/usr/include/boost/xpressive/regex_actions.hpp is in libboost1.55-dev 1.55.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 | ///////////////////////////////////////////////////////////////////////////////
/// \file regex_actions.hpp
/// Defines the syntax elements of xpressive's action expressions.
//
// Copyright 2008 Eric Niebler. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_XPRESSIVE_ACTIONS_HPP_EAN_03_22_2007
#define BOOST_XPRESSIVE_ACTIONS_HPP_EAN_03_22_2007
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
#include <boost/config.hpp>
#include <boost/preprocessor/punctuation/comma_if.hpp>
#include <boost/ref.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/or.hpp>
#include <boost/mpl/int.hpp>
#include <boost/mpl/assert.hpp>
#include <boost/noncopyable.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/throw_exception.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/is_const.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/type_traits/decay.hpp>
#include <boost/type_traits/remove_cv.hpp>
#include <boost/type_traits/remove_reference.hpp>
#include <boost/range/iterator_range.hpp>
#include <boost/xpressive/detail/detail_fwd.hpp>
#include <boost/xpressive/detail/core/state.hpp>
#include <boost/xpressive/detail/core/matcher/attr_matcher.hpp>
#include <boost/xpressive/detail/core/matcher/attr_end_matcher.hpp>
#include <boost/xpressive/detail/core/matcher/attr_begin_matcher.hpp>
#include <boost/xpressive/detail/core/matcher/predicate_matcher.hpp>
#include <boost/xpressive/detail/utility/ignore_unused.hpp>
#include <boost/xpressive/detail/static/type_traits.hpp>
// These are very often needed by client code.
#include <boost/typeof/std/map.hpp>
#include <boost/typeof/std/string.hpp>
// Doxygen can't handle proto :-(
#ifndef BOOST_XPRESSIVE_DOXYGEN_INVOKED
# include <boost/proto/core.hpp>
# include <boost/proto/transform.hpp>
# include <boost/xpressive/detail/core/matcher/action_matcher.hpp>
#endif
#if BOOST_MSVC
#pragma warning(push)
#pragma warning(disable : 4510) // default constructor could not be generated
#pragma warning(disable : 4512) // assignment operator could not be generated
#pragma warning(disable : 4610) // can never be instantiated - user defined constructor required
#endif
namespace boost { namespace xpressive
{
namespace detail
{
template<typename T, typename U>
struct action_arg
{
typedef T type;
typedef typename add_reference<T>::type reference;
reference cast(void *pv) const
{
return *static_cast<typename remove_reference<T>::type *>(pv);
}
};
template<typename T>
struct value_wrapper
: private noncopyable
{
value_wrapper()
: value()
{}
value_wrapper(T const &t)
: value(t)
{}
T value;
};
struct check_tag
{};
struct BindArg
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result {};
template<typename This, typename MatchResults, typename Expr>
struct result<This(MatchResults, Expr)>
{
typedef Expr type;
};
template<typename MatchResults, typename Expr>
Expr const & operator ()(MatchResults &what, Expr const &expr) const
{
what.let(expr);
return expr;
}
};
struct let_tag
{};
// let(_a = b, _c = d)
struct BindArgs
: proto::function<
proto::terminal<let_tag>
, proto::vararg<
proto::when<
proto::assign<proto::_, proto::_>
, proto::call<BindArg(proto::_data, proto::_)>
>
>
>
{};
struct let_domain
: boost::proto::domain<boost::proto::pod_generator<let_> >
{};
template<typename Expr>
struct let_
{
BOOST_PROTO_BASIC_EXTENDS(Expr, let_<Expr>, let_domain)
BOOST_PROTO_EXTENDS_FUNCTION()
};
template<typename Args, typename BidiIter>
void bind_args(let_<Args> const &args, match_results<BidiIter> &what)
{
BindArgs()(args, 0, what);
}
typedef boost::proto::functional::make_expr<proto::tag::function, proto::default_domain> make_function;
}
namespace op
{
/// \brief \c at is a PolymorphicFunctionObject for indexing into a sequence
struct at
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result {};
template<typename This, typename Cont, typename Idx>
struct result<This(Cont &, Idx)>
{
typedef typename Cont::reference type;
};
template<typename This, typename Cont, typename Idx>
struct result<This(Cont const &, Idx)>
{
typedef typename Cont::const_reference type;
};
template<typename This, typename Cont, typename Idx>
struct result<This(Cont, Idx)>
{
typedef typename Cont::const_reference type;
};
/// \pre \c Cont is a model of RandomAccessSequence
/// \param c The RandomAccessSequence to index into
/// \param idx The index
/// \return <tt>c[idx]</tt>
template<typename Cont, typename Idx>
typename Cont::reference operator()(Cont &c, Idx idx BOOST_PROTO_DISABLE_IF_IS_CONST(Cont)) const
{
return c[idx];
}
/// \overload
///
template<typename Cont, typename Idx>
typename Cont::const_reference operator()(Cont const &c, Idx idx) const
{
return c[idx];
}
};
/// \brief \c push is a PolymorphicFunctionObject for pushing an element into a container.
struct push
{
BOOST_PROTO_CALLABLE()
typedef void result_type;
/// \param seq The sequence into which the value should be pushed.
/// \param val The value to push into the sequence.
/// \brief Equivalent to <tt>seq.push(val)</tt>.
/// \return \c void
template<typename Sequence, typename Value>
void operator()(Sequence &seq, Value const &val) const
{
seq.push(val);
}
};
/// \brief \c push_back is a PolymorphicFunctionObject for pushing an element into the back of a container.
struct push_back
{
BOOST_PROTO_CALLABLE()
typedef void result_type;
/// \param seq The sequence into which the value should be pushed.
/// \param val The value to push into the sequence.
/// \brief Equivalent to <tt>seq.push_back(val)</tt>.
/// \return \c void
template<typename Sequence, typename Value>
void operator()(Sequence &seq, Value const &val) const
{
seq.push_back(val);
}
};
/// \brief \c push_front is a PolymorphicFunctionObject for pushing an element into the front of a container.
struct push_front
{
BOOST_PROTO_CALLABLE()
typedef void result_type;
/// \param seq The sequence into which the value should be pushed.
/// \param val The value to push into the sequence.
/// \brief Equivalent to <tt>seq.push_front(val)</tt>.
/// \return \c void
template<typename Sequence, typename Value>
void operator()(Sequence &seq, Value const &val) const
{
seq.push_front(val);
}
};
/// \brief \c pop is a PolymorphicFunctionObject for popping an element from a container.
struct pop
{
BOOST_PROTO_CALLABLE()
typedef void result_type;
/// \param seq The sequence from which to pop.
/// \brief Equivalent to <tt>seq.pop()</tt>.
/// \return \c void
template<typename Sequence>
void operator()(Sequence &seq) const
{
seq.pop();
}
};
/// \brief \c pop_back is a PolymorphicFunctionObject for popping an element from the back of a container.
struct pop_back
{
BOOST_PROTO_CALLABLE()
typedef void result_type;
/// \param seq The sequence from which to pop.
/// \brief Equivalent to <tt>seq.pop_back()</tt>.
/// \return \c void
template<typename Sequence>
void operator()(Sequence &seq) const
{
seq.pop_back();
}
};
/// \brief \c pop_front is a PolymorphicFunctionObject for popping an element from the front of a container.
struct pop_front
{
BOOST_PROTO_CALLABLE()
typedef void result_type;
/// \param seq The sequence from which to pop.
/// \brief Equivalent to <tt>seq.pop_front()</tt>.
/// \return \c void
template<typename Sequence>
void operator()(Sequence &seq) const
{
seq.pop_front();
}
};
/// \brief \c front is a PolymorphicFunctionObject for fetching the front element of a container.
struct front
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result {};
template<typename This, typename Sequence>
struct result<This(Sequence)>
{
typedef typename remove_reference<Sequence>::type sequence_type;
typedef
typename mpl::if_c<
is_const<sequence_type>::value
, typename sequence_type::const_reference
, typename sequence_type::reference
>::type
type;
};
/// \param seq The sequence from which to fetch the front.
/// \return <tt>seq.front()</tt>
template<typename Sequence>
typename result<front(Sequence &)>::type operator()(Sequence &seq) const
{
return seq.front();
}
};
/// \brief \c back is a PolymorphicFunctionObject for fetching the back element of a container.
struct back
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result {};
template<typename This, typename Sequence>
struct result<This(Sequence)>
{
typedef typename remove_reference<Sequence>::type sequence_type;
typedef
typename mpl::if_c<
is_const<sequence_type>::value
, typename sequence_type::const_reference
, typename sequence_type::reference
>::type
type;
};
/// \param seq The sequence from which to fetch the back.
/// \return <tt>seq.back()</tt>
template<typename Sequence>
typename result<back(Sequence &)>::type operator()(Sequence &seq) const
{
return seq.back();
}
};
/// \brief \c top is a PolymorphicFunctionObject for fetching the top element of a stack.
struct top
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result {};
template<typename This, typename Sequence>
struct result<This(Sequence)>
{
typedef typename remove_reference<Sequence>::type sequence_type;
typedef
typename mpl::if_c<
is_const<sequence_type>::value
, typename sequence_type::value_type const &
, typename sequence_type::value_type &
>::type
type;
};
/// \param seq The sequence from which to fetch the top.
/// \return <tt>seq.top()</tt>
template<typename Sequence>
typename result<top(Sequence &)>::type operator()(Sequence &seq) const
{
return seq.top();
}
};
/// \brief \c first is a PolymorphicFunctionObject for fetching the first element of a pair.
struct first
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result {};
template<typename This, typename Pair>
struct result<This(Pair)>
{
typedef typename remove_reference<Pair>::type::first_type type;
};
/// \param p The pair from which to fetch the first element.
/// \return <tt>p.first</tt>
template<typename Pair>
typename Pair::first_type operator()(Pair const &p) const
{
return p.first;
}
};
/// \brief \c second is a PolymorphicFunctionObject for fetching the second element of a pair.
struct second
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result {};
template<typename This, typename Pair>
struct result<This(Pair)>
{
typedef typename remove_reference<Pair>::type::second_type type;
};
/// \param p The pair from which to fetch the second element.
/// \return <tt>p.second</tt>
template<typename Pair>
typename Pair::second_type operator()(Pair const &p) const
{
return p.second;
}
};
/// \brief \c matched is a PolymorphicFunctionObject for assessing whether a \c sub_match object
/// matched or not.
struct matched
{
BOOST_PROTO_CALLABLE()
typedef bool result_type;
/// \param sub The \c sub_match object.
/// \return <tt>sub.matched</tt>
template<typename Sub>
bool operator()(Sub const &sub) const
{
return sub.matched;
}
};
/// \brief \c length is a PolymorphicFunctionObject for fetching the length of \c sub_match.
struct length
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result {};
template<typename This, typename Sub>
struct result<This(Sub)>
{
typedef typename remove_reference<Sub>::type::difference_type type;
};
/// \param sub The \c sub_match object.
/// \return <tt>sub.length()</tt>
template<typename Sub>
typename Sub::difference_type operator()(Sub const &sub) const
{
return sub.length();
}
};
/// \brief \c str is a PolymorphicFunctionObject for turning a \c sub_match into an
/// equivalent \c std::string.
struct str
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result {};
template<typename This, typename Sub>
struct result<This(Sub)>
{
typedef typename remove_reference<Sub>::type::string_type type;
};
/// \param sub The \c sub_match object.
/// \return <tt>sub.str()</tt>
template<typename Sub>
typename Sub::string_type operator()(Sub const &sub) const
{
return sub.str();
}
};
// This codifies the return types of the various insert member
// functions found in sequence containers, the 2 flavors of
// associative containers, and strings.
//
/// \brief \c insert is a PolymorphicFunctionObject for inserting a value or a
/// sequence of values into a sequence container, an associative
/// container, or a string.
struct insert
{
BOOST_PROTO_CALLABLE()
/// INTERNAL ONLY
///
struct detail
{
template<typename Sig, typename EnableIf = void>
struct result_detail
{};
// assoc containers
template<typename This, typename Cont, typename Value>
struct result_detail<This(Cont, Value), void>
{
typedef typename remove_reference<Cont>::type cont_type;
typedef typename remove_reference<Value>::type value_type;
static cont_type &scont_;
static value_type &svalue_;
typedef char yes_type;
typedef char (&no_type)[2];
static yes_type check_insert_return(typename cont_type::iterator);
static no_type check_insert_return(std::pair<typename cont_type::iterator, bool>);
BOOST_STATIC_CONSTANT(bool, is_iterator = (sizeof(yes_type) == sizeof(check_insert_return(scont_.insert(svalue_)))));
typedef
typename mpl::if_c<
is_iterator
, typename cont_type::iterator
, std::pair<typename cont_type::iterator, bool>
>::type
type;
};
// sequence containers, assoc containers, strings
template<typename This, typename Cont, typename It, typename Value>
struct result_detail<This(Cont, It, Value),
typename disable_if<
mpl::or_<
is_integral<typename remove_cv<typename remove_reference<It>::type>::type>
, is_same<
typename remove_cv<typename remove_reference<It>::type>::type
, typename remove_cv<typename remove_reference<Value>::type>::type
>
>
>::type
>
{
typedef typename remove_reference<Cont>::type::iterator type;
};
// strings
template<typename This, typename Cont, typename Size, typename T>
struct result_detail<This(Cont, Size, T),
typename enable_if<
is_integral<typename remove_cv<typename remove_reference<Size>::type>::type>
>::type
>
{
typedef typename remove_reference<Cont>::type &type;
};
// assoc containers
template<typename This, typename Cont, typename It>
struct result_detail<This(Cont, It, It), void>
{
typedef void type;
};
// sequence containers, strings
template<typename This, typename Cont, typename It, typename Size, typename Value>
struct result_detail<This(Cont, It, Size, Value),
typename disable_if<
is_integral<typename remove_cv<typename remove_reference<It>::type>::type>
>::type
>
{
typedef void type;
};
// strings
template<typename This, typename Cont, typename Size, typename A0, typename A1>
struct result_detail<This(Cont, Size, A0, A1),
typename enable_if<
is_integral<typename remove_cv<typename remove_reference<Size>::type>::type>
>::type
>
{
typedef typename remove_reference<Cont>::type &type;
};
// strings
template<typename This, typename Cont, typename Pos0, typename String, typename Pos1, typename Length>
struct result_detail<This(Cont, Pos0, String, Pos1, Length)>
{
typedef typename remove_reference<Cont>::type &type;
};
};
template<typename Sig>
struct result
{
typedef typename detail::result_detail<Sig>::type type;
};
/// \overload
///
template<typename Cont, typename A0>
typename result<insert(Cont &, A0 const &)>::type
operator()(Cont &cont, A0 const &a0) const
{
return cont.insert(a0);
}
/// \overload
///
template<typename Cont, typename A0, typename A1>
typename result<insert(Cont &, A0 const &, A1 const &)>::type
operator()(Cont &cont, A0 const &a0, A1 const &a1) const
{
return cont.insert(a0, a1);
}
/// \overload
///
template<typename Cont, typename A0, typename A1, typename A2>
typename result<insert(Cont &, A0 const &, A1 const &, A2 const &)>::type
operator()(Cont &cont, A0 const &a0, A1 const &a1, A2 const &a2) const
{
return cont.insert(a0, a1, a2);
}
/// \param cont The container into which to insert the element(s)
/// \param a0 A value, iterator, or count
/// \param a1 A value, iterator, string, count, or character
/// \param a2 A value, iterator, or count
/// \param a3 A count
/// \return \li For the form <tt>insert()(cont, a0)</tt>, return <tt>cont.insert(a0)</tt>.
/// \li For the form <tt>insert()(cont, a0, a1)</tt>, return <tt>cont.insert(a0, a1)</tt>.
/// \li For the form <tt>insert()(cont, a0, a1, a2)</tt>, return <tt>cont.insert(a0, a1, a2)</tt>.
/// \li For the form <tt>insert()(cont, a0, a1, a2, a3)</tt>, return <tt>cont.insert(a0, a1, a2, a3)</tt>.
template<typename Cont, typename A0, typename A1, typename A2, typename A3>
typename result<insert(Cont &, A0 const &, A1 const &, A2 const &, A3 const &)>::type
operator()(Cont &cont, A0 const &a0, A1 const &a1, A2 const &a2, A3 const &a3) const
{
return cont.insert(a0, a1, a2, a3);
}
};
/// \brief \c make_pair is a PolymorphicFunctionObject for building a \c std::pair out of two parameters
struct make_pair
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result {};
template<typename This, typename First, typename Second>
struct result<This(First, Second)>
{
/// \brief For exposition only
typedef typename decay<First>::type first_type;
/// \brief For exposition only
typedef typename decay<Second>::type second_type;
typedef std::pair<first_type, second_type> type;
};
/// \param first The first element of the pair
/// \param second The second element of the pair
/// \return <tt>std::make_pair(first, second)</tt>
template<typename First, typename Second>
std::pair<First, Second> operator()(First const &first, Second const &second) const
{
return std::make_pair(first, second);
}
};
/// \brief \c as\<\> is a PolymorphicFunctionObject for lexically casting a parameter to a different type.
/// \tparam T The type to which to lexically cast the parameter.
template<typename T>
struct as
{
BOOST_PROTO_CALLABLE()
typedef T result_type;
/// \param val The value to lexically cast.
/// \return <tt>boost::lexical_cast\<T\>(val)</tt>
template<typename Value>
T operator()(Value const &val) const
{
return boost::lexical_cast<T>(val);
}
// Hack around some limitations in boost::lexical_cast
/// INTERNAL ONLY
T operator()(csub_match const &val) const
{
return val.matched
? boost::lexical_cast<T>(boost::make_iterator_range(val.first, val.second))
: boost::lexical_cast<T>("");
}
#ifndef BOOST_XPRESSIVE_NO_WREGEX
/// INTERNAL ONLY
T operator()(wcsub_match const &val) const
{
return val.matched
? boost::lexical_cast<T>(boost::make_iterator_range(val.first, val.second))
: boost::lexical_cast<T>("");
}
#endif
/// INTERNAL ONLY
template<typename BidiIter>
T operator()(sub_match<BidiIter> const &val) const
{
// If this assert fires, you're trying to coerce a sequences of non-characters
// to some other type. Xpressive doesn't know how to do that.
typedef typename iterator_value<BidiIter>::type char_type;
BOOST_MPL_ASSERT_MSG(
(xpressive::detail::is_char<char_type>::value)
, CAN_ONLY_CONVERT_FROM_CHARACTER_SEQUENCES
, (char_type)
);
return this->impl(val, xpressive::detail::is_string_iterator<BidiIter>());
}
private:
/// INTERNAL ONLY
template<typename RandIter>
T impl(sub_match<RandIter> const &val, mpl::true_) const
{
return val.matched
? boost::lexical_cast<T>(boost::make_iterator_range(&*val.first, &*val.first + (val.second - val.first)))
: boost::lexical_cast<T>("");
}
/// INTERNAL ONLY
template<typename BidiIter>
T impl(sub_match<BidiIter> const &val, mpl::false_) const
{
return boost::lexical_cast<T>(val.str());
}
};
/// \brief \c static_cast_\<\> is a PolymorphicFunctionObject for statically casting a parameter to a different type.
/// \tparam T The type to which to statically cast the parameter.
template<typename T>
struct static_cast_
{
BOOST_PROTO_CALLABLE()
typedef T result_type;
/// \param val The value to statically cast.
/// \return <tt>static_cast\<T\>(val)</tt>
template<typename Value>
T operator()(Value const &val) const
{
return static_cast<T>(val);
}
};
/// \brief \c dynamic_cast_\<\> is a PolymorphicFunctionObject for dynamically casting a parameter to a different type.
/// \tparam T The type to which to dynamically cast the parameter.
template<typename T>
struct dynamic_cast_
{
BOOST_PROTO_CALLABLE()
typedef T result_type;
/// \param val The value to dynamically cast.
/// \return <tt>dynamic_cast\<T\>(val)</tt>
template<typename Value>
T operator()(Value const &val) const
{
return dynamic_cast<T>(val);
}
};
/// \brief \c const_cast_\<\> is a PolymorphicFunctionObject for const-casting a parameter to a cv qualification.
/// \tparam T The type to which to const-cast the parameter.
template<typename T>
struct const_cast_
{
BOOST_PROTO_CALLABLE()
typedef T result_type;
/// \param val The value to const-cast.
/// \pre Types \c T and \c Value differ only in cv-qualification.
/// \return <tt>const_cast\<T\>(val)</tt>
template<typename Value>
T operator()(Value const &val) const
{
return const_cast<T>(val);
}
};
/// \brief \c construct\<\> is a PolymorphicFunctionObject for constructing a new object.
/// \tparam T The type of the object to construct.
template<typename T>
struct construct
{
BOOST_PROTO_CALLABLE()
typedef T result_type;
/// \overload
T operator()() const
{
return T();
}
/// \overload
template<typename A0>
T operator()(A0 const &a0) const
{
return T(a0);
}
/// \overload
template<typename A0, typename A1>
T operator()(A0 const &a0, A1 const &a1) const
{
return T(a0, a1);
}
/// \param a0 The first argument to the constructor
/// \param a1 The second argument to the constructor
/// \param a2 The third argument to the constructor
/// \return <tt>T(a0,a1,...)</tt>
template<typename A0, typename A1, typename A2>
T operator()(A0 const &a0, A1 const &a1, A2 const &a2) const
{
return T(a0, a1, a2);
}
};
/// \brief \c throw_\<\> is a PolymorphicFunctionObject for throwing an exception.
/// \tparam Except The type of the object to throw.
template<typename Except>
struct throw_
{
BOOST_PROTO_CALLABLE()
typedef void result_type;
/// \overload
void operator()() const
{
BOOST_THROW_EXCEPTION(Except());
}
/// \overload
template<typename A0>
void operator()(A0 const &a0) const
{
BOOST_THROW_EXCEPTION(Except(a0));
}
/// \overload
template<typename A0, typename A1>
void operator()(A0 const &a0, A1 const &a1) const
{
BOOST_THROW_EXCEPTION(Except(a0, a1));
}
/// \param a0 The first argument to the constructor
/// \param a1 The second argument to the constructor
/// \param a2 The third argument to the constructor
/// \throw <tt>Except(a0,a1,...)</tt>
/// \note This function makes use of the \c BOOST_THROW_EXCEPTION macro
/// to actually throw the exception. See the documentation for the
/// Boost.Exception library.
template<typename A0, typename A1, typename A2>
void operator()(A0 const &a0, A1 const &a1, A2 const &a2) const
{
BOOST_THROW_EXCEPTION(Except(a0, a1, a2));
}
};
/// \brief \c unwrap_reference is a PolymorphicFunctionObject for unwrapping a <tt>boost::reference_wrapper\<\></tt>.
struct unwrap_reference
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result {};
template<typename This, typename Ref>
struct result<This(Ref)>
{
typedef typename boost::unwrap_reference<Ref>::type &type;
};
template<typename This, typename Ref>
struct result<This(Ref &)>
{
typedef typename boost::unwrap_reference<Ref>::type &type;
};
/// \param r The <tt>boost::reference_wrapper\<T\></tt> to unwrap.
/// \return <tt>static_cast\<T &\>(r)</tt>
template<typename T>
T &operator()(boost::reference_wrapper<T> r) const
{
return static_cast<T &>(r);
}
};
}
/// \brief A unary metafunction that turns an ordinary function object type into the type of
/// a deferred function object for use in xpressive semantic actions.
///
/// Use \c xpressive::function\<\> to turn an ordinary polymorphic function object type
/// into a type that can be used to declare an object for use in xpressive semantic actions.
///
/// For example, the global object \c xpressive::push_back can be used to create deferred actions
/// that have the effect of pushing a value into a container. It is defined with
/// \c xpressive::function\<\> as follows:
///
/** \code
xpressive::function<xpressive::op::push_back>::type const push_back = {};
\endcode
*/
///
/// where \c op::push_back is an ordinary function object that pushes its second argument into
/// its first. Thus defined, \c xpressive::push_back can be used in semantic actions as follows:
///
/** \code
namespace xp = boost::xpressive;
using xp::_;
std::list<int> result;
std::string str("1 23 456 7890");
xp::sregex rx = (+_d)[ xp::push_back(xp::ref(result), xp::as<int>(_) ]
>> *(' ' >> (+_d)[ xp::push_back(xp::ref(result), xp::as<int>(_) ) ]);
\endcode
*/
template<typename PolymorphicFunctionObject>
struct function
{
typedef typename proto::terminal<PolymorphicFunctionObject>::type type;
};
/// \brief \c at is a lazy PolymorphicFunctionObject for indexing into a sequence in an
/// xpressive semantic action.
function<op::at>::type const at = {{}};
/// \brief \c push is a lazy PolymorphicFunctionObject for pushing a value into a container in an
/// xpressive semantic action.
function<op::push>::type const push = {{}};
/// \brief \c push_back is a lazy PolymorphicFunctionObject for pushing a value into a container in an
/// xpressive semantic action.
function<op::push_back>::type const push_back = {{}};
/// \brief \c push_front is a lazy PolymorphicFunctionObject for pushing a value into a container in an
/// xpressive semantic action.
function<op::push_front>::type const push_front = {{}};
/// \brief \c pop is a lazy PolymorphicFunctionObject for popping the top element from a sequence in an
/// xpressive semantic action.
function<op::pop>::type const pop = {{}};
/// \brief \c pop_back is a lazy PolymorphicFunctionObject for popping the back element from a sequence in an
/// xpressive semantic action.
function<op::pop_back>::type const pop_back = {{}};
/// \brief \c pop_front is a lazy PolymorphicFunctionObject for popping the front element from a sequence in an
/// xpressive semantic action.
function<op::pop_front>::type const pop_front = {{}};
/// \brief \c top is a lazy PolymorphicFunctionObject for accessing the top element from a stack in an
/// xpressive semantic action.
function<op::top>::type const top = {{}};
/// \brief \c back is a lazy PolymorphicFunctionObject for fetching the back element of a sequence in an
/// xpressive semantic action.
function<op::back>::type const back = {{}};
/// \brief \c front is a lazy PolymorphicFunctionObject for fetching the front element of a sequence in an
/// xpressive semantic action.
function<op::front>::type const front = {{}};
/// \brief \c first is a lazy PolymorphicFunctionObject for accessing the first element of a \c std::pair\<\> in an
/// xpressive semantic action.
function<op::first>::type const first = {{}};
/// \brief \c second is a lazy PolymorphicFunctionObject for accessing the second element of a \c std::pair\<\> in an
/// xpressive semantic action.
function<op::second>::type const second = {{}};
/// \brief \c matched is a lazy PolymorphicFunctionObject for accessing the \c matched member of a \c xpressive::sub_match\<\> in an
/// xpressive semantic action.
function<op::matched>::type const matched = {{}};
/// \brief \c length is a lazy PolymorphicFunctionObject for computing the length of a \c xpressive::sub_match\<\> in an
/// xpressive semantic action.
function<op::length>::type const length = {{}};
/// \brief \c str is a lazy PolymorphicFunctionObject for converting a \c xpressive::sub_match\<\> to a \c std::basic_string\<\> in an
/// xpressive semantic action.
function<op::str>::type const str = {{}};
/// \brief \c insert is a lazy PolymorphicFunctionObject for inserting a value or a range of values into a sequence in an
/// xpressive semantic action.
function<op::insert>::type const insert = {{}};
/// \brief \c make_pair is a lazy PolymorphicFunctionObject for making a \c std::pair\<\> in an
/// xpressive semantic action.
function<op::make_pair>::type const make_pair = {{}};
/// \brief \c unwrap_reference is a lazy PolymorphicFunctionObject for unwrapping a \c boost::reference_wrapper\<\> in an
/// xpressive semantic action.
function<op::unwrap_reference>::type const unwrap_reference = {{}};
/// \brief \c value\<\> is a lazy wrapper for a value that can be used in xpressive semantic actions.
/// \tparam T The type of the value to store.
///
/// Below is an example that shows where \c <tt>value\<\></tt> is useful.
///
/** \code
sregex good_voodoo(boost::shared_ptr<int> pi)
{
using namespace boost::xpressive;
// Use val() to hold the shared_ptr by value:
sregex rex = +( _d [ ++*val(pi) ] >> '!' );
// OK, rex holds a reference count to the integer.
return rex;
}
\endcode
*/
///
/// In the above code, \c xpressive::val() is a function that returns a \c value\<\> object. Had
/// \c val() not been used here, the operation <tt>++*pi</tt> would have been evaluated eagerly
/// once, instead of lazily when the regex match happens.
template<typename T>
struct value
: proto::extends<typename proto::terminal<T>::type, value<T> >
{
/// INTERNAL ONLY
typedef proto::extends<typename proto::terminal<T>::type, value<T> > base_type;
/// \brief Store a default-constructed \c T
value()
: base_type()
{}
/// \param t The initial value.
/// \brief Store a copy of \c t.
explicit value(T const &t)
: base_type(base_type::proto_base_expr::make(t))
{}
using base_type::operator=;
/// \overload
T &get()
{
return proto::value(*this);
}
/// \brief Fetch the stored value
T const &get() const
{
return proto::value(*this);
}
};
/// \brief \c reference\<\> is a lazy wrapper for a reference that can be used in
/// xpressive semantic actions.
///
/// \tparam T The type of the referent.
///
/// Here is an example of how to use \c reference\<\> to create a lazy reference to
/// an existing object so it can be read and written in an xpressive semantic action.
///
/** \code
using namespace boost::xpressive;
std::map<std::string, int> result;
reference<std::map<std::string, int> > result_ref(result);
// Match a word and an integer, separated by =>,
// and then stuff the result into a std::map<>
sregex pair = ( (s1= +_w) >> "=>" >> (s2= +_d) )
[ result_ref[s1] = as<int>(s2) ];
\endcode
*/
template<typename T>
struct reference
: proto::extends<typename proto::terminal<reference_wrapper<T> >::type, reference<T> >
{
/// INTERNAL ONLY
typedef proto::extends<typename proto::terminal<reference_wrapper<T> >::type, reference<T> > base_type;
/// \param t Reference to object
/// \brief Store a reference to \c t
explicit reference(T &t)
: base_type(base_type::proto_base_expr::make(boost::ref(t)))
{}
using base_type::operator=;
/// \brief Fetch the stored value
T &get() const
{
return proto::value(*this).get();
}
};
/// \brief \c local\<\> is a lazy wrapper for a reference to a value that is stored within the local itself.
/// It is for use within xpressive semantic actions.
///
/// \tparam T The type of the local variable.
///
/// Below is an example of how to use \c local\<\> in semantic actions.
///
/** \code
using namespace boost::xpressive;
local<int> i(0);
std::string str("1!2!3?");
// count the exciting digits, but not the
// questionable ones.
sregex rex = +( _d [ ++i ] >> '!' );
regex_search(str, rex);
assert( i.get() == 2 );
\endcode
*/
///
/// \note As the name "local" suggests, \c local\<\> objects and the regexes
/// that refer to them should never leave the local scope. The value stored
/// within the local object will be destroyed at the end of the \c local\<\>'s
/// lifetime, and any regex objects still holding the \c local\<\> will be
/// left with a dangling reference.
template<typename T>
struct local
: detail::value_wrapper<T>
, proto::terminal<reference_wrapper<T> >::type
{
/// INTERNAL ONLY
typedef typename proto::terminal<reference_wrapper<T> >::type base_type;
/// \brief Store a default-constructed value of type \c T
local()
: detail::value_wrapper<T>()
, base_type(base_type::make(boost::ref(detail::value_wrapper<T>::value)))
{}
/// \param t The initial value.
/// \brief Store a default-constructed value of type \c T
explicit local(T const &t)
: detail::value_wrapper<T>(t)
, base_type(base_type::make(boost::ref(detail::value_wrapper<T>::value)))
{}
using base_type::operator=;
/// Fetch the wrapped value.
T &get()
{
return proto::value(*this);
}
/// \overload
T const &get() const
{
return proto::value(*this);
}
};
/// \brief \c as() is a lazy funtion for lexically casting a parameter to a different type.
/// \tparam T The type to which to lexically cast the parameter.
/// \param a The lazy value to lexically cast.
/// \return A lazy object that, when evaluated, lexically casts its argument to the desired type.
template<typename T, typename A>
typename detail::make_function::impl<op::as<T> const, A const &>::result_type const
as(A const &a)
{
return detail::make_function::impl<op::as<T> const, A const &>()((op::as<T>()), a);
}
/// \brief \c static_cast_ is a lazy funtion for statically casting a parameter to a different type.
/// \tparam T The type to which to statically cast the parameter.
/// \param a The lazy value to statically cast.
/// \return A lazy object that, when evaluated, statically casts its argument to the desired type.
template<typename T, typename A>
typename detail::make_function::impl<op::static_cast_<T> const, A const &>::result_type const
static_cast_(A const &a)
{
return detail::make_function::impl<op::static_cast_<T> const, A const &>()((op::static_cast_<T>()), a);
}
/// \brief \c dynamic_cast_ is a lazy funtion for dynamically casting a parameter to a different type.
/// \tparam T The type to which to dynamically cast the parameter.
/// \param a The lazy value to dynamically cast.
/// \return A lazy object that, when evaluated, dynamically casts its argument to the desired type.
template<typename T, typename A>
typename detail::make_function::impl<op::dynamic_cast_<T> const, A const &>::result_type const
dynamic_cast_(A const &a)
{
return detail::make_function::impl<op::dynamic_cast_<T> const, A const &>()((op::dynamic_cast_<T>()), a);
}
/// \brief \c dynamic_cast_ is a lazy funtion for const-casting a parameter to a different type.
/// \tparam T The type to which to const-cast the parameter.
/// \param a The lazy value to const-cast.
/// \return A lazy object that, when evaluated, const-casts its argument to the desired type.
template<typename T, typename A>
typename detail::make_function::impl<op::const_cast_<T> const, A const &>::result_type const
const_cast_(A const &a)
{
return detail::make_function::impl<op::const_cast_<T> const, A const &>()((op::const_cast_<T>()), a);
}
/// \brief Helper for constructing \c value\<\> objects.
/// \return <tt>value\<T\>(t)</tt>
template<typename T>
value<T> const val(T const &t)
{
return value<T>(t);
}
/// \brief Helper for constructing \c reference\<\> objects.
/// \return <tt>reference\<T\>(t)</tt>
template<typename T>
reference<T> const ref(T &t)
{
return reference<T>(t);
}
/// \brief Helper for constructing \c reference\<\> objects that
/// store a reference to const.
/// \return <tt>reference\<T const\>(t)</tt>
template<typename T>
reference<T const> const cref(T const &t)
{
return reference<T const>(t);
}
/// \brief For adding user-defined assertions to your regular expressions.
///
/// \param t The UnaryPredicate object or Boolean semantic action.
///
/// A \RefSect{user_s_guide.semantic_actions_and_user_defined_assertions.user_defined_assertions,user-defined assertion}
/// is a kind of semantic action that evaluates
/// a Boolean lambda and, if it evaluates to false, causes the match to
/// fail at that location in the string. This will cause backtracking,
/// so the match may ultimately succeed.
///
/// To use \c check() to specify a user-defined assertion in a regex, use the
/// following syntax:
///
/** \code
sregex s = (_d >> _d)[check( XXX )]; // XXX is a custom assertion
\endcode
*/
///
/// The assertion is evaluated with a \c sub_match\<\> object that delineates
/// what part of the string matched the sub-expression to which the assertion
/// was attached.
///
/// \c check() can be used with an ordinary predicate that takes a
/// \c sub_match\<\> object as follows:
///
/** \code
// A predicate that is true IFF a sub-match is
// either 3 or 6 characters long.
struct three_or_six
{
bool operator()(ssub_match const &sub) const
{
return sub.length() == 3 || sub.length() == 6;
}
};
// match words of 3 characters or 6 characters.
sregex rx = (bow >> +_w >> eow)[ check(three_or_six()) ] ;
\endcode
*/
///
/// Alternately, \c check() can be used to define inline custom
/// assertions with the same syntax as is used to define semantic
/// actions. The following code is equivalent to above:
///
/** \code
// match words of 3 characters or 6 characters.
sregex rx = (bow >> +_w >> eow)[ check(length(_)==3 || length(_)==6) ] ;
\endcode
*/
///
/// Within a custom assertion, \c _ is a placeholder for the \c sub_match\<\>
/// That delineates the part of the string matched by the sub-expression to
/// which the custom assertion was attached.
#ifdef BOOST_XPRESSIVE_DOXYGEN_INVOKED // A hack so Doxygen emits something more meaningful.
template<typename T>
detail::unspecified check(T const &t);
#else
proto::terminal<detail::check_tag>::type const check = {{}};
#endif
/// \brief For binding local variables to placeholders in semantic actions when
/// constructing a \c regex_iterator or a \c regex_token_iterator.
///
/// \param args A set of argument bindings, where each argument binding is an assignment
/// expression, the left hand side of which must be an instance of \c placeholder\<X\>
/// for some \c X, and the right hand side is an lvalue of type \c X.
///
/// \c xpressive::let() serves the same purpose as <tt>match_results::let()</tt>;
/// that is, it binds a placeholder to a local value. The purpose is to allow a
/// regex with semantic actions to be defined that refers to objects that do not yet exist.
/// Rather than referring directly to an object, a semantic action can refer to a placeholder,
/// and the value of the placeholder can be specified later with a <em>let expression</em>.
/// The <em>let expression</em> created with \c let() is passed to the constructor of either
/// \c regex_iterator or \c regex_token_iterator.
///
/// See the section \RefSect{user_s_guide.semantic_actions_and_user_defined_assertions.referring_to_non_local_variables, "Referring to Non-Local Variables"}
/// in the Users' Guide for more discussion.
///
/// \em Example:
///
/**
\code
// Define a placeholder for a map object:
placeholder<std::map<std::string, int> > _map;
// Match a word and an integer, separated by =>,
// and then stuff the result into a std::map<>
sregex pair = ( (s1= +_w) >> "=>" >> (s2= +_d) )
[ _map[s1] = as<int>(s2) ];
// The string to parse
std::string str("aaa=>1 bbb=>23 ccc=>456");
// Here is the actual map to fill in:
std::map<std::string, int> result;
// Create a regex_iterator to find all the matches
sregex_iterator it(str.begin(), str.end(), pair, let(_map=result));
sregex_iterator end;
// step through all the matches, and fill in
// the result map
while(it != end)
++it;
std::cout << result["aaa"] << '\n';
std::cout << result["bbb"] << '\n';
std::cout << result["ccc"] << '\n';
\endcode
*/
///
/// The above code displays:
///
/** \code{.txt}
1
23
456
\endcode
*/
#ifdef BOOST_XPRESSIVE_DOXYGEN_INVOKED // A hack so Doxygen emits something more meaningful.
template<typename...ArgBindings>
detail::unspecified let(ArgBindings const &...args);
#else
detail::let_<proto::terminal<detail::let_tag>::type> const let = {{{}}};
#endif
/// \brief For defining a placeholder to stand in for a variable a semantic action.
///
/// Use \c placeholder\<\> to define a placeholder for use in semantic actions to stand
/// in for real objects. The use of placeholders allows regular expressions with actions
/// to be defined once and reused in many contexts to read and write from objects which
/// were not available when the regex was defined.
///
/// \tparam T The type of the object for which this placeholder stands in.
/// \tparam I An optional identifier that can be used to distinguish this placeholder
/// from others that may be used in the same semantic action that happen
/// to have the same type.
///
/// You can use \c placeholder\<\> by creating an object of type \c placeholder\<T\>
/// and using that object in a semantic action exactly as you intend an object of
/// type \c T to be used.
///
/**
\code
placeholder<int> _i;
placeholder<double> _d;
sregex rex = ( some >> regex >> here )
[ ++_i, _d *= _d ];
\endcode
*/
///
/// Then, when doing a pattern match with either \c regex_search(),
/// \c regex_match() or \c regex_replace(), pass a \c match_results\<\> object that
/// contains bindings for the placeholders used in the regex object's semantic actions.
/// You can create the bindings by calling \c match_results::let as follows:
///
/**
\code
int i = 0;
double d = 3.14;
smatch what;
what.let(_i = i)
.let(_d = d);
if(regex_match("some string", rex, what))
// i and d mutated here
\endcode
*/
///
/// If a semantic action executes that contains an unbound placeholder, a exception of
/// type \c regex_error is thrown.
///
/// See the discussion for \c xpressive::let() and the
/// \RefSect{user_s_guide.semantic_actions_and_user_defined_assertions.referring_to_non_local_variables, "Referring to Non-Local Variables"}
/// section in the Users' Guide for more information.
///
/// <em>Example:</em>
///
/**
\code
// Define a placeholder for a map object:
placeholder<std::map<std::string, int> > _map;
// Match a word and an integer, separated by =>,
// and then stuff the result into a std::map<>
sregex pair = ( (s1= +_w) >> "=>" >> (s2= +_d) )
[ _map[s1] = as<int>(s2) ];
// Match one or more word/integer pairs, separated
// by whitespace.
sregex rx = pair >> *(+_s >> pair);
// The string to parse
std::string str("aaa=>1 bbb=>23 ccc=>456");
// Here is the actual map to fill in:
std::map<std::string, int> result;
// Bind the _map placeholder to the actual map
smatch what;
what.let( _map = result );
// Execute the match and fill in result map
if(regex_match(str, what, rx))
{
std::cout << result["aaa"] << '\n';
std::cout << result["bbb"] << '\n';
std::cout << result["ccc"] << '\n';
}
\endcode
*/
#ifdef BOOST_XPRESSIVE_DOXYGEN_INVOKED // A hack so Doxygen emits something more meaningful.
template<typename T, int I = 0>
struct placeholder
{
/// \param t The object to associate with this placeholder
/// \return An object of unspecified type that records the association of \c t
/// with \c *this.
detail::unspecified operator=(T &t) const;
/// \overload
detail::unspecified operator=(T const &t) const;
};
#else
template<typename T, int I, typename Dummy>
struct placeholder
{
typedef placeholder<T, I, Dummy> this_type;
typedef
typename proto::terminal<detail::action_arg<T, mpl::int_<I> > >::type
action_arg_type;
BOOST_PROTO_EXTENDS(action_arg_type, this_type, proto::default_domain)
};
#endif
/// \brief A lazy funtion for constructing objects objects of the specified type.
/// \tparam T The type of object to construct.
/// \param args The arguments to the constructor.
/// \return A lazy object that, when evaluated, returns <tt>T(xs...)</tt>, where
/// <tt>xs...</tt> is the result of evaluating the lazy arguments
/// <tt>args...</tt>.
#ifdef BOOST_XPRESSIVE_DOXYGEN_INVOKED // A hack so Doxygen emits something more meaningful.
template<typename T, typename ...Args>
detail::unspecified construct(Args const &...args);
#else
/// INTERNAL ONLY
#define BOOST_PROTO_LOCAL_MACRO(N, typename_A, A_const_ref, A_const_ref_a, a) \
template<typename X2_0 BOOST_PP_COMMA_IF(N) typename_A(N)> \
typename detail::make_function::impl< \
op::construct<X2_0> const \
BOOST_PP_COMMA_IF(N) A_const_ref(N) \
>::result_type const \
construct(A_const_ref_a(N)) \
{ \
return detail::make_function::impl< \
op::construct<X2_0> const \
BOOST_PP_COMMA_IF(N) A_const_ref(N) \
>()((op::construct<X2_0>()) BOOST_PP_COMMA_IF(N) a(N)); \
} \
\
template<typename X2_0 BOOST_PP_COMMA_IF(N) typename_A(N)> \
typename detail::make_function::impl< \
op::throw_<X2_0> const \
BOOST_PP_COMMA_IF(N) A_const_ref(N) \
>::result_type const \
throw_(A_const_ref_a(N)) \
{ \
return detail::make_function::impl< \
op::throw_<X2_0> const \
BOOST_PP_COMMA_IF(N) A_const_ref(N) \
>()((op::throw_<X2_0>()) BOOST_PP_COMMA_IF(N) a(N)); \
} \
/**/
#define BOOST_PROTO_LOCAL_a BOOST_PROTO_a ///< INTERNAL ONLY
#define BOOST_PROTO_LOCAL_LIMITS (0, BOOST_PP_DEC(BOOST_PROTO_MAX_ARITY)) ///< INTERNAL ONLY
#include BOOST_PROTO_LOCAL_ITERATE()
#endif
namespace detail
{
inline void ignore_unused_regex_actions()
{
detail::ignore_unused(xpressive::at);
detail::ignore_unused(xpressive::push);
detail::ignore_unused(xpressive::push_back);
detail::ignore_unused(xpressive::push_front);
detail::ignore_unused(xpressive::pop);
detail::ignore_unused(xpressive::pop_back);
detail::ignore_unused(xpressive::pop_front);
detail::ignore_unused(xpressive::top);
detail::ignore_unused(xpressive::back);
detail::ignore_unused(xpressive::front);
detail::ignore_unused(xpressive::first);
detail::ignore_unused(xpressive::second);
detail::ignore_unused(xpressive::matched);
detail::ignore_unused(xpressive::length);
detail::ignore_unused(xpressive::str);
detail::ignore_unused(xpressive::insert);
detail::ignore_unused(xpressive::make_pair);
detail::ignore_unused(xpressive::unwrap_reference);
detail::ignore_unused(xpressive::check);
detail::ignore_unused(xpressive::let);
}
struct mark_nbr
{
BOOST_PROTO_CALLABLE()
typedef int result_type;
int operator()(mark_placeholder m) const
{
return m.mark_number_;
}
};
struct ReplaceAlgo
: proto::or_<
proto::when<
proto::terminal<mark_placeholder>
, op::at(proto::_data, proto::call<mark_nbr(proto::_value)>)
>
, proto::when<
proto::terminal<any_matcher>
, op::at(proto::_data, proto::size_t<0>)
>
, proto::when<
proto::terminal<reference_wrapper<proto::_> >
, op::unwrap_reference(proto::_value)
>
, proto::_default<ReplaceAlgo>
>
{};
}
}}
#if BOOST_MSVC
#pragma warning(pop)
#endif
#endif // BOOST_XPRESSIVE_ACTIONS_HPP_EAN_03_22_2007
|