/usr/include/boost/graph/hawick_circuits.hpp is in libboost1.55-dev 1.55.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 | // Copyright Louis Dionne 2013
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy
// at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GRAPH_HAWICK_CIRCUITS_HPP
#define BOOST_GRAPH_HAWICK_CIRCUITS_HPP
#include <algorithm>
#include <boost/assert.hpp>
#include <boost/foreach.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/one_bit_color_map.hpp>
#include <boost/graph/properties.hpp>
#include <boost/move/utility.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/range/iterator.hpp>
#include <boost/tuple/tuple.hpp> // for boost::tie
#include <boost/type_traits/remove_reference.hpp>
#include <boost/utility/result_of.hpp>
#include <set>
#include <utility> // for std::pair
#include <vector>
namespace boost {
namespace hawick_circuits_detail {
//! @internal Functor returning all the vertices adjacent to a vertex.
struct get_all_adjacent_vertices {
template <typename Sig>
struct result;
template <typename This, typename Vertex, typename Graph>
struct result<This(Vertex, Graph)> {
private:
typedef typename remove_reference<Graph>::type RawGraph;
typedef graph_traits<RawGraph> Traits;
typedef typename Traits::adjacency_iterator AdjacencyIterator;
public:
typedef std::pair<AdjacencyIterator, AdjacencyIterator> type;
};
template <typename Vertex, typename Graph>
typename result<
get_all_adjacent_vertices(BOOST_FWD_REF(Vertex), BOOST_FWD_REF(Graph))
>::type
operator()(BOOST_FWD_REF(Vertex) v, BOOST_FWD_REF(Graph) g) const {
return adjacent_vertices(boost::forward<Vertex>(v),
boost::forward<Graph>(g));
}
};
//! @internal Functor returning a set of the vertices adjacent to a vertex.
struct get_unique_adjacent_vertices {
template <typename Sig>
struct result;
template <typename This, typename Vertex, typename Graph>
struct result<This(Vertex, Graph)> {
typedef std::set<typename remove_reference<Vertex>::type> type;
};
template <typename Vertex, typename Graph>
typename result<get_unique_adjacent_vertices(Vertex, Graph const&)>::type
operator()(Vertex v, Graph const& g) const {
typedef typename result<
get_unique_adjacent_vertices(Vertex, Graph const&)
>::type Set;
return Set(adjacent_vertices(v, g).first,
adjacent_vertices(v, g).second);
}
};
//! @internal
//! Return whether a container contains a given value.
//! This is not meant as a general purpose membership testing function; it
//! would have to be more clever about possible optimizations.
template <typename Container, typename Value>
bool contains(Container const& c, Value const& v) {
return std::find(boost::begin(c), boost::end(c), v) != boost::end(c);
}
/*!
* @internal
* Algorithm finding all the cycles starting from a given vertex.
*
* The search is only done in the subgraph induced by the starting vertex
* and the vertices with an index higher than the starting vertex.
*/
template <
typename Graph,
typename Visitor,
typename VertexIndexMap,
typename Stack,
typename ClosedMatrix,
typename GetAdjacentVertices
>
struct hawick_circuits_from {
private:
typedef graph_traits<Graph> Traits;
typedef typename Traits::vertex_descriptor Vertex;
typedef typename Traits::edge_descriptor Edge;
typedef typename Traits::vertices_size_type VerticesSize;
typedef typename property_traits<VertexIndexMap>::value_type VertexIndex;
typedef typename result_of<
GetAdjacentVertices(Vertex, Graph const&)
>::type AdjacentVertices;
typedef typename range_iterator<AdjacentVertices const>::type AdjacencyIterator;
// The one_bit_color_map starts all white, i.e. not blocked.
// Since we make that assumption (I looked at the implementation, but
// I can't find anything that documents this behavior), we're gonna
// assert it in the constructor.
typedef one_bit_color_map<VertexIndexMap> BlockedMap;
typedef typename property_traits<BlockedMap>::value_type BlockedColor;
static BlockedColor blocked_false_color()
{ return color_traits<BlockedColor>::white(); }
static BlockedColor blocked_true_color()
{ return color_traits<BlockedColor>::black(); }
// This is used by the constructor to secure the assumption
// documented above.
bool blocked_map_starts_all_unblocked() const {
BOOST_FOREACH(Vertex v, vertices(graph_))
if (is_blocked(v))
return false;
return true;
}
// This is only used in the constructor to make sure the optimization of
// sharing data structures between iterations does not break the code.
bool all_closed_rows_are_empty() const {
BOOST_FOREACH(typename ClosedMatrix::reference row, closed_)
if (!row.empty())
return false;
return true;
}
public:
hawick_circuits_from(Graph const& graph, Visitor& visitor,
VertexIndexMap const& vim,
Stack& stack, ClosedMatrix& closed,
VerticesSize n_vertices)
: graph_(graph), visitor_(visitor), vim_(vim), stack_(stack),
closed_(closed), blocked_(n_vertices, vim_)
{
BOOST_ASSERT(blocked_map_starts_all_unblocked());
// Since sharing the data structures between iterations is
// just an optimization, it must always be equivalent to
// constructing new ones in this constructor.
BOOST_ASSERT(stack_.empty());
BOOST_ASSERT(closed_.size() == n_vertices);
BOOST_ASSERT(all_closed_rows_are_empty());
}
private:
//! @internal Return the index of a given vertex.
VertexIndex index_of(Vertex v) const {
return get(vim_, v);
}
//! @internal Return whether a vertex `v` is closed to a vertex `u`.
bool is_closed_to(Vertex u, Vertex v) const {
typedef typename ClosedMatrix::const_reference VertexList;
VertexList closed_to_u = closed_[index_of(u)];
return contains(closed_to_u, v);
}
//! @internal Close a vertex `v` to a vertex `u`.
void close_to(Vertex u, Vertex v) {
BOOST_ASSERT(!is_closed_to(u, v));
closed_[index_of(u)].push_back(v);
}
//! @internal Return whether a given vertex is blocked.
bool is_blocked(Vertex v) const {
return get(blocked_, v) == blocked_true_color();
}
//! @internal Block a given vertex.
void block(Vertex v) {
put(blocked_, v, blocked_true_color());
}
//! @internal Unblock a given vertex.
void unblock(Vertex u) {
typedef typename ClosedMatrix::reference VertexList;
put(blocked_, u, blocked_false_color());
VertexList closed_to_u = closed_[index_of(u)];
while (!closed_to_u.empty()) {
Vertex const w = closed_to_u.back();
closed_to_u.pop_back();
if (is_blocked(w))
unblock(w);
}
BOOST_ASSERT(closed_to_u.empty());
}
//! @internal Main procedure as described in the paper.
bool circuit(Vertex start, Vertex v) {
bool found_circuit = false;
stack_.push_back(v);
block(v);
// Cache some values that are used more than once in the function.
VertexIndex const index_of_start = index_of(start);
AdjacentVertices const adj_vertices = GetAdjacentVertices()(v, graph_);
AdjacencyIterator const w_end = boost::end(adj_vertices);
for (AdjacencyIterator w_it = boost::begin(adj_vertices);
w_it != w_end;
++w_it)
{
Vertex const w = *w_it;
// Since we're only looking in the subgraph induced by `start`
// and the vertices with an index higher than `start`, we skip
// any vertex that does not satisfy that.
if (index_of(w) < index_of_start)
continue;
// If the last vertex is equal to `start`, we have a circuit.
else if (w == start) {
// const_cast to ensure the visitor does not modify the stack
visitor_.cycle(const_cast<Stack const&>(stack_), graph_);
found_circuit = true;
}
// If `w` is not blocked, we continue searching further down the
// same path for a cycle with `w` in it.
else if (!is_blocked(w) && circuit(start, w))
found_circuit = true;
}
if (found_circuit)
unblock(v);
else
for (AdjacencyIterator w_it = boost::begin(adj_vertices);
w_it != w_end;
++w_it)
{
Vertex const w = *w_it;
// Like above, we skip vertices that are not in the subgraph
// we're considering.
if (index_of(w) < index_of_start)
continue;
// If `v` is not closed to `w`, we make it so.
if (!is_closed_to(w, v))
close_to(w, v);
}
BOOST_ASSERT(v == stack_.back());
stack_.pop_back();
return found_circuit;
}
public:
void operator()(Vertex start) {
circuit(start, start);
}
private:
Graph const& graph_;
Visitor& visitor_;
VertexIndexMap const& vim_;
Stack& stack_;
ClosedMatrix& closed_;
BlockedMap blocked_;
};
template <
typename GetAdjacentVertices,
typename Graph, typename Visitor, typename VertexIndexMap
>
void call_hawick_circuits(Graph const& graph,
Visitor /* by value */ visitor,
VertexIndexMap const& vertex_index_map) {
typedef graph_traits<Graph> Traits;
typedef typename Traits::vertex_descriptor Vertex;
typedef typename Traits::vertices_size_type VerticesSize;
typedef typename Traits::vertex_iterator VertexIterator;
typedef std::vector<Vertex> Stack;
typedef std::vector<std::vector<Vertex> > ClosedMatrix;
typedef hawick_circuits_from<
Graph, Visitor, VertexIndexMap, Stack, ClosedMatrix,
GetAdjacentVertices
> SubAlgorithm;
VerticesSize const n_vertices = num_vertices(graph);
Stack stack; stack.reserve(n_vertices);
ClosedMatrix closed(n_vertices);
VertexIterator start, last;
for (boost::tie(start, last) = vertices(graph); start != last; ++start) {
// Note1: The sub algorithm may NOT be reused once it has been called.
// Note2: We reuse the Stack and the ClosedMatrix (after clearing them)
// in each iteration to avoid redundant destruction and construction.
// It would be strictly equivalent to have these as member variables
// of the sub algorithm.
SubAlgorithm sub_algo(graph, visitor, vertex_index_map,
stack, closed, n_vertices);
sub_algo(*start);
stack.clear();
typename ClosedMatrix::iterator row, last_row = closed.end();
for (row = closed.begin(); row != last_row; ++row)
row->clear();
}
}
template <typename GetAdjacentVertices, typename Graph, typename Visitor>
void call_hawick_circuits(Graph const& graph, BOOST_FWD_REF(Visitor) visitor) {
call_hawick_circuits<GetAdjacentVertices>(
graph, boost::forward<Visitor>(visitor), get(vertex_index, graph)
);
}
} // end namespace hawick_circuits_detail
//! Enumerate all the elementary circuits in a directed multigraph.
template <typename Graph, typename Visitor, typename VertexIndexMap>
void hawick_circuits(BOOST_FWD_REF(Graph) graph,
BOOST_FWD_REF(Visitor) visitor,
BOOST_FWD_REF(VertexIndexMap) vertex_index_map) {
hawick_circuits_detail::call_hawick_circuits<
hawick_circuits_detail::get_all_adjacent_vertices
>(
boost::forward<Graph>(graph),
boost::forward<Visitor>(visitor),
boost::forward<VertexIndexMap>(vertex_index_map)
);
}
template <typename Graph, typename Visitor>
void hawick_circuits(BOOST_FWD_REF(Graph) graph,
BOOST_FWD_REF(Visitor) visitor) {
hawick_circuits_detail::call_hawick_circuits<
hawick_circuits_detail::get_all_adjacent_vertices
>(boost::forward<Graph>(graph), boost::forward<Visitor>(visitor));
}
/*!
* Same as `boost::hawick_circuits`, but duplicate circuits caused by parallel
* edges will not be considered. Each circuit will be considered only once.
*/
template <typename Graph, typename Visitor, typename VertexIndexMap>
void hawick_unique_circuits(BOOST_FWD_REF(Graph) graph,
BOOST_FWD_REF(Visitor) visitor,
BOOST_FWD_REF(VertexIndexMap) vertex_index_map) {
hawick_circuits_detail::call_hawick_circuits<
hawick_circuits_detail::get_unique_adjacent_vertices
>(
boost::forward<Graph>(graph),
boost::forward<Visitor>(visitor),
boost::forward<VertexIndexMap>(vertex_index_map)
);
}
template <typename Graph, typename Visitor>
void hawick_unique_circuits(BOOST_FWD_REF(Graph) graph,
BOOST_FWD_REF(Visitor) visitor) {
hawick_circuits_detail::call_hawick_circuits<
hawick_circuits_detail::get_unique_adjacent_vertices
>(boost::forward<Graph>(graph), boost::forward<Visitor>(visitor));
}
} // end namespace boost
#endif // !BOOST_GRAPH_HAWICK_CIRCUITS_HPP
|