This file is indexed.

/usr/lib/ocaml/batteries/batNumber.mli is in libbatteries-ocaml-dev 2.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
(*
 * Number - Generic interface for numbers
 * Copyright (C) 2007 Bluestorm <bluestorm dot dylc on-the-server gmail dot com>
 *               2008 David Teller
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version,
 * with the special exception on linking described in file LICENSE.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *)

(**
   A common interface for numbers.

   @author Gabriel Scherer
   @author David Teller
*)


(**
   Arithmetic overflow.

   This kind of exception is raised by "safe" numeric modules whenever
   the number which should be returned is too large to be represented.

   Non-"safe" numeric modules will return a result which depends on
   the internal representation. For instance, with module {!Int},
   [max_num + 1] returns [min_num]. By opposition, with module
   {!Safe_int}, [max_num + 1] raises [Overflow].

*)
exception Overflow

(**
   Not a Number

   This kind of exception is raised by "safe" modules whenever the
   number which should be returned is not a number.

   For instance, with module {!Safe_float}, [0.0 / 0.0] raises [NaN].
   By opposition, with module {!Float}, [0.0 / 0.0] does not interrupt
   computation and returns a special value [nan].
*)
exception NaN

(**
   The smallest set of operations supported by every set of numbers.

   This is presented as record to permit lightweight typeclass-style
   computation.
*)
type 'a numeric =
  {
    zero : 'a;
    one : 'a;
    neg : 'a -> 'a;
    succ : 'a -> 'a;
    pred : 'a -> 'a;
    abs : 'a -> 'a;
    add : 'a -> 'a -> 'a;
    sub : 'a -> 'a -> 'a;
    mul : 'a -> 'a -> 'a;
    div : 'a -> 'a -> 'a;
    modulo : 'a -> 'a -> 'a;
    pow : 'a -> 'a -> 'a;
    compare : 'a -> 'a -> int;
    of_int : int -> 'a;
    to_int : 'a -> int;
    of_string : string -> 'a;
    to_string : 'a -> string;
    of_float: float -> 'a;
    to_float: 'a -> float;
  }

(**
   The infix operators available with any type of numbers
*)
module type Infix = sig
  type bat__infix_t
  val ( + ) : bat__infix_t -> bat__infix_t -> bat__infix_t
  val ( - ) : bat__infix_t -> bat__infix_t -> bat__infix_t
  val ( * ) : bat__infix_t -> bat__infix_t -> bat__infix_t
  val ( / ) : bat__infix_t -> bat__infix_t -> bat__infix_t
  val ( ** ) : bat__infix_t -> bat__infix_t -> bat__infix_t
  val ( -- ): bat__infix_t -> bat__infix_t -> bat__infix_t BatEnum.t
  val ( --- ): bat__infix_t -> bat__infix_t -> bat__infix_t BatEnum.t
end

(**
   And if you are ready to drop generic comparison operators,
    then you can open this one as well
*)
module type Compare = sig
  type bat__compare_t
  val ( <> ) : bat__compare_t -> bat__compare_t -> bool
  val ( >= ) : bat__compare_t -> bat__compare_t -> bool
  val ( <= ) : bat__compare_t -> bat__compare_t -> bool
  val ( > ) : bat__compare_t -> bat__compare_t -> bool
  val ( < ) : bat__compare_t -> bat__compare_t -> bool
  val ( = ) : bat__compare_t -> bat__compare_t -> bool
end

(** Reference operators ala C.  Mutates a reference value. [x -= y] is
    the same as [x := !x - y].  @since 2.0 *)
module type RefOps =
sig
  type bat__refops_t
  val (+=): bat__refops_t ref -> bat__refops_t -> unit
  val (-=): bat__refops_t ref -> bat__refops_t -> unit
  val ( *=): bat__refops_t ref -> bat__refops_t -> unit
  val (/=): bat__refops_t ref -> bat__refops_t -> unit
end


(**
   The full set of operations of a type of numbers
*)
module type Numeric =
sig
  type t
  val zero : t
  val one : t
  val neg : t -> t
  val abs : t -> t
  val add : t -> t -> t
  val sub : t -> t -> t
  val mul : t -> t -> t
  val div : t -> t -> t
  val modulo : t -> t -> t
  val pow : t -> t -> t

  val compare : t -> t -> int
  val equal : t -> t -> bool
  val ord : t BatOrd.ord (* t -> t -> [Eq|Gt|Lt] *)

  val of_int : int -> t
  val to_int : t -> int
  val of_float: float -> t
  val to_float: t     -> float
  val of_string : string -> t
  val to_string : t -> string

  val operations : t numeric

  type discrete = t
  (* to_int already provided *)
  val succ : t -> t
  val pred : t -> t


  module Infix : Infix with type bat__infix_t = t
  module Compare : Compare with type bat__compare_t = t
  include Infix with type bat__infix_t = t
  (* Removed non-polymorphic compare from base module, as they shadow
     ones in stdlib.  open Foo.Compare to get them.

     include Compare with type bat__compare_t = t*)
  include RefOps with type bat__refops_t = t
end

module type Bounded =
sig
  type bounded
  val min_num: bounded
  val max_num: bounded
end

module type Discrete =
sig
  type discrete
  val to_int: discrete -> int
  val succ  : discrete -> discrete
  val pred  : discrete -> discrete
  val ( -- ): discrete -> discrete -> discrete BatEnum.t
  val ( --- ): discrete -> discrete -> discrete BatEnum.t
end

(**/**)

(** {6 Utilities}*)

(**
   The smallest set of operations supported by every set of numbers
*)
module type NUMERIC_BASE =
sig
  type t

  val zero : t
  val one  : t

  (** {6 Arithmetic operations}

	Depending on the implementation, some of these operations
	{i may} raise exceptions at run-time to represent over/under-flows.*)
  val neg : t -> t
  val succ : t -> t
  val pred : t -> t
  val abs : t -> t
  val add : t -> t -> t
  val sub : t -> t -> t
  val mul : t -> t -> t
  val div : t -> t -> t
  val modulo : t -> t -> t
  val pow : t -> t -> t
  val compare : t -> t -> int

  (** {6 Conversions} *)
  val of_int : int -> t
  (** Convert this number to the closest integer.*)

  val to_int : t -> int
  (** Convert an integer to the closest element of set [t].*)

  val of_string : string -> t
  (** Convert the representation of a number to the corresponding
	number. @raise Invalid_argument if the string does not represent
	a valid number of type [t]*)

  val to_string : t -> string

  val of_float : float -> t
  val to_float : t -> float

end

(** Automated definition of infix operators for a given numeric type,
    so that you can open it without poluting your namespace.
	(apart from the type bat__infix_t) *)

module MakeInfix :
  functor (Base : NUMERIC_BASE) -> Infix with type bat__infix_t = Base.t

(** Automated definition of infix comparison operators for a given numeric type,
    so that you can open it only when you mean it.
	(apart from the type bat__compare_t) *)

module MakeCompare :
  functor (Base : NUMERIC_BASE) -> Compare with type bat__compare_t = Base.t


(** Automated definition of reference operators for a given numeric
    type *)
module MakeRefOps :
  functor (Base : NUMERIC_BASE) -> RefOps with type bat__refops_t = Base.t

(** Automated definition of operators for a given numeric type.
    You will only need this if you develop your own numeric modules.

    @since 2.0 *)

module MakeNumeric :
  functor (Base : NUMERIC_BASE) -> Numeric with type t = Base.t

(* a generic exponentiation function which efficiently computes a^n as
   the product of repeated squares, depending on the base-2 expansion
   of the exponent. ex. a^1 * a^4 * ... a^8 for n=13 *)
val generic_pow : zero:'a -> one:'a -> div_two:('a -> 'a) -> mod_two:('a -> 'a) -> mul:('a -> 'a -> 'a) -> 'a -> 'a -> 'a