };

        /// \brief \c push is a PolymorphicFunctionObject for pushing an element into a container.
        struct push
        {
            BOOST_PROTO_CALLABLE()
            typedef void result_type;

            /// \param seq The sequence into which the value should be pushed.
            /// \param val The value to push into the sequence.
            /// \brief Equivalent to <tt>seq.push(val)</tt>.
            /// \return \c void
            template<typename Sequence, typename Value>
            void operator()(Sequence &seq, Value const &val) const
            {
                seq.push(val);
            }
        };

        /// \brief \c push_back is a PolymorphicFunctionObject for pushing an element into the back of a container.
        struct push_back
        {
            BOOST_PROTO_CALLABLE()
            typedef void result_type;

            /// \param seq The sequence into which the value should be pushed.
            /// \param val The value to push into the sequence.
            /// \brief Equivalent to <tt>seq.push_back(val)</tt>.
            /// \return \c void
            template<typename Sequence, typename Value>
            void operator()(Sequence &seq, Value const &val) const
            {
                seq.push_back(val);
            }
        };

        /// \brief \c push_front is a PolymorphicFunctionObject for pushing an element into the front of a container.
        struct push_front
        {
            BOOST_PROTO_CALLABLE()
            typedef void result_type;

            /// \param seq The sequence into which the value should be pushed.
            /// \param val The value to push into the sequence.
            /// \brief Equivalent to <tt>seq.push_front(val)</tt>.
            /// \return \c void
            template<typename Sequence, typename Value>
            void operator()(Sequence &seq, Value const &val) const
            {
                seq.push_front(val);
            }
        };

        /// \brief \c pop is a PolymorphicFunctionObject for popping an element from a container.
        struct pop
        {
            BOOST_PROTO_CALLABLE()
            typedef void result_type;

            /// \param seq The sequence from which to pop.
            /// \brief Equivalent to <tt>seq.pop()</tt>.
            /// \return \c void
            template<typename Sequence>
            void operator()(Sequence &seq) const
            {
                seq.pop();
            }
        };

        /// \brief \c pop_back is a PolymorphicFunctionObject for popping an element from the back of a container.
        struct pop_back
        {
            BOOST_PROTO_CALLABLE()
            typedef void result_type;

            /// \param seq The sequence from which to pop.
            /// \brief Equivalent to <tt>seq.pop_back()</tt>.
            /// \return \c void
            template<typename Sequence>
            void operator()(Sequence &seq) const
            {
                seq.pop_back();
            }
        };

        /// \brief \c pop_front is a PolymorphicFunctionObject for popping an element from the front of a container.
        struct pop_front
        {
            BOOST_PROTO_CALLABLE()
            typedef void result_type;

            /// \param seq The sequence from which to pop.
            /// \brief Equivalent to <tt>seq.pop_front()</tt>.
            /// \return \c void
            template<typename Sequence>
            void operator()(Sequence &seq) const
            {
                seq.pop_front();
            }
        };

        /// \brief \c front is a PolymorphicFunctionObject for fetching the front element of a container.
        struct front
        {
            BOOST_PROTO_CALLABLE()
            template<typename Sig>
            struct result {};

            template<typename This, typename Sequence>
            struct result<This(Sequence)>
            {
                typedef typename remove_reference<Sequence>::type sequence_type;
                typedef
                    typename mpl::if_c<
                        is_const<sequence_type>::value
                      , typename sequence_type::const_reference
                      , typename sequence_type::reference
                    >::type
                type;
            };

            /// \param seq The sequence from which to fetch the front.
            /// \return <tt>seq.front()</tt>
            template<typename Sequence>
            typename result<front(Sequence &)>::type operator()(Sequence &seq) const
            {
                return seq.front();
            }
        };

        /// \brief \c back is a PolymorphicFunctionObject for fetching the back element of a container.
        struct back
        {
            BOOST_PROTO_CALLABLE()
            template<typename Sig>
            struct result {};

            template<typename This, typename Sequence>
            struct result<This(Sequence)>
            {
                typedef typename remove_reference<Sequence>::type sequence_type;
                typedef
                    typename mpl::if_c<
                        is_const<sequence_type>::value
                      , typename sequence_type::const_reference
                      , typename sequence_type::reference
                    >::type
                type;
            };

            /// \param seq The sequence from which to fetch the back.
            /// \return <tt>seq.back()</tt>
            template<typename Sequence>
            typename result<back(Sequence &)>::type operator()(Sequence &seq) const
            {
                return seq.back();
            }
        };

        /// \brief \c top is a PolymorphicFunctionObject for fetching the top element of a stack.
        struct top
        {
            BOOST_PROTO_CALLABLE()
            template<typename Sig>
            struct result {};

            template<typename This, typename Sequence>
            struct result<This(Sequence)>
            {
                typedef typename remove_reference<Sequence>::type sequence_type;
                typedef
                    typename mpl::if_c<
                        is_const<sequence_type>::value
                      , typename sequence_type::value_type const &
                      , typename sequence_type::value_type &
                    >::type
                type;
            };

            /// \param seq The sequence from which to fetch the top.
            /// \return <tt>seq.top()</tt>
            template<typename Sequence>
            typename result<top(Sequence &)>::type operator()(Sequence &seq) const
            {
                return seq.top();
            }
        };

        /// \brief \c first is a PolymorphicFunctionObject for fetching the first element of a pair.
        struct first
        {
            BOOST_PROTO_CALLABLE()
            template<typename Sig>
            struct result {};

            template<typename This, typename Pair>
            struct result<This(Pair)>
            {
                typedef typename remove_reference<Pair>::type::first_type type;
            };

            /// \param p The pair from which to fetch the first element.
            /// \return <tt>p.first</tt>
            template<typename Pair>
            typename Pair::first_type operator()(Pair const &p) const
            {
                return p.first;
            }
        };

        /// \brief \c second is a PolymorphicFunctionObject for fetching the second element of a pair.
        struct second
        {
            BOOST_PROTO_CALLABLE()
            template<typename Sig>
            struct result {};

            template<typename This, typename Pair>
            struct result<This(Pair)>
            {
                typedef typename remove_reference<Pair>::type::second_type type;
            };

            /// \param p The pair from which to fetch the second element.
            /// \return <tt>p.second</tt>
            template<typename Pair>
            typename Pair::second_type operator()(Pair const &p) const
            {
                return p.second;
            }
        };

        /// \brief \c matched is a PolymorphicFunctionObject for assessing whether a \c sub_match object
        ///        matched or not.
        struct matched
        {
            BOOST_PROTO_CALLABLE()
            typedef bool result_type;

            /// \param sub The \c sub_match object.
            /// \return <tt>sub.matched</tt>
            template<typename Sub>
            bool operator()(Sub const &sub) const
            {
                return sub.matched;
            }
        };

        /// \brief \c length is a PolymorphicFunctionObject for fetching the length of \c sub_match.
        struct length
        {
            BOOST_PROTO_CALLABLE()
            template<typename Sig>
            struct result {};

            template<typename This, typename Sub>
            struct result<This(Sub)>
            {
                typedef typename remove_reference<Sub>::type::difference_type type;
            };

            /// \param sub The \c sub_match object.
            /// \return <tt>sub.length()</tt>
            template<typename Sub>
            typename Sub::difference_type operator()(Sub const &sub) const
            {
                return sub.length();
            }
        };

        /// \brief \c str is a PolymorphicFunctionObject for turning a \c sub_match into an
        ///        equivalent \c std::string.
        struct str
        {
            BOOST_PROTO_CALLABLE()
            template<typename Sig>
            struct result {};

            template<typename This, typename Sub>
            struct result<This(Sub)>
            {
                typedef typename remove_reference<Sub>::type::string_type type;
            };

            /// \param sub The \c sub_match object.
            /// \return <tt>sub.str()</tt>
            template<typename Sub>
            typename Sub::string_type operator()(Sub const &sub) const
            {
                return sub.str();
            }
        };

        // This codifies the return types of the various insert member
        // functions found in sequence containers, the 2 flavors of
        // associative containers, and strings.
        //
        /// \brief \c insert is a PolymorphicFunctionObject for inserting a value or a
        ///        sequence of values into a sequence container, an associative
        ///        container, or a string.
        struct insert
        {
            BOOST_PROTO_CALLABLE()

            /// INTERNAL ONLY
            ///
            struct detail
            {
                template<typename Sig, typename EnableIf = void>
                struct result_detail
                {};

                // assoc containers
                template<typename This, typename Cont, typename Value>
                struct result_detail<This(Cont, Value), void>
                {
                    typedef typename remove_reference<Cont>::type cont_type;
                    typedef typename remove_reference<Value>::type value_type;
                    static cont_type &scont_;
                    static value_type &svalue_;
                    typedef char yes_type;
                    typedef char (&no_type)[2];
                    static yes_type check_insert_return(typename cont_type::iterator);
                    static no_type check_insert_return(std::pair<typename cont_type::iterator, bool>);
                    BOOST_STATIC_CONSTANT(bool, is_iterator = (sizeof(yes_type) == sizeof(check_insert_return(scont_.insert(svalue_)))));
                    typedef
                        typename mpl::if_c<
                            is_iterator
                          , typename cont_type::iterator
                          , std::pair<typename cont_type::iterator, bool>
                        >::type
                    type;
                };

                // sequence containers, assoc containers, strings
                template<typename This, typename Cont, typename It, typename Value>
                struct result_detail<This(Cont, It, Value),
                    typename disable_if<
                        mpl::or_<
                            is_integral<typename remove_cv<typename remove_reference<It>::type>::type>
                          , is_same<
                                typename remove_cv<typename remove_reference<It>::type>::type
                              , typename remove_cv<typename remove_reference<Value>::type>::type
                            >
                        >
                    >::type
                >
                {
                    typedef typename remove_reference<Cont>::type::iterator type;
                };

                // strings
                template<typename This, typename Cont, typename Size, typename T>
                struct result_detail<This(Cont, Size, T),
                    typename enable_if<
                        is_integral<typename remove_cv<typename remove_reference<Size>::type>::type>
                    >::type
                >
                {
                    typedef typename remove_reference<Cont>::type &type;
                };

                // assoc containers
                template<typename This, typename Cont, typename It>
                struct result_detail<This(Cont, It, It), void>
                {
                    typedef void type;
                };

                // sequence containers, strings
                template<typename This, typename Cont, typename It, typename Size, typename Value>
                struct result_detail<This(Cont, It, Size, Value),
                    typename disable_if<
                        is_integral<typename remove_cv<typename remove_reference<It>::type>::type>
                    >::type
                >
                {
                    typedef void type;
                };

                // strings
                template<typename This, typename Cont, typename Size, typename A0, typename A1>
                struct result_detail<This(Cont, Size, A0, A1),
                    typename enable_if<
                        is_integral<typename remove_cv<typename remove_reference<Size>::type>::type>
                    >::type
                >
                {
                    typedef typename remove_reference<Cont>::type &type;
                };

                // strings
                template<typename This, typename Cont, typename Pos0, typename String, typename Pos1, typename Length>
                struct result_detail<This(Cont, Pos0, String, Pos1, Length)>
                {
                    typedef typename remove_reference<Cont>::type &type;
                };
            };

            template<typename Sig>
            struct result
            {
                typedef typename detail::result_detail<Sig>::type type;
            };

            /// \overload
            ///
            template<typename Cont, typename A0>
            typename result<insert(Cont &, A0 const &)>::type
            operator()(Cont &cont, A0 const &a0) const
            {
                return cont.insert(a0);
            }

            /// \overload
            ///
            template<typename Cont, typename A0, typename A1>
            typename result<insert(Cont &, A0 const &, A1 const &)>::type
            operator()(Cont &cont, A0 const &a0, A1 const &a1) const
            {
                return cont.insert(a0, a1);
            }

            /// \overload
            ///
            template<typename Cont, typename A0, typename A1, typename A2>
            typename result<insert(Cont &, A0 const &, A1 const &, A2 const &)>::type
            operator()(Cont &cont, A0 const &a0, A1 const &a1, A2 const &a2) const
            {
                return cont.insert(a0, a1, a2);
            }

            /// \param cont The container into which to insert the element(s)
            /// \param a0 A value, iterator, or count
            /// \param a1 A value, iterator, string, count, or character
            /// \param a2 A value, iterator, or count
            /// \param a3 A count
            /// \return \li For the form <tt>insert()(cont, a0)</tt>, return <tt>cont.insert(a0)</tt>.
            ///         \li For the form <tt>insert()(cont, a0, a1)</tt>, return <tt>cont.insert(a0, a1)</tt>.
            ///         \li For the form <tt>insert()(cont, a0, a1, a2)</tt>, return <tt>cont.insert(a0, a1, a2)</tt>.
            ///         \li For the form <tt>insert()(cont, a0, a1, a2, a3)</tt>, return <tt>cont.insert(a0, a1, a2, a3)</tt>.
            template<typename Cont, typename A0, typename A1, typename A2, typename A3>
            typename result<insert(Cont &, A0 const &, A1 const &, A2 const &, A3 const &)>::type
            operator()(Cont &cont, A0 const &a0, A1 const &a1, A2 const &a2, A3 const &a3) const
            {
                return cont.insert(a0, a1, a2, a3);
            }
        };

        /// \brief \c make_pair is a PolymorphicFunctionObject for building a \c std::pair out of two parameters
        struct make_pair
        {
            BOOST_PROTO_CALLABLE()
            template<typename Sig>
            struct result {};

            template<typename This, typename First, typename Second>
            struct result<This(First, Second)>
            {
                /// \brief For exposition only
                typedef typename decay<First>::type first_type;
                /// \brief For exposition only
                typedef typename decay<Second>::type second_type;
                typedef std::pair<first_type, second_type> type;
            };

            /// \param first The first element of the pair
            /// \param second The second element of the pair
            /// \return <tt>std::make_pair(first, second)</tt>
            template<typename First, typename Second>
            std::pair<First, Second> operator()(First const &first, Second const &second) const
            {
                return std::make_pair(first, second);
            }
        };

        /// \brief \c as\<\> is a PolymorphicFunctionObject for lexically casting a parameter to a different type.
        /// \tparam T The type to which to lexically cast the parameter.
        template<typename T>
        struct as
        {
            BOOST_PROTO_CALLABLE()
            typedef T result_type;

            /// \param val The value to lexically cast.
            /// \return <tt>boost::lexical_cast\<T\>(val)</tt>
            template<typename Value>
            T operator()(Value const &val) const
            {
                return boost::lexical_cast<T>(val);
            }

            // Hack around some limitations in boost::lexical_cast
            /// INTERNAL ONLY
            T operator()(csub_match const &val) const
            {
                return val.matched
                  ? boost::lexical_cast<T>(boost::make_iterator_range(val.first, val.second))
                  : boost::lexical_cast<T>("");
            }

            #ifndef BOOST_XPRESSIVE_NO_WREGEX
            /// INTERNAL ONLY
            T operator()(wcsub_match const &val) const
            {
                return val.matched
                  ? boost::lexical_cast<T>(boost::make_iterator_range(val.first, val.second))
                  : boost::lexical_cast<T>("");
            }
            #endif

            /// INTERNAL ONLY
            template<typename BidiIter>
            T operator()(sub_match<BidiIter> const &val) const
            {
                // If this assert fires, you're trying to coerce a sequences of non-characters
                // to some other type. Xpressive doesn't know how to do that.
                typedef typename iterator_value<BidiIter>::type char_type;
                BOOST_MPL_ASSERT_MSG(
                    (xpressive::detail::is_char<char_type>::value)
                  , CAN_ONLY_CONVERT_FROM_CHARACTER_SEQUENCES
                  , (char_type)
                );
                return this->impl(val, xpressive::detail::is_string_iterator<BidiIter>());
            }

        private:
            /// INTERNAL ONLY
            template<typename RandIter>
            T impl(sub_match<RandIter> const &val, mpl::true_) const
            {
                return val.matched
                  ? boost::lexical_cast<T>(boost::make_iterator_range(&*val.first, &*val.first + (val.second - val.first)))
                  : boost::lexical_cast<T>("");
            }

            /// INTERNAL ONLY
            template<typename BidiIter>
            T impl(sub_match<BidiIter> const &val, mpl::false_) const
            {
                return boost::lexical_cast<T>(val.str());
            }
        };

        /// \brief \c static_cast_\<\> is a PolymorphicFunctionObject for statically casting a parameter to a different type.
        /// \tparam T The type to which to statically cast the parameter.
        template<typename T>
        struct static_cast_
        {
            BOOST_PROTO_CALLABLE()
            typedef T result_type;

            /// \param val The value to statically cast.
            /// \return <tt>static_cast\<T\>(val)</tt>
            template<typename Value>
            T operator()(Value const &val) const
            {
                return static_cast<T>(val);
            }
        };

        /// \brief \c dynamic_cast_\<\> is a PolymorphicFunctionObject for dynamically casting a parameter to a different type.
        /// \tparam T The type to which to dynamically cast the parameter.
        template<typename T>
        struct dynamic_cast_
        {
            BOOST_PROTO_CALLABLE()
            typedef T result_type;

            /// \param val The value to dynamically cast.
            /// \return <tt>dynamic_cast\<T\>(val)</tt>
            template<typename Value>
            T operator()(Value const &val) const
            {
                return dynamic_cast<T>(val);
            }
        };

        /// \brief \c const_cast_\<\> is a PolymorphicFunctionObject for const-casting a parameter to a cv qualification.
        /// \tparam T The type to which to const-cast the parameter.
        template<typename T>
        struct const_cast_
        {
            BOOST_PROTO_CALLABLE()
            typedef T result_type;

            /// \param val The value to const-cast.
            /// \pre Types \c T and \c Value differ only in cv-qualification.
            /// \return <tt>const_cast\<T\>(val)</tt>
            template<typename Value>
            T operator()(Value const &val) const
            {
                return const_cast<T>(val);
            }
        };

        /// \brief \c construct\<\> is a PolymorphicFunctionObject for constructing a new object.
        /// \tparam T The type of the object to construct.
        template<typename T>
        struct construct
        {
            BOOST_PROTO_CALLABLE()
            typedef T result_type;

            /// \overload
            T operator()() const
            {
                return T();
            }

            /// \overload
            template<typename A0>
            T operator()(A0 const &a0) const
            {
                return T(a0);
            }

            /// \overload
            template<typename A0, typename A1>
            T operator()(A0 const &a0, A1 const &a1) const
            {
                return T(a0, a1);
            }

            /// \param a0 The first argument to the constructor
            /// \param a1 The second argument to the constructor
            /// \param a2 The third argument to the constructor
            /// \return <tt>T(a0,a1,...)</tt>
            template<typename A0, typename A1, typename A2>
            T operator()(A0 const &a0, A1 const &a1, A2 const &a2) const
            {
                return T(a0, a1, a2);
            }
        };

        /// \brief \c throw_\<\> is a PolymorphicFunctionObject for throwing an exception.
        /// \tparam Except The type of the object to throw.
        template<typename Except>
        struct throw_
        {
            BOOST_PROTO_CALLABLE()
            typedef void result_type;

            /// \overload
            void operator()() const
            {
                BOOST_THROW_EXCEPTION(Except());
            }

            /// \overload
            template<typename A0>
            void operator()(A0 const &a0) const
            {
                BOOST_THROW_EXCEPTION(Except(a0));
            }

            /// \overload
            template<typename A0, typename A1>
            void operator()(A0 const &a0, A1 const &a1) const
            {
                BOOST_THROW_EXCEPTION(Except(a0, a1));
            }

            /// \param a0 The first argument to the constructor
            /// \param a1 The second argument to the constructor
            /// \param a2 The third argument to the constructor
            /// \throw <tt>Except(a0,a1,...)</tt>
            /// \note This function makes use of the \c BOOST_THROW_EXCEPTION macro
            ///       to actually throw the exception. See the documentation for the
            ///       Boost.Exception library.
            template<typename A0, typename A1, typename A2>
            void operator()(A0 const &a0, A1 const &a1, A2 const &a2) const
            {
                BOOST_THROW_EXCEPTION(Except(a0, a1, a2));
            }
        };

        /// \brief \c unwrap_reference is a PolymorphicFunctionObject for unwrapping a <tt>boost::reference_wrapper\<\></tt>.
        struct unwrap_reference
        {
            BOOST_PROTO_CALLABLE()
            template<typename Sig>
            struct result {};

            template<typename This, typename Ref>
            struct result<This(Ref)>
            {
                typedef typename boost::unwrap_reference<Ref>::type &type;
            };

            template<typename This, typename Ref>
            struct result<This(Ref &)>
            {
                typedef typename boost::unwrap_reference<Ref>::type &type;
            };

            /// \param r The <tt>boost::reference_wrapper\<T\></tt> to unwrap.
            /// \return <tt>static_cast\<T &\>(r)</tt>
            template<typename T>
            T &operator()(boost::reference_wrapper<T> r) const
            {
                return static_cast<T &>(r);
            }
        };
    }

    /// \brief A unary metafunction that turns an ordinary function object type into the type of
    /// a deferred function object for use in xpressive semantic actions.
    ///
    /// Use \c xpressive::function\<\> to turn an ordinary polymorphic function object type
    /// into a type that can be used to declare an object for use in xpressive semantic actions.
    ///
    /// For example, the global object \c xpressive::push_back can be used to create deferred actions
    /// that have the effect of pushing a value into a container. It is defined with
    /// \c xpressive::function\<\> as follows:
    ///
    /** \code
        xpressive::function<xpressive::op::push_back>::type const push_back = {};
        \endcode
    */
    ///
    /// where \c op::push_back is an ordinary function object that pushes its second argument into
    /// its first. Thus defined, \c xpressive::push_back can be used in semantic actions as follows:
    ///
    /** \code
        namespace xp = boost::xpressive;
        using xp::_;
        std::list<int> result;
        std::string str("1 23 456 7890");
        xp::sregex rx = (+_d)[ xp::push_back(xp::ref(result), xp::as<int>(_) ]
            >> *(' ' >> (+_d)[ xp::push_back(xp::ref(result), xp::as<int>(_) ) ]);
        \endcode
    */
    template<typename PolymorphicFunctionObject>
    struct function
    {
        typedef typename proto::terminal<PolymorphicFunctionObject>::type type;
    };

    /// \brief \c at is a lazy PolymorphicFunctionObject for indexing into a sequence in an
    /// xpressive semantic action.
    function<op::at>::type const at = {{}};

    /// \brief \c push is a lazy PolymorphicFunctionObject for pushing a value into a container in an
    /// xpressive semantic action.
    function<op::push>::type const push = {{}};

    /// \brief \c push_back is a lazy PolymorphicFunctionObject for pushing a value into a container in an
    /// xpressive semantic action.
    function<op::push_back>::type const push_back = {{}};

    /// \brief \c push_front is a lazy PolymorphicFunctionObject for pushing a value into a container in an
    /// xpressive semantic action.
    function<op::push_front>::type const push_front = {{}};

    /// \brief \c pop is a lazy PolymorphicFunctionObject for popping the top element from a sequence in an
    /// xpressive semantic action.
    function<op::pop>::type const pop = {{}};

    /// \brief \c pop_back is a lazy PolymorphicFunctionObject for popping the back element from a sequence in an
    /// xpressive semantic action.
    function<op::pop_back>::type const pop_back = {{}};

    /// \brief \c pop_front is a lazy PolymorphicFunctionObject for popping the front element from a sequence in an
    /// xpressive semantic action.
    function<op::pop_front>::type const pop_front = {{}};

    /// \brief \c top is a lazy PolymorphicFunctionObject for accessing the top element from a stack in an
    /// xpressive semantic action.
    function<op::top>::type const top = {{}};

    /// \brief \c back is a lazy PolymorphicFunctionObject for fetching the back element of a sequence in an
    /// xpressive semantic action.
    function<op::back>::type const back = {{}};

    /// \brief \c front is a lazy PolymorphicFunctionObject for fetching the front element of a sequence in an
    /// xpressive semantic action.
    function<op::front>::type const front = {{}};

    /// \brief \c first is a lazy PolymorphicFunctionObject for accessing the first element of a \c std::pair\<\> in an
    /// xpressive semantic action.
    function<op::first>::type const first = {{}};

    /// \brief \c second is a lazy PolymorphicFunctionObject for accessing the second element of a \c std::pair\<\> in an
    /// xpressive semantic action.
    function<op::second>::type const second = {{}};

    /// \brief \c matched is a lazy PolymorphicFunctionObject for accessing the \c matched member of a \c xpressive::sub_match\<\> in an
    /// xpressive semantic action.
    function<op::matched>::type const matched = {{}};

    /// \brief \c length is a lazy PolymorphicFunctionObject for computing the length of a \c xpressive::sub_match\<\> in an
    /// xpressive semantic action.
    function<op::length>::type const length = {{}};

    /// \brief \c str is a lazy PolymorphicFunctionObject for converting a \c xpressive::sub_match\<\> to a \c std::basic_string\<\> in an
    /// xpressive semantic action.
    function<op::str>::type const str = {{}};

    /// \brief \c insert is a lazy PolymorphicFunctionObject for inserting a value or a range of values into a sequence in an
    /// xpressive semantic action.
    function<op::insert>::type const insert = {{}};

    /// \brief \c make_pair is a lazy PolymorphicFunctionObject for making a \c std::pair\<\> in an
    /// xpressive semantic action.
    function<op::make_pair>::type const make_pair = {{}};

    /// \brief \c unwrap_reference is a lazy PolymorphicFunctionObject for unwrapping a \c boost::reference_wrapper\<\> in an
    /// xpressive semantic action.
    function<op::unwrap_reference>::type const unwrap_reference = {{}};

    /// \brief \c value\<\> is a lazy wrapper for a value that can be used in xpressive semantic actions.
    /// \tparam T The type of the value to store.
    ///
    /// Below is an example that shows where \c <tt>value\<\></tt> is useful.
    ///
    /** \code
        sregex good_voodoo(boost::shared_ptr<int> pi)
        {
            using namespace boost::xpressive;
            // Use val() to hold the shared_ptr by value:
            sregex rex = +( _d [ ++*val(pi) ] >> '!' );
            // OK, rex holds a reference count to the integer.
            return rex;
        }
        \endcode
    */
    ///
    /// In the above code, \c xpressive::val() is a function that returns a \c value\<\> object. Had
    /// \c val() not been used here, the operation <tt>++*pi</tt> would have been evaluated eagerly
    /// once, instead of lazily when the regex match happens.
    template<typename T>
    struct value
      : proto::extends<typename proto::terminal<T>::type, value<T> >
    {
        /// INTERNAL ONLY
        typedef proto::extends<typename proto::terminal<T>::type, value<T> > base_type;

        /// \brief Store a default-constructed \c T
        value()
          : base_type()
        {}

        /// \param t The initial value.
        /// \brief Store a copy of \c t.
        explicit value(T const &t)
          : base_type(base_type::proto_base_expr::make(t))
        {}

        using base_type::operator=;

        /// \overload
        T &get()
        {
            return proto::value(*this);
        }

        /// \brief Fetch the stored value
        T const &get() const
        {
            return proto::value(*this);
        }
    };

    /// \brief \c reference\<\> is a lazy wrapper for a reference that can be used in 
    /// xpressive semantic actions.
    ///
    /// \tparam T The type of the referent.
    ///
    /// Here is an example of how to use \c reference\<\> to create a lazy reference to
    /// an existing object so it can be read and written in an xpressive semantic action.
    ///
    /** \code
        using namespace boost::xpressive;
        std::map<std::string, int> result;
        reference<std::map<std::string, int> > result_ref(result);
       
        // Match a word and an integer, separated by =>,
        // and then stuff the result into a std::map<>
        sregex pair = ( (s1= +_w) >> "=>" >> (s2= +_d) )
            [ result_ref[s1] = as<int>(s2) ];
        \endcode
    */
    template<typename T>
    struct reference
      : proto::extends<typename proto::terminal<reference_wrapper<T> >::type, reference<T> >
    {
        /// INTERNAL ONLY
        typedef proto::extends<typename proto::terminal<reference_wrapper<T> >::type, reference<T> > base_type;

        /// \param t Reference to object
        /// \brief Store a reference to \c t
        explicit reference(T &t)
          : base_type(base_type::proto_base_expr::make(boost::ref(t)))
        {}

        using base_type::operator=;

        /// \brief Fetch the stored value
        T &get() const
        {
            return proto::value(*this).get();
        }
    };

    /// \brief \c local\<\> is a lazy wrapper for a reference to a value that is stored within the local itself.
    /// It is for use within xpressive semantic actions.
    ///
    /// \tparam T The type of the local variable.
    ///
    /// Below is an example of how to use \c local\<\> in semantic actions.
    ///
    /** \code
        using namespace boost::xpressive;
        local<int> i(0);
        std::string str("1!2!3?");
        // count the exciting digits, but not the
        // questionable ones.
        sregex rex = +( _d [ ++i ] >> '!' );
        regex_search(str, rex);
        assert( i.get() == 2 );
        \endcode
    */
    ///
    /// \note As the name "local" suggests, \c local\<\> objects and the regexes
    /// that refer to them should never leave the local scope. The value stored
    /// within the local object will be destroyed at the end of the \c local\<\>'s
    /// lifetime, and any regex objects still holding the \c local\<\> will be
    /// left with a dangling reference.
    template<typename T>
    struct local
      : detail::value_wrapper<T>
      , proto::terminal<reference_wrapper<T> >::type
    {
        /// INTERNAL ONLY
        typedef typename proto::terminal<reference_wrapper<T> >::type base_type;

        /// \brief Store a default-constructed value of type \c T
        local()
          : detail::value_wrapper<T>()
          , base_type(base_type::make(boost::ref(detail::value_wrapper<T>::value)))
        {}

        /// \param t The initial value.
        /// \brief Store a default-constructed value of type \c T
        explicit local(T const &t)
          : detail::value_wrapper<T>(t)
          , base_type(base_type::make(boost::ref(detail::value_wrapper<T>::value)))
        {}

        using base_type::operator=;

        /// Fetch the wrapped value.
        T &get()
        {
            return proto::value(*this);
        }

        /// \overload
        T const &get() const
        {
            return proto::value(*this);
        }
    };

    /// \brief \c as() is a lazy funtion for lexically casting a parameter to a different type.
    /// \tparam T The type to which to lexically cast the parameter.
    /// \param a The lazy value to lexically cast.
    /// \return A lazy object that, when evaluated, lexically casts its argument to the desired type.
    template<typename T, typename A>
    typename detail::make_function::impl<op::as<T> const, A const &>::result_type const
    as(A const &a)
    {
        return detail::make_function::impl<op::as<T> const, A const &>()((op::as<T>()), a);
    }

    /// \brief \c static_cast_ is a lazy funtion for statically casting a parameter to a different type.
    /// \tparam T The type to which to statically cast the parameter.
    /// \param a The lazy value to statically cast.
    /// \return A lazy object that, when evaluated, statically casts its argument to the desired type.
    template<typename T, typename A>
    typename detail::make_function::impl<op::static_cast_<T> const, A const &>::result_type const
    static_cast_(A const &a)
    {
        return detail::make_function::impl<op::static_cast_<T> const, A const &>()((op::static_cast_<T>()), a);
    }

    /// \brief \c dynamic_cast_ is a lazy funtion for dynamically casting a parameter to a different type.
    /// \tparam T The type to which to dynamically cast the parameter.
    /// \param a The lazy value to dynamically cast.
    /// \return A lazy object that, when evaluated, dynamically casts its argument to the desired type.
    template<typename T, typename A>
    typename detail::make_function::impl<op::dynamic_cast_<T> const, A const &>::result_type const
    dynamic_cast_(A const &a)
    {
        return detail::make_function::impl<op::dynamic_cast_<T> const, A const &>()((op::dynamic_cast_<T>()), a);
    }

    /// \brief \c dynamic_cast_ is a lazy funtion for const-casting a parameter to a different type.
    /// \tparam T The type to which to const-cast the parameter.
    /// \param a The lazy value to const-cast.
    /// \return A lazy object that, when evaluated, const-casts its argument to the desired type.
    template<typename T, typename A>
    typename detail::make_function::impl<op::const_cast_<T> const, A const &>::result_type const
    const_cast_(A const &a)
    {
        return detail::make_function::impl<op::const_cast_<T> const, A const &>()((op::const_cast_<T>()), a);
    }

    /// \brief Helper for constructing \c value\<\> objects.
    /// \return <tt>value\<T\>(t)</tt>
    template<typename T>
    value<T> const val(T const &t)
    {
        return value<T>(t);
    }

    /// \brief Helper for constructing \c reference\<\> objects.
    /// \return <tt>reference\<T\>(t)</tt>
    template<typename T>
    reference<T> const ref(T &t)
    {
        return reference<T>(t);
    }

    /// \brief Helper for constructing \c reference\<\> objects that
    /// store a reference to const.
    /// \return <tt>reference\<T const\>(t)</tt>
    template<typename T>
    reference<T const> const cref(T const &t)
    {
        return reference<T const>(t);
    }

    /// \brief For adding user-defined assertions to your regular expressions.
    ///
    /// \param t The UnaryPredicate object or Boolean semantic action.
    ///
    /// A \RefSect{user_s_guide.semantic_actions_and_user_defined_assertions.user_defined_assertions,user-defined assertion}
    /// is a kind of semantic action that evaluates
    /// a Boolean lambda and, if it evaluates to false, causes the match to
    /// fail at that location in the string. This will cause backtracking,
    /// so the match may ultimately succeed.
    ///
    /// To use \c check() to specify a user-defined assertion in a regex, use the
    /// following syntax:
    ///
    /** \code
        sregex s = (_d >> _d)[check( XXX )]; // XXX is a custom assertion
        \endcode
    */
    ///
    /// The assertion is evaluated with a \c sub_match\<\> object that delineates
    /// what part of the string matched the sub-expression to which the assertion
    /// was attached.
    ///
    /// \c check() can be used with an ordinary predicate that takes a
    /// \c sub_match\<\> object as follows:
    ///
    /** \code
        // A predicate that is true IFF a sub-match is
        // either 3 or 6 characters long.
        struct three_or_six
        {
            bool operator()(ssub_match const &sub) const
            {
                return sub.length() == 3 || sub.length() == 6;
            }
        };

        // match words of 3 characters or 6 characters.
        sregex rx = (bow >> +_w >> eow)[ check(three_or_six()) ] ;
        \endcode
    */
    ///
    /// Alternately, \c check() can be used to define inline custom
    /// assertions with the same syntax as is used to define semantic
    /// actions. The following code is equivalent to above:
    ///
    /** \code
        // match words of 3 characters or 6 characters.
        sregex rx = (bow >> +_w >> eow)[ check(length(_)==3 || length(_)==6) ] ;
        \endcode
    */
    ///
    /// Within a custom assertion, \c _ is a placeholder for the \c sub_match\<\>
    /// That delineates the part of the string matched by the sub-expression to
    /// which the custom assertion was attached.
#ifdef BOOST_XPRESSIVE_DOXYGEN_INVOKED // A hack so Doxygen emits something more meaningful.
    template<typename T>
    detail::unspecified check(T const &t);
#else
    proto::terminal<detail::check_tag>::type const check = {{}};
#endif

    /// \brief For binding local variables to placeholders in semantic actions when
    /// constructing a \c regex_iterator or a \c regex_token_iterator.
    ///
    /// \param args A set of argument bindings, where each argument binding is an assignment
    /// expression, the left hand side of which must be an instance of \c placeholder\<X\>
    /// for some \c X, and the right hand side is an lvalue of type \c X.
    ///
    /// \c xpressive::let() serves the same purpose as <tt>match_results::let()</tt>;
    /// that is, it binds a placeholder to a local value. The purpose is to allow a
    /// regex with semantic actions to be defined that refers to objects that do not yet exist.
    /// Rather than referring directly to an object, a semantic action can refer to a placeholder,
    /// and the value of the placeholder can be specified later with a <em>let expression</em>.
    /// The <em>let expression</em> created with \c let() is passed to the constructor of either
    /// \c regex_iterator or \c regex_token_iterator.
    ///
    /// See the section \RefSect{user_s_guide.semantic_actions_and_user_defined_assertions.referring_to_non_local_variables, "Referring to Non-Local Variables"}
    /// in the Users' Guide for more discussion.
    ///
    /// \em Example:
    ///
    /**
        \code
        // Define a placeholder for a map object:
        placeholder<std::map<std::string, int> > _map;

        // Match a word and an integer, separated by =>,
        // and then stuff the result into a std::map<>
        sregex pair = ( (s1= +_w) >> "=>" >> (s2= +_d) )
            [ _map[s1] = as<int>(s2) ];

        // The string to parse
        std::string str("aaa=>1 bbb=>23 ccc=>456");

        // Here is the actual map to fill in:
        std::map<std::string, int> result;

        // Create a regex_iterator to find all the matches
        sregex_iterator it(str.begin(), str.end(), pair, let(_map=result));
        sregex_iterator end;

        // step through all the matches, and fill in
        // the result map
        while(it != end)
            ++it;

        std::cout << result["aaa"] << '\n';
        std::cout << result["bbb"] << '\n';
        std::cout << result["ccc"] << '\n';
        \endcode
    */
    ///
    /// The above code displays:
    ///
    /** \code{.txt}
        1
        23
        456
        \endcode
    */
#ifdef BOOST_XPRESSIVE_DOXYGEN_INVOKED // A hack so Doxygen emits something more meaningful.
    template<typename...ArgBindings>
    detail::unspecified let(ArgBindings const &...args);
#else
    detail::let_<proto::terminal<detail::let_tag>::type> const let = {{{}}};
#endif

    /// \brief For defining a placeholder to stand in for a variable a semantic action.
    ///
    /// Use \c placeholder\<\> to define a placeholder for use in semantic actions to stand
    /// in for real objects. The use of placeholders allows regular expressions with actions
    /// to be defined once and reused in many contexts to read and write from objects which
    /// were not available when the regex was defined.
    ///
    /// \tparam T The type of the object for which this placeholder stands in.
    /// \tparam I An optional identifier that can be used to distinguish this placeholder
    ///           from others that may be used in the same semantic action that happen
    ///           to have the same type.
    ///
    /// You can use \c placeholder\<\> by creating an object of type \c placeholder\<T\>
    /// and using that object in a semantic action exactly as you intend an object of
    /// type \c T to be used.
    ///
    /**
        \code
        placeholder<int> _i;
        placeholder<double> _d;

        sregex rex = ( some >> regex >> here )
            [ ++_i, _d *= _d ];
        \endcode
    */
    ///
    /// Then, when doing a pattern match with either \c regex_search(),
    /// \c regex_match() or \c regex_replace(), pass a \c match_results\<\> object that
    /// contains bindings for the placeholders used in the regex object's semantic actions.
    /// You can create the bindings by calling \c match_results::let as follows:
    ///
    /**
        \code
        int i = 0;
        double d = 3.14;

        smatch what;
        what.let(_i = i)
            .let(_d = d);

        if(regex_match("some string", rex, what))
           // i and d mutated here
        \endcode
    */
    ///
    /// If a semantic action executes that contains an unbound placeholder, a exception of
    /// type \c regex_error is thrown.
    ///
    /// See the discussion for \c xpressive::let() and the
    /// \RefSect{user_s_guide.semantic_actions_and_user_defined_assertions.referring_to_non_local_variables, "Referring to Non-Local Variables"}
    /// section in the Users' Guide for more information.
    ///
    /// <em>Example:</em>
    ///
    /**
        \code
        // Define a placeholder for a map object:
        placeholder<std::map<std::string, int> > _map;

        // Match a word and an integer, separated by =>,
        // and then stuff the result into a std::map<>
        sregex pair = ( (s1= +_w) >> "=>" >> (s2= +_d) )
            [ _map[s1] = as<int>(s2) ];

        // Match one or more word/integer pairs, separated
        // by whitespace.
        sregex rx = pair >> *(+_s >> pair);

        // The string to parse
        std::string str("aaa=>1 bbb=>23 ccc=>456");

        // Here is the actual map to fill in:
        std::map<std::string, int> result;

        // Bind the _map placeholder to the actual map
        smatch what;
        what.let( _map = result );

        // Execute the match and fill in result map
        if(regex_match(str, what, rx))
        {
            std::cout << result["aaa"] << '\n';
            std::cout << result["bbb"] << '\n';
            std::cout << result["ccc"] << '\n';
        }
        \endcode
    */
#ifdef BOOST_XPRESSIVE_DOXYGEN_INVOKED // A hack so Doxygen emits something more meaningful.
    template<typename T, int I = 0>
    struct placeholder
    {
        /// \param t The object to associate with this placeholder
        /// \return An object of unspecified type that records the association of \c t
        /// with \c *this.
        detail::unspecified operator=(T &t) const;
        /// \overload
        detail::unspecified operator=(T const &t) const;
    };
#else
    template<typename T, int I, typename Dummy>
    struct placeholder
    {
        typedef placeholder<T, I, Dummy> this_type;
        typedef
            typename proto::terminal<detail::action_arg<T, mpl::int_<I> > >::type
        action_arg_type;

        BOOST_PROTO_EXTENDS(action_arg_type, this_type, proto::default_domain)
    };
#endif

    /// \brief A lazy funtion for constructing objects objects of the specified type.
    /// \tparam T The type of object to construct.
    /// \param args The arguments to the constructor.
    /// \return A lazy object that, when evaluated, returns <tt>T(xs...)</tt>, where
    ///         <tt>xs...</tt> is the result of evaluating the lazy arguments
    ///         <tt>args...</tt>.
#ifdef BOOST_XPRESSIVE_DOXYGEN_INVOKED // A hack so Doxygen emits something more meaningful.
    template<typename T, typename ...Args>
    detail::unspecified construct(Args const &...args);
#else
/// INTERNAL ONLY
#define BOOST_PROTO_LOCAL_MACRO(N, typename_A, A_const_ref, A_const_ref_a, a)                       \
    template<typename X2_0 BOOST_PP_COMMA_IF(N) typename_A(N)>                                      \
    typename detail::make_function::impl<                                                           \
        op::construct<X2_0> const                                                                   \
        BOOST_PP_COMMA_IF(N) A_const_ref(N)                                                         \
    >::result_type const                                                                            \
    construct(A_const_ref_a(N))                                                                     \
    {                                                                                               \
        return detail::make_function::impl<                                                         \
            op::construct<X2_0> const                                                               \
            BOOST_PP_COMMA_IF(N) A_const_ref(N)                                                     \
        >()((op::construct<X2_0>()) BOOST_PP_COMMA_IF(N) a(N));                                     \
    }                                                                                               \
                                                                                                    \
    template<typename X2_0 BOOST_PP_COMMA_IF(N) typename_A(N)>                                      \
    typename detail::make_function::impl<                                                           \
        op::throw_<X2_0> const                                                                      \
        BOOST_PP_COMMA_IF(N) A_const_ref(N)                                                         \
    >::result_type const                                                                            \
    throw_(A_const_ref_a(N))                                                                        \
    {                                                                                               \
        return detail::make_function::impl<                                                         \
            op::throw_<X2_0> const                                                                  \
            BOOST_PP_COMMA_IF(N) A_const_ref(N)                                                     \
        >()((op::throw_<X2_0>()) BOOST_PP_COMMA_IF(N) a(N));                                        \
    }                                                                                               \
    /**/

    #define BOOST_PROTO_LOCAL_a         BOOST_PROTO_a                               ///< INTERNAL ONLY
    #define BOOST_PROTO_LOCAL_LIMITS    (0, BOOST_PP_DEC(BOOST_PROTO_MAX_ARITY))    ///< INTERNAL ONLY
    #include BOOST_PROTO_LOCAL_ITERATE()
#endif

    namespace detail
    {
        inline void ignore_unused_regex_actions()
        {
            detail::ignore_unused(xpressive::at);
            detail::ignore_unused(xpressive::push);
            detail::ignore_unused(xpressive::push_back);
            detail::ignore_unused(xpressive::push_front);
            detail::ignore_unused(xpressive::pop);
            detail::ignore_unused(xpressive::pop_back);
            detail::ignore_unused(xpressive::pop_front);
            detail::ignore_unused(xpressive::top);
            detail::ignore_unused(xpressive::back);
            detail::ignore_unused(xpressive::front);
            detail::ignore_unused(xpressive::first);
            detail::ignore_unused(xpressive::second);
            detail::ignore_unused(xpressive::matched);
            detail::ignore_unused(xpressive::length);
            detail::ignore_unused(xpressive::str);
            detail::ignore_unused(xpressive::insert);
            detail::ignore_unused(xpressive::make_pair);
            detail::ignore_unused(xpressive::unwrap_reference);
            detail::ignore_unused(xpressive::check);
            detail::ignore_unused(xpressive::let);
        }

        struct mark_nbr
        {
            BOOST_PROTO_CALLABLE()
            typedef int result_type;

            int operator()(mark_placeholder m) const
            {
                return m.mark_number_;
            }
        };

        struct ReplaceAlgo
          : proto::or_<
                proto::when<
                    proto::terminal<mark_placeholder>
                  , op::at(proto::_data, proto::call<mark_nbr(proto::_value)>)
                >
              , proto::when<
                    proto::terminal<any_matcher>
                  , op::at(proto::_data, proto::size_t<0>)
                >
              , proto::when<
                    proto::terminal<reference_wrapper<proto::_> >
                  , op::unwrap_reference(proto::_value)
                >
              , proto::_default<ReplaceAlgo>
            >
        {};
    }
}}

#if BOOST_MSVC
#pragma warning(pop)
#endif

#endif // BOOST_XPRESSIVE_ACTIONS_HPP_EAN_03_22_2007