/usr/lib/perl5/Bio/DB/Sam.pm is in libbio-samtools-perl 1.39-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 | package Bio::DB::Sam;
our $VERSION = '1.39';
=head1 NAME
Bio::DB::Sam -- Read SAM/BAM database files
=head1 SYNOPSIS
use Bio::DB::Sam;
# high level API
my $sam = Bio::DB::Sam->new(-bam =>"data/ex1.bam",
-fasta=>"data/ex1.fa",
);
my @targets = $sam->seq_ids;
my @alignments = $sam->get_features_by_location(-seq_id => 'seq2',
-start => 500,
-end => 800);
for my $a (@alignments) {
# where does the alignment start in the reference sequence
my $seqid = $a->seq_id;
my $start = $a->start;
my $end = $a->end;
my $strand = $a->strand;
my $cigar = $a->cigar_str;
my $paired = $a->get_tag_values('PAIRED');
# where does the alignment start in the query sequence
my $query_start = $a->query->start;
my $query_end = $a->query->end;
my $ref_dna = $a->dna; # reference sequence bases
my $query_dna = $a->query->dna; # query sequence bases
my @scores = $a->qscore; # per-base quality scores
my $match_qual= $a->qual; # quality of the match
}
my @pairs = $sam->get_features_by_location(-type => 'read_pair',
-seq_id => 'seq2',
-start => 500,
-end => 800);
for my $pair (@pairs) {
my $length = $pair->length; # insert length
my ($first_mate,$second_mate) = $pair->get_SeqFeatures;
my $f_start = $first_mate->start;
my $s_start = $second_mate->start;
}
# low level API
my $bam = Bio::DB::Bam->open('/path/to/bamfile');
my $header = $bam->header;
my $target_count = $header->n_targets;
my $target_names = $header->target_name;
while (my $align = $bam->read1) {
my $seqid = $target_names->[$align->tid];
my $start = $align->pos+1;
my $end = $align->calend;
my $cigar = $align->cigar_str;
}
my $index = Bio::DB::Bam->index_open('/path/to/bamfile');
my $index = Bio::DB::Bam->index_open_in_safewd('/path/to/bamfile');
my $callback = sub {
my $alignment = shift;
my $start = $alignment->start;
my $end = $alignment->end;
my $seqid = $target_names->[$alignment->tid];
print $alignment->qname," aligns to $seqid:$start..$end\n";
}
my $header = $index->header;
$index->fetch($bam,$header->parse_region('seq2'),$callback);
=head1 DESCRIPTION
This module provides a Perl interface to the libbam library for
indexed and unindexed SAM/BAM sequence alignment databases. It
provides support for retrieving information on individual alignments,
read pairs, and alignment coverage information across large
regions. It also provides callback functionality for calling SNPs and
performing other base-by-base functions. Most operations are
compatible with the BioPerl Bio::SeqFeatureI interface, allowing BAM
files to be used as a backend to the GBrowse genome browser
application (gmod.sourceforge.net).
=head2 The high-level API
The high-level API provides a BioPerl-compatible interface to indexed
BAM files. The BAM database is treated as a collection of
Bio::SeqFeatureI features, and can be searched for features by name,
location, type and combinations of feature tags such as whether the
alignment is part of a mate-pair.
When opening a BAM database using the high-level API, you provide the
pathnames of two files: the FASTA file that contains the reference
genome sequence, and the BAM file that contains the query sequences
and their alignments. If either of the two files needs to be indexed,
the indexing will happen automatically. You can then query the
database for alignment features by combinations of name, position,
type, and feature tag.
The high-level API provides access to up to four feature "types":
* "match": The "raw" unpaired alignment between a read and the
reference sequence.
* "read_pair": Paired alignments; a single composite
feature that contains two subfeatures for the alignments of each
of the mates in a mate pair.
* "coverage": A feature that spans a region of interest that contains
numeric information on the coverage of reads across the region.
* "region": A way of retrieving information about the reference
sequence. Searching for features of type "region" will return a
list of chromosomes or contigs in the reference sequence, rather
than read alignments.
* "chromosome": A synonym for "region".
B<Features> can be en masse in a single call, retrieved in a
memory-efficient streaming basis using an iterator, or interrogated
using a filehandle that return a series of TAM-format lines.
B<SAM alignment flags> can be retrieved using BioPerl's feature "tag"
mechanism. For example, to interrogate the FIRST_MATE flag, one
fetches the "FIRST_MATE" tag:
warn "aye aye captain!" if $alignment->get_tag_values('FIRST_MATE');
The Bio::SeqFeatureI interface has been extended to retrieve all flags
as a compact human-readable string, and to return the CIGAR alignment
in a variety of formats.
B<Split alignments>, such as reads that cover introns, are dealt with
in one of two ways. The default is to leave split alignments alone:
they can be detected by one or more "N" operations in the CIGAR
string. Optionally, you can choose to have the API split these
alignments across two or more subfeatures; the CIGAR strings of these
split alignments will be adjusted accordingly.
B<Interface to the pileup routines> The API provides you with access
to the samtools "pileup" API. This gives you the ability to write a
callback that will be invoked on every column of the alignment for the
purpose of calculating coverage, quality score metrics, or SNP
calling.
B<Access to the reference sequence> When you create the Bio::DB::Sam
object, you can pass the path to a FASTA file containing the reference
sequence. Alternatively, you may pass an object that knows how to
retrieve DNA sequences across a range via the seq() of fetch_seq()
methods, as described under new().
If the SAM/BAM file has MD tags, then these tags will be used to
reconstruct the reference sequence when necessary, in which case you
can completely omit the -fasta argument. Note that not all SAM/BAM
files have MD tags, and those that do may not use them correctly due
to the newness of this part of the SAM spec. You may wish to populate
these tags using samtools' "calmd" command.
If the -fasta argument is omitted and no MD tags are present, then the
reference sequence will be returned as 'N'.
The B<main object classes> that you will be dealing with in the
high-level API are as follows:
* Bio::DB::Sam -- A collection of alignments and reference sequences.
* Bio::DB::Bam::Alignment -- The alignment between a query and the reference.
* Bio::DB::Bam::Query -- An object corresponding to the query sequence in
which both (+) and (-) strand alignments are
shown in the reference (+) strand.
* Bio::DB::Bam::Target -- An interface to the query sequence in which
(-) strand alignments are shown in reverse
complement
You may encounter other classes as well. These include:
* Bio::DB::Sam::Segment -- This corresponds to a region on the reference
sequence.
* Bio::DB::Sam::Constants -- This defines CIGAR symbol constants and flags.
* Bio::DB::Bam::AlignWrapper -- An alignment helper object that adds split
alignment functionality. See Bio::DB::Bam::Alignment
for the documentation on using it.
* Bio::DB::Bam::ReadIterator -- An iterator that mediates the one-feature-at-a-time
retrieval mechanism.
* Bio::DB::Bam::FetchIterator -- Another iterator for feature-at-a-time retrieval.
=head2 The low-level API
The low-level API closely mirrors that of the libbam library. It
provides the ability to open TAM and BAM files, read and write to
them, build indexes, and perform searches across them. There is less
overhead to using the API because there is very little Perl memory
management, but the functions are less convenient to use. Some
operations, such as writing BAM files, are only available through the
low-level API.
The classes you will be interacting with in the low-level API are as
follows:
* Bio::DB::Tam -- Methods that read and write TAM (text SAM) files.
* Bio::DB::Bam -- Methods that read and write BAM (binary SAM) files.
* Bio::DB::Bam::Header -- Methods for manipulating the BAM file header.
* Bio::DB::Bam::Index -- Methods for retrieving data from indexed BAM files.
* Bio::DB::Bam::Alignment -- Methods for manipulating alignment data.
* Bio::DB::Bam::Pileup -- Methods for manipulating the pileup data structure.
* Bio::DB::Sam::Fai -- Methods for creating and reading from indexed Fasta
files.
=head1 METHODS
We cover the high-level API first. The high-level API code can be
found in the files Bio/DB/Sam.pm, Bio/DB/Sam/*.pm, and
Bio/DB/Bam/*.pm.
=head2 Bio::DB::Sam Constructor and basic accessors
=over 4
=item $sam = Bio::DB::Sam->new(%options)
The Bio::DB::Sam object combines a Fasta file of the reference
sequences with a BAM file to allow for convenient retrieval of
human-readable sequence IDs and reference sequences. The new()
constructor accepts a -name=>value style list of options as
follows:
Option Description
------ -------------
-bam Path to the BAM file that contains the
alignments (required). When using samtools 0.1.6
or higher, an http: or ftp: URL is accepted.
-fasta Path to the Fasta file that contains
the reference sequences (optional). Alternatively,
you may pass any object that supports a seq()
or fetch_seq() method and takes the three arguments
($seq_id,$start,$end).
-expand_flags A boolean value. If true then the standard
alignment flags will be broken out as
individual tags such as 'M_UNMAPPED' (default
false).
-split_splices A boolean value. If true, then alignments that
are split across splices will be broken out
into a single alignment containing two sub-
alignments (default false).
-split The same as -split_splices.
-autoindex Create a BAM index file if one does not exist
or the current one has a modification date
earlier than the BAM file.
An example of a typical new() constructor invocation is:
$sam = Bio::DB::Sam->new(-fasta => '/home/projects/genomes/hu17.fa',
-bam => '/home/projects/alignments/ej88.bam',
-expand_flags => 1,
-split_splices => 1);
If the B<-fasta> argument is present, then you will be able to use the
interface to fetch the reference sequence's bases. Otherwise, calls
that return the reference sequence will return sequences consisting
entirely of "N".
B<-expand_flags> option, if true, has the effect of turning each of
the standard SAM flags into a separately retrievable B<tag> in the
Bio::SeqFeatureI interface. Otherwise, the standard flags will be
concatenated in easily parseable form as a tag named "FLAGS". See
get_all_tags() and get_tag_values() for more information.
Any two-letter extension flags, such as H0 or H1, will always appear
as separate tags regardless of the setting.
B<-split_splices> has the effect of breaking up alignments that
contain an "N" operation into subparts for more convenient
manipulation. For example, if you have both paired reads and spliced
alignments in the BAM file, the following code shows the subpart
relationships:
$pair = $sam->get_feature_by_name('E113:01:01:23');
@mates = $pair->get_SeqFeatures;
@mate1_parts = $mates[0]->get_SeqFeatures;
@mate2_parts = $mates[1]->get_SeqFeatures;
Because there is some overhead to splitting up the spliced alignments,
this option is false by default.
B<Remote access> to BAM files located on an HTTP or FTP server is
possible when using the Samtools library version 0.1.6 or
higher. Simply replace the path to the BAM file with the appropriate
URL. Note that incorrect URLs may lead to a core dump.
It is not currently possible to refer to a remote FASTA file. These
will have to be downloaded locally and indexed before using.
=item $flag = $sam->expand_flags([$new_value])
Get or set the expand_flags option. This can be done after object
creation and will have an immediate effect on all alignments fetched
from the BAM file.
=item $flag = $sam->split_splices([$new_value])
Get or set the split_splices option. This can be done after object
creation and will affect all alignments fetched from the BAM file
B<subsequently.>
=item $header = $sam->header
Return the Bio::DB::Bam::Header object associated with the BAM
file. You can manipulate the header using the low-level API.
=item $bam = $sam->bam
Returns the low-level Bio::DB::Bam object associated with the opened
file.
=item $fai = $sam->fai
Returns the Bio::DB::Sam::Fai object associated with the Fasta
file. You can then manipuate this object with the low-level API.
B<The index will be built automatically for you if it does not already
exist.> If index building is necessarily, the process will need write
privileges to the same directory in which the Fasta file resides.> If
the process does not have write permission, then the call will fail.
Unfortunately, the BAM library does not do great error recovery for
this condition, and you may experience a core dump. This is not
trappable via an eval {}.
=item $bai = $sam->bam_index
Return the Bio::DB::Bam::Index object associated with the BAM file.
B<The BAM file index will be built automatically for you if it does
not already exist.> In addition, if the BAM file is not already sorted
by chromosome and coordinate, it will be sorted automatically, an
operation that consumes significant time and disk space. The current
process must have write permission to the directory in which the BAM
file resides in order for this to work.> In case of a permissions
problem, the Perl library will catch the error and die. You can trap
it with an eval {}.
=item $sam->clone
Bio::DB::SAM objects are not stable across fork() operations. If you
fork, you must call clone() either in the parent or the child process
before attempting to call any methods.
=back
=head2 Getting information about reference sequences
The Bio::DB::Sam object provides the following methods for getting
information about the reference sequence(s) contained in the
associated Fasta file.
=over 4
=item @seq_ids = $sam->seq_ids
Returns an unsorted list of the IDs of the reference sequences (known
elsewhere in this document as seq_ids). This is the same as the
identifier following the ">" sign in the Fasta file (e.g. "chr1").
=item $num_targets = $sam->n_targets
Return the number of reference sequences.
=item $length = $sam->length('seqid')
Returns the length of the reference sequence named "seqid".
=item $seq_id = $sam->target_name($tid)
Translates a numeric target ID (TID) returned by the low-level API
into a seq_id used by the high-level API.
=item $length = $sam->target_len($tid)
Translates a numeric target ID (TID) from the low-level API to a
sequence length.
=item $dna = $sam->seq($seqid,$start,$end)
Returns the DNA across the region from start to end on reference
seqid. Note that this is a string, not a Bio::PrimarySeq object. If
no -fasta path was passed when the sam object was created, then you
will receive a series of N nucleotides of the requested length.
=back
=head2 Creating and querying segments
Bio::DB::Sam::Segment objects refer regions on the reference
sequence. They can be used to retrieve the sequence of the reference,
as well as alignments that overlap with the region.
=over 4
=item $segment = $sam->segment($seqid,$start,$end);
=item $segment = $sam->segment(-seq_id=>'chr1',-start=>5000,-end=>6000);
Segments are created using the Bio:DB::Sam->segment() method. It can
be called using one to three positional arguments corresponding to the
seq_id of the reference sequence, and optionally the start and end
positions of a subregion on the sequence. If the start and/or end are
undefined, they will be replaced with the beginning and end of the
sequence respectively.
Alternatively, you may call segment() with named -seq_id, -start and
-end arguments.
All coordinates are 1-based.
=item $seqid = $segment->seq_id
Return the segment's sequence ID.
=item $start = $segment->start
Return the segment's start position.
=item $end = $segment->end
Return the segment's end position.
=item $strand = $segment->strand
Return the strand of the segment (always 0).
=item $length = $segment->length
Return the length of the segment.
=item $dna = $segment->dna
Return the DNA string for the reference sequence under this segment.
=item $seq = $segment->seq
Return a Bio::PrimarySeq object corresponding to the sequence of the
reference under this segment. You can get the actual DNA string in
this redundant-looking way:
$dna = $segment->seq->seq
The advantage of working with a Bio::PrimarySeq object is that you can
perform operations on it, including taking its reverse complement and
subsequences.
=item @alignments = $segment->features(%args)
Return alignments that overlap the segment in the associated BAM
file. The optional %args list allows you to filter features by name,
tag or other attributes. See the documentation of the
Bio::DB::Sam->features() method for the full list of options. Here are
some typical examples:
# get all the overlapping alignments
@all_alignments = $segment->features;
# get an iterator across the alignments
my $iterator = $segment->features(-iterator=>1);
while (my $align = $iterator->next_seq) { do something }
# get a TAM filehandle across the alignments
my $fh = $segment->features(-fh=>1);
while (<$fh>) { print }
# get only the alignments with unmapped mates
my @unmapped = $segment->features(-flags=>{M_UNMAPPED=>1});
# get coverage across this region
my ($coverage) = $segment->features('coverage');
my @data_points = $coverage->coverage;
# grep through features using a coderef
my @reverse_alignments = $segment->features(
-filter => sub {
my $a = shift;
return $a->strand < 0;
});
=item $tag = $segment->primary_tag
=item $tag = $segment->source_tag
Return the strings "region" and "sam/bam" respectively. These methods
allow the segment to be passed to BioPerl methods that expect
Bio::SeqFeatureI objects.
=item $segment->name, $segment->display_name, $segment->get_SeqFeatures, $segment->get_tag_values
These methods are provided for Bio::SeqFeatureI compatibility and
don't do anything of interest.
=back
=head2 Retrieving alignments, mate pairs and coverage information
The features() method is an all-purpose tool for retrieving alignment
information from the SAM/BAM database. In addition, the methods
get_features_by_name(), get_features_by_location() and others provide
convenient shortcuts to features().
These methods either return a list of features, an iterator across a
list of features, or a filehandle opened on a pseudo-TAM file.
=over 4
=item @features = $sam->features(%options)
=item $iterator = $sam->features(-iterator=>1,%more_options)
=item $filehandle = $sam->features(-fh=>1,%more_options)
=item @features = $sam->features('type1','type2'...)
This is the all-purpose interface for fetching alignments and other
types of features from the database. Arguments are a -name=>value
option list selected from the following list of options:
Option Description
------ -------------
-type Filter on features of a given type. You may provide
either a scalar typename, or a reference to an
array of desired feature types. Valid types are
"match", "read_pair", "coverage" and "chromosome."
See below for a full explanation of feature types.
-name Filter on reads with the designated name. Note that
this can be a slow operation unless accompanied by
the feature location as well.
-seq_id Filter on features that align to seq_id between start
-start and end. -start and -end must be used in conjunction
-end with -seq_id. If -start and/or -end are absent, they
will default to 1 and the end of the reference
sequence, respectively.
-flags Filter features that match a list of one or more
flags. See below for the format.
-attributes The same as -flags, for compatibility with other
-tags APIs.
-filter Filter on features with a coderef. The coderef will
receive a single argument consisting of the feature
and should return true to keep the feature, or false
to discard it.
-iterator Instead of returning a list of features, return an
iterator across the results. To retrieve the results,
call the iterator's next_seq() method repeatedly
until it returns undef to indicate that no more
matching features remain.
-fh Instead of returning a list of features, return a
filehandle. Read from the filehandle to retrieve
each of the results in TAM format, one alignment
per line read. This only works for features of type
"match."
The high-level API introduces the concept of a B<feature "type"> in order
to provide several convenience functions. You specify types by using
the optional B<-type> argument. The following types are currently
supported:
B<match>. The "match" type corresponds to the unprocessed SAM
alignment. It will retrieve single reads, either mapped or
unmapped. Each match feature's primary_tag() method will return the
string "match." The features returned by this call are of type
Bio::DB::Bam::AlignWrapper.
B<read_pair>. The "paired_end" type causes the sam interface to find
and merge together mate pairs. Fetching this type of feature will
yield a series of Bio::SeqFeatureI objects, each as long as the total
distance on the reference sequence spanned by the mate pairs. The
top-level feature is of type Bio::SeqFeature::Lite; it contains two
Bio::DB::Bam::AlignWrapper subparts.
Call get_SeqFeatures() to get the two individual reads. Example:
my @pairs = $sam->features(-type=>'read_pair');
my $p = $pairs[0];
my $i_length = $p->length;
my @ends = $p->get_SeqFeatures;
my $left = $ends[0]->start;
my $right = $ends[1]->end;
B<coverage>. The "coverage" type causes the sam interface to calculate
coverage across the designated region. It only works properly if
accompanied by the desired location of the coverage graph; -seq_id is
a mandatory argument for coverage calculation, and -start and -end are
optional. The call will return a single Bio::SeqFeatureI object whose
primary_tag() is "coverage." To recover the coverage data, call the
object's coverage() method to obtain an array (list context) or
arrayref (scalar context) of coverage counts across the region of
interest:
my ($coverage) = $sam->features(-type=>'coverage',-seq_id=>'seq1');
my @data = $coverage->coverage;
my $total;
for (@data) { $total += $_ }
my $average_coverage = $total/@data;
By default the coverage graph will be at the base pair level. So for a
region 5000 bp wide, coverage() will return an array or arrayref with
exactly 5000 elements. However, you also have the option of
calculating the coverage across larger bins. Simply append the number
of intervals you are interested to the "coverage" typename. For
example, fetching "coverage:500" will return a feature whose
coverage() method will return the coverage across 500 intervals.
B<chromosome> or B<region>. The "chromosome" or "region" type are
interchangeable. They ask the sam interface to construct
Bio::DB::Sam::Segment representing the reference sequences. These two
calls give similar results:
my $segment = $sam->segment('seq2',1=>500);
my ($seg) = $sam->features(-type=>'chromosome',
-seq_id=>'seq2',-start=>1,-end=>500);
Due to an unresolved bug, you cannot fetch chromosome features in the
same call with matches and other feature types call. Specifically,
this works as expected:
my @chromosomes = $sam->features (-type=>'chromosome');
But this doesn't (as of 18 June 2009):
my @chromosomes_and_matches = $sam->features(-type=>['match','chromosome']);
If no -type argument is provided, then features() defaults to finding
features of type "match."
You may call features() with a plain list of strings (positional
arguments, not -type=>value arguments). This will be interpreted as a
list of feature types to return:
my ($coverage) = $sam->features('coverage')
For a description of the methods available in the features returned
from this call, please see L<Bio::SeqfeatureI> and
L<Bio::DB::Bam::Alignment>.
You can B<filter> "match" and "read_pair" features by name, location
and/or flags. The name and flag filters are not very efficient. Unless
they are combined with a location filter, they will initiate an
exhaustive search of the BAM database.
Name filters are case-insensitive, and allow you to use shell-style
"*" and "?" wildcards. Flag filters created with the B<-flag>,
B<-attribute> or B<-tag> options have the following syntax:
-flag => { FLAG_NAME_1 => ['list','of','possible','values'],
FLAG_NAME_2 => ['list','of','possible','values'],
...
}
The value of B<-flag> is a hash reference in which the keys are flag
names and the values are array references containing lists of
acceptable values. The list of values are OR'd with each other, and
the flag names are AND'd with each other.
The B<-filter> option provides a completely generic filtering
interface. Provide a reference to a subroutine. It will be called
once for each potential feature. Return true to keep the feature, or
false to discard it. Here is an example of how to find all matches
whose alignment quality scores are greater than 80.
@features = $sam->features(-filter=>sub {shift->qual > 80} );
By default, features() returns a list of all matching features. You
may instead request an iterator across the results list by passing
-iterator=>1. This will give you an object that has a single method,
next_seq():
my $high_qual = $sam->features(-filter => sub {shift->qual > 80},
-iterator=> 1 );
while (my $feature = $high_qual->next_seq) {
# do something with the alignment
}
Similarly, by passing a true value to the argument B<-fh>, you can
obtain a filehandle to a virtual TAM file. This only works with the
"match" feature type:
my $high_qual = $sam->features(-filter => sub {shift->qual > 80},
-fh => 1 );
while (my $tam_line = <$high_qual>) {
chomp($tam_line);
# do something with it
}
=item @features = $sam->get_features_by_name($name)
Convenience method. The same as calling $sam->features(-name=>$name);
=item $feature = $sam->get_feature_by_name($name)
Convenience method. The same as ($sam->features(-name=>$name))[0].
=item @features = $sam->get_features_by_location($seqid,$start,$end)
Convenience method. The same as calling
$sam->features(-seq_id=>$seqid,-start=>$start,-end=>$end).
=item @features = $sam->get_features_by_flag(%flags)
Convenience method. The same as calling
$sam->features(-flags=>\%flags). This method is also called
get_features_by_attribute() and get_features_by_tag(). Example:
@features = $sam->get_features_by_flag(H0=>1)
=item $feature = $sam->get_feature_by_id($id)
The high-level API assigns each feature a unique ID composed of its
read name, position and strand and returns it when you call the
feature's primary_id() method. Given that ID, this method returns the
feature.
=item $iterator = $sam->get_seq_stream(%options)
Convenience method. This is the same as calling
$sam->features(%options,-iterator=>1).
=item $fh = $sam->get_seq_fh(%options)
Convenience method. This is the same as calling
$sam->features(%options,-fh=>1).
=item $fh = $sam->tam_fh
Convenience method. It is the same as calling $sam->features(-fh=>1).
=item @types = $sam->types
This method returns the list of feature types (e.g. "read_pair")
returned by the current version of the interface.
=back
=head2 The generic fetch() and pileup() methods
Lastly, the high-level API supports two methods for rapidly traversing
indexed BAM databases.
=over 4
=item $sam->fetch($region,$callback)
This method, which is named after the native bam_fetch() function in
the C interface, traverses the indicated region and invokes a callback
code reference on each match. Specify a region using the BAM syntax
"seqid:start-end", or either of the alternative syntaxes
"seqid:start..end" and "seqid:start,end". If start and end are absent,
then the entire reference sequence is traversed. If end is absent,
then the end of the reference sequence is assumed.
The callback will be called repeatedly with a
Bio::DB::Bam::AlignWrapper on the argument list.
Example:
$sam->fetch('seq1:600-700',
sub {
my $a = shift;
print $a->display_name,' ',$a->cigar_str,"\n";
});
Note that the fetch() operation works on reads that B<overlap> the
indicated region. Therefore the callback may be called for reads that
align to the reference at positions that start before or end after the
indicated region.
=item $sam->pileup($region,$callback [,$keep_level])
This method, which is named after the native bam_lpileupfile()
function in the C interfaces, traverses the indicated region and
generates a "pileup" of all the mapped reads that cover it. The
user-provided callback function is then invoked on each position of
the alignment along with a data structure that provides access to the
individual aligned reads.
As with fetch(), the region is specified as a string in the format
"seqid:start-end", "seqid:start..end" or "seqid:start,end".
The callback is a coderef that will be invoked with three arguments:
the seq_id of the reference sequence, the current position on the
reference (in 1-based coordinates!), and a reference to an array of
Bio::DB::Bam::Pileup objects. Here is the typical call signature:
sub {
my ($seqid,$pos,$pileup) = @_;
# do something
}
For example, if you call pileup on the region "seq1:501-600", then the
callback will be invoked for all reads that overlap the indicated
region. The first invocation of the callback will typically have a
$pos argument somewhat to the left of the desired region and the last
call will be somewhat to the right. You may wish to ignore positions
that are outside of the requested region. Also be aware that the
reference sequence position uses 1-based coordinates, which is
different from the low-level interface, which use 0-based coordinates.
The optional $keep_level argument, if true, asks the BAM library to
keep track of the level of the read in the multiple alignment, an
operation that generates some overhead. This is mostly useful for text
alignment viewers, and so is off by default.
The size of the $pileup array reference indicates the read coverage
at that position. Here is a simple average coverage calculator:
my $depth = 0;
my $positions = 0;
my $callback = sub {
my ($seqid,$pos,$pileup) = @_;
next unless $pos >= 501 && $pos <= 600;
$positions++;
$depth += @$pileup;
}
$sam->pileup('seq1:501-600',$callback);
print "coverage = ",$depth/$positions;
Each Bio::DB::Bam::Pileup object describes the position of a read in
the alignment. Briefly, Bio::DB::Bam::Pileup has the following
methods:
$pileup->alignment The alignment at this level (a
Bio::DB::Bam::AlignWrapper object).
$pileup->qpos The position of the read base at the pileup site,
in 0-based coordinates.
$pileup->pos The position of the read base at the pileup site,
in 1-based coordinates;
$pileup->level The level of the read in the multiple alignment
view. Note that this field is only valid when
$keep_level is true.
$pileup->indel Length of the indel at this position: 0 for no indel, positive
for an insertion (relative to the reference), negative for a
deletion (relative to the reference.)
$pileup->is_del True if the base on the padded read is a deletion.
$pileup->is_refskip True if the base on the padded read is a gap relative to the reference (denoted as < or > in the pileup)
$pileup->is_head Undocumented field in the bam.h header file.
$pileup->is_tail Undocumented field in the bam.h header file.
See L</Examples> for a very simple SNP caller.
=item $sam->fast_pileup($region,$callback [,$keep_level])
This is identical to pileup() except that the pileup object returns
low-level Bio::DB::Bam::Alignment objects rather than the higher-level
Bio::DB::Bam::AlignWrapper objects. This makes it roughly 50% faster,
but you lose the align objects' seq_id() and get_tag_values()
methods. As a compensation, the callback receives an additional
argument corresponding to the Bio::DB::Sam object. You can use this to
create AlignWrapper objects on an as needed basis:
my $callback = sub {
my($seqid,$pos,$pileup,$sam) = @_;
for my $p (@$pileup) {
my $alignment = $p->alignment;
my $wrapper = Bio::DB::Bam::AlignWrapper->new($alignment,$sam);
my $has_mate = $wrapper->get_tag_values('PAIRED');
}
};
=item Bio::DB::Sam->max_pileup_cnt([$new_cnt])
=item $sam->max_pileup_cnt([$new_cnt])
The Samtools library caps pileups at a set level, defaulting to
8000. The callback will not be invoked on a single position more than
the level set by the cap, even if there are more reads. Called with no
arguments, this method returns the current cap value. Called with a
numeric argument, it changes the cap. There is currently no way to
specify an unlimited cap.
This method can be called as an instance method or a class method.
=item $sam->coverage2BedGraph([$fh])
This special-purpose method will compute a four-column BED graph of
the coverage across the entire SAM/BAM file and print it to STDOUT.
You may provide a filehandle to redirect output to a file or pipe.
=back
The next sections correspond to the low-level API, which let you
create and manipulate Perl objects that correspond directly to data
structures in the C interface. A major difference between the high and
low level APIs is that in the high-level API, the reference sequence
is identified using a human-readable seq_id. However, in the low-level
API, the reference is identified using a numeric target ID
("tid"). The target ID is established during the creation of the BAM
file and is a small 0-based integer index. The Bio::DB::Bam::Header
object provides methods for converting from seq_ids to tids.
=head2 Indexed Fasta Files
These methods relate to the BAM library's indexed Fasta (".fai")
files.
=over 4
=item $fai = Bio::DB::Sam::Fai->load('/path/to/file.fa')
Load an indexed Fasta file and return the object corresponding to
it. If the index does not exist, it will be created
automatically. Note that you pass the path to the Fasta file, not the
index.
For consistency with Bio::DB::Bam->open() this method is also called
open().
=item $dna_string = $fai->fetch("seqid:start-end")
Given a sequence ID contained in the Fasta file and optionally a
subrange in the form "start-end", finds the indicated subsequence and
returns it as a string.
=back
=head2 TAM Files
These methods provide interfaces to the "TAM" text version of SAM
files; they often have a .sam extension.
=over 4
=item $tam = Bio::DB::Tam->open('/path/to/file.sam')
Given the path to a SAM file, opens it for reading. The file can be
compressed with gzip if desired.
=item $header = $tam->header_read()
Create and return a Bio::DB::Bam::Header object from the information
contained within @SQ header lines of the Sam file. If there are no @SQ
lines, then the header will not be useful, and you should call
header_read2() to generate the missing information from the
appropriate indexed Fasta file. Here is some code to illustrate the
suggested logic:
my $header = $tam->header_read;
unless ($header->n_targets > 0) {
$header = $tam->header_read2('/path/to/file.fa.fai');
}
=item $header = $tam->header_read2('/path/to/file.fa.fai')
Create and return a Bio::DB::Bam::Header object from the information
contained within the indexed Fasta file of the reference
sequences. Note that you have to pass the path to the .fai file, and
not the .fa file. The header object contains information on the
reference sequence names and lengths.
=item $bytes = $tam->read1($header,$alignment)
Given a Bio::DB::Bam::Header object, such as the one created by
header_read2(), and a Bio::DB::Bam::Alignment object created by
Bio::DB::Bam::Alignment->new(), reads one line of alignment information
into the alignment object from the TAM file and returns a status
code. The result code will be the number of bytes read.
=back
=head2 BAM Files
These methods provide interfaces to the "BAM" binary version of
SAM. They usually have a .bam extension.
=over 4
=item $bam = Bio::DB::Bam->open('/path/to/file.bam' [,$mode])
Open up the BAM file at the indicated path. Mode, if present, must be
one of the file stream open flags ("r", "w", "a", "r+", etc.). If
absent, mode defaults to "r".
Note that Bio::DB::Bam objects are not stable across fork()
operations. If you fork, and intend to use the object in both parent
and child, you must reopen the Bio::DB::Bam in either the child or the
parent (but not both) before attempting to call any of the object's
methods.
The path may be an http: or ftp: URL, in which case a copy of the
index file will be downloaded to the current working directory (see
below) and all accesses will be performed on the remote BAM file.
Example:
$bam = Bio::DB::Bam->open('http://some.site.com/nextgen/chr1_bowtie.bam');
=item $header = $bam->header()
Given an open BAM file, return a Bio::DB::Bam::Header object
containing information about the reference sequence(s). Note that you
must invoke header() at least once before calling read1().
=item $status_code = $bam->header_write($header)
Given a Bio::DB::Bam::Header object and a BAM file opened in write
mode, write the header to the file. If the write fails the process
will be terminated at the C layer. The result code is (currently)
always zero.
=item $integer = $bam->tell()
Return the current position of the BAM file read/write pointer.
=item $bam->seek($integer,$pos)
Set the current position of the BAM file read/write pointer. $pos is
one of SEEK_SET, SEEK_CUR, SEEK_END. These constants can be obtained
from the Fcntl module by importing the ":seek" group:
use Fcntl ':seek';
=item $alignment = $bam->read1()
Read one alignment from the BAM file and return it as a
Bio::DB::Bam::Alignment object. Note that you
must invoke header() at least once before calling read1().
=item $bytes = $bam->write1($alignment)
Given a BAM file that has been opened in write mode and a
Bio::DB::Bam::Alignment object, write the alignment to the BAM file
and return the number of bytes successfully written.
=item Bio::DB::Bam->sort_core($by_qname,$path,$prefix,$max_mem)
Attempt to sort a BAM file by chromosomal location or name and create a
new sorted BAM file. Arguments are as follows:
Argument Description
-------- -----------
$by_qname If true, sort by read name rather than chromosomal
location.
$path Path to the BAM file
$prefix Prefix to use for the new sorted file. For example,
passing "foo" will result in a BAM file named
"foo.bam".
$max_mem Maximum core memory to use for the sort. If the sort
requires more than this amount of memory, intermediate
sort files will be written to disk. The default, if not
provided is 500M.
=back
=head2 BAM index methods
The Bio::DB::Bam::Index object provides access to BAM index (.bai)
files.
=over 4
=item $status_code = Bio::DB::Bam->index_build('/path/to/file.bam')
Given the path to a .bam file, this function attempts to build a
".bai" index. The process in which the .bam file exists must be
writable by the current process and there must be sufficient disk
space for the operation or the process will be terminated in the C
library layer. The result code is currently always zero, but in the
future may return a negative value to indicate failure.
=item $index = Bio::DB::Bam->index('/path/to/file.bam',$reindex)
Attempt to open the index for the indicated BAM file. If $reindex is
true, and the index either does not exist or is out of date with
respect to the BAM file (by checking modification dates), then attempt
to rebuild the index. Will throw an exception if the index does not
exist or if attempting to rebuild the index was unsuccessful.
=item $index = Bio::DB::Bam->index_open('/path/to/file.bam')
Attempt to open the index file for a BAM file, returning a
Bio::DB::Bam::Index object. The filename path to use is the .bam file,
not the .bai file.
=item $index = Bio::DB::Bam->index_open_in_safewd('/path/to/file.bam' [,$mode])
When opening a remote BAM file, you may not wish for the index to be
downloaded to the current working directory. This version of index_open
copies the index into the directory indicated by the TMPDIR
environment variable or the system-defined /tmp directory if not
present. You may change the environment variable just before the call
to change its behavior.
=item $code = $index->fetch($bam,$tid,$start,$end,$callback [,$callback_data])
This is the low-level equivalent of the $sam->fetch() function
described for the high-level API. Given a open BAM file object, the
numeric ID of the reference sequence, start and end ranges on the
reference, and a coderef, this function will traverse the region and
repeatedly invoke the coderef with each Bio::DB::Bam::Alignment
object that overlaps the region.
Arguments:
Argument Description
-------- -----------
$bam The Bio::DB::Bam object that corresponds to the
index object.
$tid The target ID of the reference sequence. This can
be obtained by calling $header->parse_region() with
an appropriate opened Bio::DB::Bam::Header object.
$start The start and end positions of the desired range on
the reference sequence given by $tid, in 0-based
$end coordinates. Like the $tid, these can be obtained from
$header->parse_region().
$callback A coderef that will be called for each read overlapping
the designated region.
$callback_data Any arbitrary Perl data that you wish to pass to the
$callback (optional).
The coderef's call signature should look like this:
my $callback = sub {
my ($alignment,$data) = @_;
...
}
The first argument is a Bio::DB::Bam::Alignment object. The second is
the callback data (if any) passed to fetch().
Fetch() returns an integer code, but its meaning is not described in
the SAM/BAM C library documentation.
=item $index->pileup($bam,$tid,$start,$end,$callback [,$callback_data])
This is the low-level version of the pileup() method, which allows you
to invoke a coderef for every position in a BAM alignment. Arguments
are:
Argument Description
-------- -----------
$bam The Bio::DB::Bam object that corresponds to the
index object.
$tid The target ID of the reference sequence. This can
be obtained by calling $header->parse_region() with
an appropriate opened Bio::DB::Bam::Header object.
$start The start and end positions of the desired range on
the reference sequence given by $tid, in 0-based
$end coordinates. Like the $tid, these can be obtained from
$header->parse_region().
$callback A coderef that will be called for each position of the
alignment across the designated region.
$callback_data Any arbitrary Perl data that you wish to pass to the
$callback (optional).
The callback will be invoked with four arguments corresponding to the
numeric sequence ID of the reference sequence, the B<zero-based>
position on the alignment, an arrayref of Bio::DB::Bam::Pileup
objects, and the callback data, if any. A typical call signature will
be this:
$callback = sub {
my ($tid,$pos,$pileups,$callback_data) = @_;
for my $pileup (@$pileups) {
# do something
};
Note that the position argument is zero-based rather than 1-based, as
it is in the high-level API.
The Bio::DB::Bam::Pileup object was described earlier in the
description of the high-level pileup() method.
=item $coverage = $index->coverage($bam,$tid,$start,$end [,$bins [,maxcnt]])
Calculate coverage for the region on the target sequence given by $tid
between positions $start and $end (zero-based coordinates). This
method will return an array reference equal to the size of the region
(by default). Each element of the array will be an integer indicating
the number of reads aligning over that position. If you provide an
option binsize in $bins, the array will be $bins elements in length,
and each element will contain the average coverage over that region as
a floating point number.
By default, the underlying Samtools library caps coverage counting at
a fixed value of 8000. You may change this default by providing an
optional numeric sixth value, which changes the cap for the duration
of the call, or by invoking Bio::DB::Sam->max_pileup_cnt($new_value),
which changes the cap permanently. Unfortunately there is no way of
specifying that you want an unlimited cap.
=back
=head2 BAM header methods
The Bio::DB::Bam::Header object contains information regarding the
reference sequence(s) used to construct the corresponding TAM or BAM
file. It is most frequently used to translate between numeric target
IDs and human-readable seq_ids. Headers can be created either from
reading from a .fai file with the Bio::DB::Tam->header_read2() method,
or by reading from a BAM file using Bio::DB::Bam->header(). You can
also create header objects from scratch, although there is not much
that you can do with such objects at this point.
=over 4
=item $header = Bio::DB::Bam::Header->new()
Return a new, empty, header object.
=item $n_targets = $header->n_targets
Return the number of reference sequences in the database.
=item $name_arrayref = $header->target_name
Return a reference to an array of reference sequence names,
corresponding to the high-level API's seq_ids.
To convert from a target ID to a seq_id, simply index into this array:
$seq_id = $header->target_name->[$tid];
=item $length_arrayref = $header->target_len
Return a reference to an array of reference sequence lengths. To get
the length of the sequence corresponding to $tid, just index into the
array returned by target_len():
$length = $header->target_len->[$tid];
=item $text = $header->text
=item $header->text("new value")
Read the text portion of the BAM header. The text can be replaced by
providing the replacement string as an argument. Note that you should
follow the header conventions when replacing the header text. No
parsing or other error-checking is performed.
=item ($tid,$start,$end) = $header->parse_region("seq_id:start-end")
Given a string in the format "seqid:start-end" (using a human-readable
seq_id and 1-based start and end coordinates), parse the string and
return the target ID and start and end positions in 0-based
coordinates. If the range is omitted, then the start and end
coordinates of the entire sequence is returned. If only the end
position is omitted, then the end of the sequence is assumed.
=item $header->view1($alignment)
This method will accept a Bio::DB::Bam::Alignment object, convert it
to a line of TAM output, and write the output to STDOUT. In the
low-level API there is currently no way to send the output to a
different filehandle or capture it as a string.
=back
=head2 Bio::DB::Bam::Pileup methods
An array of Bio::DB::Bam::Pileup object is passed to the pileup()
callback for each position of a multi-read alignment. Each pileup
object contains information about the alignment of a single read at a
single position.
=over 4
=item $alignment = $pileup->alignment
Return the Bio::DB::Bam::Alignment object at this level. This provides
you with access to the aligning read.
=item $alignment = $pileup->b
An alias for alignment(), provided for compatibility with the C API.
=item $pos = $pileup->qpos
The position of the aligning base in the read in zero-based
coordinates.
=item $pos = $pileup->pos
The position of the aligning base in 1-based coordinates.
=item $level = $pileup->level
The "level" of the read in the BAM-generated text display of the
alignment.
=item $indel = $pileup->indel
Length of the indel at this position: 0 for no indel, positive for an
insertion (relative to the reference), negative for a deletion
(relative to the reference sequence.)
=item $flag = $pileup->is_del
True if the base on the padded read is a deletion.
=item $flag = $pileup->is_refskip
True if the base on the padded read is a gap relative to the reference (denoted as < or > in the pileup)
=item $flag = $pileup->is_head
=item $flag = $pileup->is_del
These fields are undocumented in the BAM documentation, but are
exported to the Perl API just in case.
=back
=head2 The alignment objects
Please see L<Bio::DB::Bam::Alignment> for documentation of the
Bio::DB::Bam::Alignment and Bio::DB::Bam::AlignWrapper objects.
=cut
use strict;
use warnings;
use Carp 'croak';
use Bio::SeqFeature::Lite;
use Bio::PrimarySeq;
use base 'DynaLoader';
bootstrap Bio::DB::Sam;
use Bio::DB::Bam::Alignment;
use Bio::DB::Sam::Segment;
use Bio::DB::Bam::AlignWrapper;
use Bio::DB::Bam::PileupWrapper;
use Bio::DB::Bam::FetchIterator;
use Bio::DB::Bam::ReadIterator;
use constant DUMP_INTERVAL => 1_000_000;
sub new {
my $class = shift;
my %args = $_[0] =~ /^-/ ? @_ : (-bam=>shift);
my $bam_path = $args{-bam} or croak "-bam argument required";
my $fa_path = $args{-fasta};
my $expand_flags = $args{-expand_flags};
my $split_splices = $args{-split} || $args{-split_splices};
my $autoindex = $args{-autoindex};
# file existence checks
unless ($class->is_remote($bam_path)) {
-e $bam_path or croak "$bam_path does not exist";
-r _ or croak "is not readable";
}
my $bam = Bio::DB::Bam->open($bam_path) or croak "$bam_path open: $!";
my $fai = $class->new_dna_accessor($fa_path) if $fa_path;
my $self = bless {
fai => $fai,
bam => $bam,
bam_path => $bam_path,
fa_path => $fa_path,
expand_flags => $expand_flags,
split_splices => $split_splices,
autoindex => $autoindex,
},ref $class || $class;
$self->header; # catch it
return $self;
}
sub bam { shift->{bam} }
sub is_remote {
my $self = shift;
my $path = shift;
return $path =~ /^(http|ftp):/;
}
sub clone {
my $self = shift;
$self->{bam} = Bio::DB::Bam->open($self->{bam_path}) if $self->{bam_path};
$self->{fai} = $self->new_dna_accessor($self->{fa_path}) if $self->{fa_path};
}
sub header {
my $self = shift;
return $self->{header} ||= $self->{bam}->header;
}
sub fai { shift->{fai} }
sub new_dna_accessor {
my $self = shift;
my $accessor = shift;
return unless $accessor;
if (-e $accessor) { # a file, assume it is a fasta file
-r _ or croak "$accessor is not readable";
my $a = Bio::DB::Sam::Fai->open($accessor) or croak "$accessor open: $!"
or croak "Can't open FASTA file $accessor: $!";
return $a;
}
if (ref $accessor && $self->can_do_seq($accessor)) {
return $accessor; # already built
}
return;
}
sub can_do_seq {
my $self = shift;
my $obj = shift;
return
UNIVERSAL::can($obj,'seq') ||
UNIVERSAL::can($obj,'fetch_sequence');
}
sub seq {
my $self = shift;
my ($seqid,$start,$end) = @_;
my $fai = $self->fai or return 'N' x ($end-$start+1);
return $fai->can('seq') ? $fai->seq($seqid,$start,$end)
:$fai->can('fetch_sequence') ? $fai->fetch_sequence($seqid,$start,$end)
:'N' x ($end-$start+1);
}
sub expand_flags {
my $self = shift;
my $d = $self->{expand_flags};
$self->{expand_flags} = shift if @_;
$d;
}
sub split_splices {
my $self = shift;
my $d = $self->{split_splices};
$self->{split_splices} = shift if @_;
$d;
}
sub autoindex {
my $self = shift;
my $d = $self->{autoindex};
$self->{autoindex} = shift if @_;
$d;
}
sub reset_read {
my $self = shift;
$self->{bam}->header;
}
sub n_targets {
shift->header->n_targets;
}
sub target_name {
my $self = shift;
my $tid = shift;
$self->{target_name} ||= $self->header->target_name;
return $self->{target_name}->[$tid];
}
sub target_len {
my $self = shift;
my $tid = shift;
$self->{target_len} ||= $self->header->target_len;
return $self->{target_len}->[$tid];
}
sub seq_ids {
my $self = shift;
return @{$self->header->target_name};
}
sub _cache_targets {
my $self = shift;
return $self->{targets} if exists $self->{targets};
my @targets = map {lc $_} @{$self->header->target_name};
my @lengths = @{$self->header->target_len};
my %targets;
@targets{@targets} = @lengths; # just you try to figure out what this is doing!
return $self->{targets} = \%targets;
}
sub length {
my $self = shift;
my $target_name = shift;
return $self->_cache_targets->{lc $target_name};
}
sub _fetch {
my $self = shift;
my $region = shift;
my $callback = shift;
my $header = $self->{bam}->header;
$region =~ s/\.\.|,/-/;
my ($seqid,$start,$end) = $header->parse_region($region);
return unless defined $seqid;
my $index = $self->bam_index;
$index->fetch($self->{bam},$seqid,$start,$end,$callback,$self);
}
sub fetch {
my $self = shift;
my $region = shift;
my $callback = shift;
my $code = sub {
my ($align,$self) = @_;
$callback->(Bio::DB::Bam::AlignWrapper->new($align,$self));
};
$self->_fetch($region,$code);
}
sub pileup {
my $self = shift;
my ($region,$callback,$keep_level) = @_;
my $header = $self->header;
$region =~ s/\.\.|,/-/;
my ($seqid,$start,$end) = $header->parse_region($region);
return unless defined $seqid;
my $refnames = $self->header->target_name;
my $code = sub {
my ($tid,$pos,$pileup) = @_;
my $seqid = $refnames->[$tid];
my @p = map {
Bio::DB::Bam::PileupWrapper->new($_,$self)
} @$pileup;
$callback->($seqid,$pos+1,\@p);
};
my $index = $self->bam_index;
if ($keep_level) {
$index->lpileup($self->{bam},$seqid,$start,$end,$code);
} else {
$index->pileup($self->{bam},$seqid,$start,$end,$code);
}
}
sub fast_pileup {
my $self = shift;
my ($region,$callback,$keep_level) = @_;
my $header = $self->header;
$region =~ s/\.\.|,/-/;
my ($seqid,$start,$end) = $header->parse_region($region);
return unless defined $seqid;
my $refnames = $self->header->target_name;
my $code = sub {
my ($tid,$pos,$pileup) = @_;
my $seqid = $refnames->[$tid];
$callback->($seqid,$pos+1,$pileup,$self);
};
my $index = $self->bam_index;
if ($keep_level) {
$index->lpileup($self->{bam},$seqid,$start,$end,$code);
} else {
$index->pileup($self->{bam},$seqid,$start,$end,$code);
}
}
# segment returns a segment across the reference
# it will not work on a arbitrary aligned feature
sub segment {
my $self = shift;
my ($seqid,$start,$end) = @_;
if ($_[0] =~ /^-/) {
my %args = @_;
$seqid = $args{-seq_id} || $args{-name};
$start = $args{-start};
$end = $args{-stop} || $args{-end};
} else {
($seqid,$start,$end) = @_;
}
my $targets = $self->_cache_targets;
return unless exists $targets->{lc $seqid};
$start = 1 unless defined $start;
$end = $targets->{lc $seqid} unless defined $end;
$start = 1 if $start < 1;
$end = $targets->{lc $seqid} if $end > $targets->{lc $seqid};
return Bio::DB::Sam::Segment->new($self,$seqid,$start,$end);
}
sub get_features_by_location {
my $self = shift;
my %args;
if ($_[0] =~ /^-/) { # named args
%args = @_;
} else { # positional args
$args{-seq_id} = shift;
$args{-start} = shift;
$args{-end} = shift;
}
$self->features(%args);
}
sub get_features_by_attribute {
my $self = shift;
my %attributes = ref($_[0]) ? %{$_[0]} : @_;
$self->features(-attributes=>\%attributes);
}
sub get_features_by_tag {
shift->get_features_by_attribute(@_);
}
sub get_features_by_flag {
shift->get_features_by_attribute(@_);
}
sub get_feature_by_name {
my $self = shift;
my %args;
if ($_[0] =~ /^-/) {
%args = @_;
} else {
$args{-name} = shift;
}
$self->features(%args);
}
sub get_features_by_name { shift->get_feature_by_name(@_) }
sub get_feature_by_id {
my $self = shift;
my $id = shift;
my ($name,$tid,$start,$end,$strand,$type) = map {s/%3B/;/ig;$_} split ';',$id;
return unless $name && defined $tid;
$type ||= 'match';
my $seqid = $self->target_name($tid);
my @features = $self->features(-name=>$name,
-type => $type,
-seq_id=>$seqid,
-start=>$start,
-end=>$end,
-strand=>$strand);
return unless @features;
return $features[0];
}
sub get_seq_stream {
my $self = shift;
$self->features(@_,-iterator=>1);
}
sub get_seq_fh {
my $self = shift;
$self->features(@_,-fh=>1);
}
sub types {
return qw(match read_pair coverage region chromosome);
}
sub features {
my $self = shift;
my %args;
if (defined $_[0] && $_[0] !~ /^-/) {
$args{-type} = \@_;
} else {
%args = @_;
}
my $seqid = $args{-seq_id} || $args{-seqid};
my $start = $args{-start};
my $end = $args{-end} || $args{-stop};
my $types = $args{-type} || $args{-types} || [];
my $attributes = $args{-attributes} || $args{-tags} || $args{-flags};
my $iterator = $args{-iterator};
my $fh = $args{-fh};
my $filter = $args{-filter};
my $max = $args{-max_features};
$types = [$types] unless ref $types;
$types = [$args{-class}] if !@$types && defined $args{-class};
my $use_index = defined $seqid;
# we do some special casing to retrieve target (reference) sequences
# if they are requested
if (defined($args{-name})
&& (!@$types || $types->[0]=~/region|chromosome/)
&& !defined $seqid) {
my @results = $self->_segment_search(lc $args{-name});
return @results if @results;
} elsif (@$types && $types->[0] =~ /region|chromosome/) {
return map {$self->segment($_)} $self->seq_ids;
}
my %seenit;
my @types = grep {!$seenit{$_}++} ref $types ? @$types : $types;
@types = 'match' unless @types;
# the filter is intended to be inserted into a closure
# it will return undef from the closure unless the filter
# criteria are satisfied
if (!$filter) {
$filter = '';
$filter .= $self->_filter_by_name(lc $args{-name})
if defined $args{-name};
$filter .= $self->_filter_by_attribute($attributes)
if defined $attributes;
}
# Special cases for unmunged data
if (@types == 1 && $types[0] =~ /^match/) {
# if iterator is requested, and no indexing is possible,
# then we directly iterate through the database using read1()
if ($iterator && !$use_index) {
$self->reset_read;
my $code = eval "sub {my \$a=shift;$filter;1}";
die $@ if $@;
return Bio::DB::Bam::ReadIterator->new($self,$self->{bam},$code);
}
# TAM filehandle retrieval is requested
elsif ($fh) {
return $self->_features_fh($seqid,$start,$end,$filter);
}
}
# otherwise we're going to do a little magic
my ($features,@result);
for my $t (@types) {
if ($t =~ /^(match|read_pair)/) {
# fetch the features if type is 'match' or 'read_pair'
$features = $self->_filter_features($seqid,$start,$end,$filter,undef,$max);
# for "match" just return the alignments
if ($t =~ /^(match)/) {
push @result,@$features;
}
# otherwise aggregate mate pairs into two-level features
elsif ($t =~ /^read_pair/) {
$self->_build_mates($features,\@result);
}
next;
}
# create a coverage graph if type is 'coverage'
# specify coverage:N, to create a map of N bins
# units are coverage per bp
# resulting array will be stored in the "coverage" attribute
if ($t =~ /^coverage:?(\d*)/) {
my $bins = $1;
push @result,$self->_coverage($seqid,$start,$end,$bins,$filter);
}
}
return $iterator ? Bio::DB::Bam::FetchIterator->new(\@result,$self->last_feature_count)
: @result;
}
sub coverage2BedGraph {
my $self = shift;
my $fh = shift;
$fh ||= \*STDOUT;
my $header = $self->header;
my $index = $self->bam_index;
my $seqids = $header->target_name;
my $lengths = $header->target_len;
my $b = $self->bam;
for my $tid (0..$header->n_targets-1) {
my $seqid = $seqids->[$tid];
my $len = $lengths->[$tid];
my $sec_start = -1;
my $last_val = -1;
for (my $start=0;$start <= $len;$start += DUMP_INTERVAL) {
my $end = $start+DUMP_INTERVAL;
$end = $len if $end > $len;
my $coverage = $index->coverage($b,$tid,$start,$end);
for (my $i=0; $i<@$coverage; $i++) {
if($last_val == -1) {
$sec_start = 0;
$last_val = $coverage->[$i];
}
if($last_val != $coverage->[$i]) {
print $fh $seqid,"\t",$sec_start,"\t",$start+$i,"\t",$last_val,"\n"
unless $last_val == 0;
$sec_start = $start+$i;
$last_val = $coverage->[$i];
}
elsif($start+$i == $len-1) {
print $fh $seqid,"\t",$sec_start,"\t",$start+$i,"\t",$last_val,"\n"
unless $last_val == 0;
}
}
}
}
}
sub _filter_features {
my $self = shift;
my ($seqid,$start,$end,$filter,$do_tam_fh,$max_features) = @_;
my @result;
my $action = $do_tam_fh ? '\$self->header->view1($a)'
: $self->_push_features($max_features);
my $user_code;
if (ref ($filter) eq 'CODE') {
$user_code = $filter;
$filter = '';
}
my $callback = defined($seqid) ? <<INDEXED : <<NONINDEXED;
sub {
my \$a = shift;
$filter
return unless defined \$a->start;
$action;
}
INDEXED
sub {
my \$a = shift;
$filter
$action;
}
NONINDEXED
;
my $code = eval $callback;
die $@ if $@;
if ($user_code) {
my $new_callback = sub {
my $a = shift;
$code->($a) if $user_code->($a);
};
$self->_features($seqid,$start,$end,$new_callback);
} else {
$self->_features($seqid,$start,$end,$code);
}
return \@result;
}
sub _push_features {
my $self = shift;
my $max = shift;
# simple case -- no max specified. Will push onto an array called
# @result.
return 'push @result,Bio::DB::Bam::AlignWrapper->new($a,$self)'
unless $max;
$self->{_result_count} = 0;
# otherwise we implement a simple subsampling
my $code=<<END;
my \$count = ++\$self->{_result_count};
if (\@result < $max) {
push \@result,Bio::DB::Bam::AlignWrapper->new(\$a,\$self);
} else {
\$result[rand \@result] = Bio::DB::Bam::AlignWrapper->new(\$a,\$self)
if rand() < $max/\$count;
}
END
return $code;
}
sub last_feature_count { shift->{_result_count}||0 }
sub _features {
my $self = shift;
my ($seqid,$start,$end,$callback) = @_;
if (defined $seqid) {
my $region = $seqid;
if (defined $start) {
$region .= ":$start";
$region .= "-$end" if defined $end;
}
$self->_fetch($region,$callback);
}
else {
$self->reset_read;
while (my $b = $self->{bam}->read1) {
$callback->($b);
}
}
}
# build mate pairs
sub _build_mates {
my $self = shift;
my ($src,$dest) = @_;
my %read_pairs;
for my $a (@$src) {
my $name = $a->display_name;
unless ($read_pairs{$name}) {
my $isize = $a->isize;
my $start = $isize >= 0 ? $a->start : $a->end+$isize+1;
my $end = $isize <= 0 ? $a->end : $a->start+$isize-1;
$read_pairs{$name} =
Bio::SeqFeature::Lite->new(
-display_name => $name,
-seq_id => $a->seq_id,
-start => $start,
-end => $end,
-type => 'read_pair',
-class => 'read_pair',
);
}
my $d = $self->{split_splices};
if ($d) {
my @parts = $a->get_SeqFeatures;
if (!@parts) {
$read_pairs{$name}->add_SeqFeature($a);
}
else {
for my $x (@parts){
$read_pairs{$name}->add_SeqFeature($x);
}
}
} else {
$read_pairs{$name}->add_SeqFeature($a);
}
}
for my $name (keys %read_pairs) {
my $f = $read_pairs{$name};
my $primary_id = join(';',
map {s/;/%3B/g; $_}
($f->display_name,
($f->get_SeqFeatures)[0]->tid,
$f->start,
$f->end,
$f->strand,
$f->type,
)
);
$read_pairs{$name}->primary_id($primary_id);
}
push @$dest,values %read_pairs;
}
sub _coverage {
my $self = shift;
my ($seqid,$start,$end,$bins,$filter) = @_;
# Currently filter is ignored. In reality, we should
# turn filter into a callback and invoke it on each
# position in the pileup.
croak "cannot calculate coverage unless a -seq_id is provided"
unless defined $seqid;
my $region = $seqid;
if (defined $start) {
$region .= ":$start";
$region .= "-$end" if defined $end;
}
my $header = $self->{bam}->header;
my ($id,$s,$e) = $header->parse_region($region);
return unless defined $id;
# parse_region may return a very high value if no end specified
$end = $e >= 1<<29 ? $header->target_len->[$id] : $e;
$start = $s+1;
$bins ||= $end-$start+1;
my $index = $self->bam_index;
my $coverage = $index->coverage($self->{bam},
$id,$s,$e,
$bins);
return Bio::SeqFeature::Coverage->new(
-display_name => "$seqid coverage",
-seq_id => $seqid,
-start => $start,
-end => $end,
-strand => 0,
-type => "coverage:$bins",
-class => "coverage:$bins",
-attributes => { coverage => [$coverage] }
);
}
sub _segment_search {
my $self = shift;
my $name = shift;
my $targets = $self->_cache_targets;
return $self->segment($name) if $targets->{$name};
if (my $regexp = $self->_glob_match($name)) {
my @results = grep {/^$regexp$/i} keys %$targets;
return map {$self->segment($_)} @results;
}
return;
}
sub bam_index {
my $self = shift;
return $self->{bai} ||= Bio::DB::Bam->index($self->{bam_path},$self->autoindex);
}
sub _features_fh {
my $self = shift;
my ($seqid,$start,$end,$filter) = @_;
my $result = open my $fh,"-|";
if (!$result) { # in child
$self->_filter_features($seqid,$start,$end,$filter,'do_fh'); # will print TAM to stdout
exit 0;
}
return $fh;
}
sub tam_fh {
my $self = shift;
return $self->features(-fh=>1);
}
sub max_pileup_cnt {
my $self = shift;
return Bio::DB::Bam->max_pileup_cnt(@_);
}
# return a fragment of code that will be placed in the eval "" filter
# to eliminate alignments that don't match by name
sub _filter_by_name {
my $self = shift;
my $name = shift;
my $frag = "my \$name=\$a->qname; defined \$name or return; ";
if (my $regexp = $self->_glob_match($name)) {
$frag .= "return unless \$name =~ /^$regexp\$/i;\n";
} else {
$frag .= "return unless lc \$name eq '$name';\n";
}
}
# return a fragment of code that will be placed in the eval "" filter
# to eliminate alignments that don't match by attribute
sub _filter_by_attribute {
my $self = shift;
my $attributes = shift;
my $result;
for my $tag (keys %$attributes) {
$result .= "my \$value = lc \$a->get_tag_values('$tag');\n";
$result .= "return unless defined \$value;\n";
my @comps = ref $attributes->{$tag} eq 'ARRAY'
? @{$attributes->{$tag}}
: $attributes->{$tag};
my @matches;
for my $c (@comps) {
if ($c =~ /^[+-]?[\deE.]+$/) { # numeric-looking argument
push @matches,"CORE::length \$value && \$value == $c";
}
elsif (my $regexp = $self->_glob_match($c)) {
push @matches,"\$value =~ /^$regexp\$/i";
}
else {
push @matches,"\$value eq lc '$c'";
}
}
$result .= "return unless " . join (' OR ',@matches) . ";\n";
}
return $result;
}
# turn a glob expression into a regexp
sub _glob_match {
my $self = shift;
my $term = shift;
return unless $term =~ /(?:^|[^\\])[*?]/;
$term =~ s/(^|[^\\])([+\[\]^{}\$|\(\).])/$1\\$2/g;
$term =~ s/(^|[^\\])\*/$1.*/g;
$term =~ s/(^|[^\\])\?/$1./g;
return $term;
}
package Bio::DB::Sam::Fai;
sub open { shift->load(@_) }
sub seq {
my $self = shift;
my ($seqid,$start,$end) = @_;
my $region = $seqid;
$region .= ":$start" if defined $start;
$region .= "-$end" if defined $end;
return $self->fetch($region)
}
package Bio::SeqFeature::Coverage;
use base 'Bio::SeqFeature::Lite';
sub coverage {
my $self = shift;
my ($coverage) = $self->get_tag_values('coverage');
return wantarray ? @$coverage : $coverage;
}
sub source {
my $self = shift;
my $type = $self->type;
my ($base,$width) = split ':',$type;
return $width;
}
sub method {
my $self = shift;
my $type = $self->type;
my ($base,$width) = split ':',$type;
return $base;
}
sub gff3_string {
my $self = shift;
my $gff3 = $self->SUPER::gff3_string;
my $coverage = $self->escape(join(',',$self->coverage));
$gff3 =~ s/coverage=[^;]+/coverage=$coverage/g;
return $gff3;
}
package Bio::DB::Bam;
use File::Spec;
use Cwd;
use Carp 'croak';
sub index {
my $self = shift;
my $path = shift;
my $autoindex = shift;
return $self->index_open_in_safewd($path) if Bio::DB::Sam->is_remote($path);
if ($autoindex) {
$self->reindex($path) unless
-e "${path}.bai" && mtime($path) <= mtime("${path}.bai");
}
croak "No index file for $path; try opening file with -autoindex" unless -e "${path}.bai";
return $self->index_open($path);
}
sub reindex {
my $self = shift;
my $path = shift;
# if bam file is not sorted, then index_build will exit.
# we spawn a shell to intercept this eventuality
print STDERR "[bam_index_build] creating index for $path\n" if -t STDOUT;
my $result = open my $fh,"-|";
die "Couldn't fork $!" unless defined $result;
if ($result == 0) { # in child
# dup stderr to stdout so that we can intercept messages from library
open STDERR,">&STDOUT";
$self->index_build($path);
exit 0;
}
my $mesg = <$fh>;
$mesg ||= '';
close $fh;
if ($mesg =~ /not sorted/i) {
print STDERR "[bam_index_build] sorting by coordinate...\n" if -t STDOUT;
$self->sort_core(0,$path,"$path.sorted");
rename "$path.sorted.bam",$path;
$self->index_build($path);
} elsif ($mesg) {
die $mesg;
}
}
# same as index_open(), but changes current wd to TMPDIR to accomodate
# the C library when it tries to download the index file from remote
# locations.
sub index_open_in_safewd {
my $self = shift;
my $dir = getcwd;
my $tmpdir = File::Spec->tmpdir;
chdir($tmpdir);
my $result = $self->index_open(@_);
chdir $dir;
$result;
}
sub mtime {
my $path = shift;
(stat($path))[9];
}
1;
__END__
=head1 EXAMPLES
For illustrative purposes only, here is an extremely stupid SNP caller
that tallies up bases that are q>20 and calls a SNP if there are at
least 4 non-N/non-indel bases at the position and at least 25% of them
are a non-reference base.
my @SNPs; # this will be list of SNPs
my $snp_caller = sub {
my ($seqid,$pos,$p) = @_;
my $refbase = $sam->segment($seqid,$pos,$pos)->dna;
my ($total,$different);
for my $pileup (@$p) {
my $b = $pileup->alignment;
next if $pileup->indel or $pileup->is_refskip; # don't deal with these ;-)
my $qbase = substr($b->qseq,$pileup->qpos,1);
next if $qbase =~ /[nN]/;
my $qscore = $b->qscore->[$pileup->qpos];
next unless $qscore > 25;
$total++;
$different++ if $refbase ne $qbase;
}
if ($total >= 4 && $different/$total >= 0.25) {
push @SNPs,"$seqid:$pos";
}
};
$sam->pileup('seq1',$snp_caller);
print "Found SNPs: @SNPs\n";
=head1 GBrowse Compatibility
The Bio::DB::Sam interface can be used as a backend to GBrowse
(gmod.sourceforge.net/gbrowse). GBrowse can calculate and display
coverage graphs across large regions, alignment cartoons across
intermediate size regions, and detailed base-pair level alignments
across small regions.
Here is a typical configuration for a BAM database that contains
information from a shotgun genomic sequencing project. Some notes:
* It is important to set "search options = none" in order to avoid
GBrowse trying to scan through the BAM database to match read
names. This is a time-consuming operation.
* The callback to "bgcolor" renders pairs whose mates are unmapped in
red.
* The callback to "balloon hover" causes a balloon to pop up with the
read name when the user hovers over each paired read. Otherwise the
default behavior would be to provide information about the pair as
a whole.
* When the user zooms out to 1001 bp or greaterp, the track switches
to a coverage graph.
[bamtest:database]
db_adaptor = Bio::DB::Sam
db_args = -bam /var/www/gbrowse2/databases/bamtest/ex1.bam
search options= default
[Pair]
feature = read_pair
glyph = segments
database = bamtest
draw_target = 1
show_mismatch = 1
bgcolor = sub {
my $f = shift;
return $f->get_tag_values('M_UNMAPPED') ? 'red' : 'green';
}
fgcolor = green
height = 3
label = sub {shift->display_name}
label density = 50
bump = fast
connector = dashed
balloon hover = sub {
my $f = shift;
return '' unless $f->type eq 'match';
return 'Read: '.$f->display_name.' : '.$f->flag_str;
}
key = Read Pairs
[Pair:1000]
feature = coverage:1001
glyph = wiggle_xyplot
height = 50
min_score = 0
autoscale = local
To show alignment data correctly when the user is zoomed in, you
should also provide a pointer to the FASTA file containing the
reference genome. In this case, modify the db_args line to read:
db_args = -bam /var/www/gbrowse2/databases/bamtest/ex1.bam
-fasta /var/www/gbrowse2/databases/bamtest/ex1.fa
=head1 SEE ALSO
L<Bio::Perl>, L<Bio::DB::Bam::Alignment>, L<Bio::DB::Bam::Constants>
=head1 AUTHOR
Lincoln Stein E<lt>lincoln.stein@oicr.on.caE<gt>.
E<lt>lincoln.stein@bmail.comE<gt>
Copyright (c) 2009 Ontario Institute for Cancer Research.
This package and its accompanying libraries is free software; you can
redistribute it and/or modify it under the terms of the GPL (either
version 1, or at your option, any later version) or the Artistic
License 2.0. Refer to LICENSE for the full license text. In addition,
please see DISCLAIMER.txt for disclaimers of warranty.
=cut
|