/usr/lib/ocaml/batteries/batNumber.mli is in libbatteries-ocaml-dev 2.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 | (*
* Number - Generic interface for numbers
* Copyright (C) 2007 Bluestorm <bluestorm dot dylc on-the-server gmail dot com>
* 2008 David Teller
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version,
* with the special exception on linking described in file LICENSE.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*)
(**
A common interface for numbers.
@author Gabriel Scherer
@author David Teller
*)
(**
Arithmetic overflow.
This kind of exception is raised by "safe" numeric modules whenever
the number which should be returned is too large to be represented.
Non-"safe" numeric modules will return a result which depends on
the internal representation. For instance, with module {!Int},
[max_num + 1] returns [min_num]. By opposition, with module
{!Safe_int}, [max_num + 1] raises [Overflow].
*)
exception Overflow
(**
Not a Number
This kind of exception is raised by "safe" modules whenever the
number which should be returned is not a number.
For instance, with module {!Safe_float}, [0.0 / 0.0] raises [NaN].
By opposition, with module {!Float}, [0.0 / 0.0] does not interrupt
computation and returns a special value [nan].
*)
exception NaN
(**
The smallest set of operations supported by every set of numbers.
This is presented as record to permit lightweight typeclass-style
computation.
*)
type 'a numeric =
{
zero : 'a;
one : 'a;
neg : 'a -> 'a;
succ : 'a -> 'a;
pred : 'a -> 'a;
abs : 'a -> 'a;
add : 'a -> 'a -> 'a;
sub : 'a -> 'a -> 'a;
mul : 'a -> 'a -> 'a;
div : 'a -> 'a -> 'a;
modulo : 'a -> 'a -> 'a;
pow : 'a -> 'a -> 'a;
compare : 'a -> 'a -> int;
of_int : int -> 'a;
to_int : 'a -> int;
of_string : string -> 'a;
to_string : 'a -> string;
of_float: float -> 'a;
to_float: 'a -> float;
}
(**
The infix operators available with any type of numbers
*)
module type Infix = sig
type bat__infix_t
val ( + ) : bat__infix_t -> bat__infix_t -> bat__infix_t
val ( - ) : bat__infix_t -> bat__infix_t -> bat__infix_t
val ( * ) : bat__infix_t -> bat__infix_t -> bat__infix_t
val ( / ) : bat__infix_t -> bat__infix_t -> bat__infix_t
val ( ** ) : bat__infix_t -> bat__infix_t -> bat__infix_t
val ( -- ): bat__infix_t -> bat__infix_t -> bat__infix_t BatEnum.t
val ( --- ): bat__infix_t -> bat__infix_t -> bat__infix_t BatEnum.t
end
(**
And if you are ready to drop generic comparison operators,
then you can open this one as well
*)
module type Compare = sig
type bat__compare_t
val ( <> ) : bat__compare_t -> bat__compare_t -> bool
val ( >= ) : bat__compare_t -> bat__compare_t -> bool
val ( <= ) : bat__compare_t -> bat__compare_t -> bool
val ( > ) : bat__compare_t -> bat__compare_t -> bool
val ( < ) : bat__compare_t -> bat__compare_t -> bool
val ( = ) : bat__compare_t -> bat__compare_t -> bool
end
(** Reference operators ala C. Mutates a reference value. [x -= y] is
the same as [x := !x - y]. @since 2.0 *)
module type RefOps =
sig
type bat__refops_t
val (+=): bat__refops_t ref -> bat__refops_t -> unit
val (-=): bat__refops_t ref -> bat__refops_t -> unit
val ( *=): bat__refops_t ref -> bat__refops_t -> unit
val (/=): bat__refops_t ref -> bat__refops_t -> unit
end
(**
The full set of operations of a type of numbers
*)
module type Numeric =
sig
type t
val zero : t
val one : t
val neg : t -> t
val abs : t -> t
val add : t -> t -> t
val sub : t -> t -> t
val mul : t -> t -> t
val div : t -> t -> t
val modulo : t -> t -> t
val pow : t -> t -> t
val compare : t -> t -> int
val equal : t -> t -> bool
val ord : t BatOrd.ord (* t -> t -> [Eq|Gt|Lt] *)
val of_int : int -> t
val to_int : t -> int
val of_float: float -> t
val to_float: t -> float
val of_string : string -> t
val to_string : t -> string
val operations : t numeric
type discrete = t
(* to_int already provided *)
val succ : t -> t
val pred : t -> t
module Infix : Infix with type bat__infix_t = t
module Compare : Compare with type bat__compare_t = t
include Infix with type bat__infix_t = t
(* Removed non-polymorphic compare from base module, as they shadow
ones in stdlib. open Foo.Compare to get them.
include Compare with type bat__compare_t = t*)
include RefOps with type bat__refops_t = t
end
module type Bounded =
sig
type bounded
val min_num: bounded
val max_num: bounded
end
module type Discrete =
sig
type discrete
val to_int: discrete -> int
val succ : discrete -> discrete
val pred : discrete -> discrete
val ( -- ): discrete -> discrete -> discrete BatEnum.t
val ( --- ): discrete -> discrete -> discrete BatEnum.t
end
(**/**)
(** {6 Utilities}*)
(**
The smallest set of operations supported by every set of numbers
*)
module type NUMERIC_BASE =
sig
type t
val zero : t
val one : t
(** {6 Arithmetic operations}
Depending on the implementation, some of these operations
{i may} raise exceptions at run-time to represent over/under-flows.*)
val neg : t -> t
val succ : t -> t
val pred : t -> t
val abs : t -> t
val add : t -> t -> t
val sub : t -> t -> t
val mul : t -> t -> t
val div : t -> t -> t
val modulo : t -> t -> t
val pow : t -> t -> t
val compare : t -> t -> int
(** {6 Conversions} *)
val of_int : int -> t
(** Convert this number to the closest integer.*)
val to_int : t -> int
(** Convert an integer to the closest element of set [t].*)
val of_string : string -> t
(** Convert the representation of a number to the corresponding
number. @raise Invalid_argument if the string does not represent
a valid number of type [t]*)
val to_string : t -> string
val of_float : float -> t
val to_float : t -> float
end
(** Automated definition of infix operators for a given numeric type,
so that you can open it without poluting your namespace.
(apart from the type bat__infix_t) *)
module MakeInfix :
functor (Base : NUMERIC_BASE) -> Infix with type bat__infix_t = Base.t
(** Automated definition of infix comparison operators for a given numeric type,
so that you can open it only when you mean it.
(apart from the type bat__compare_t) *)
module MakeCompare :
functor (Base : NUMERIC_BASE) -> Compare with type bat__compare_t = Base.t
(** Automated definition of reference operators for a given numeric
type *)
module MakeRefOps :
functor (Base : NUMERIC_BASE) -> RefOps with type bat__refops_t = Base.t
(** Automated definition of operators for a given numeric type.
You will only need this if you develop your own numeric modules.
@since 2.0 *)
module MakeNumeric :
functor (Base : NUMERIC_BASE) -> Numeric with type t = Base.t
(* a generic exponentiation function which efficiently computes a^n as
the product of repeated squares, depending on the base-2 expansion
of the exponent. ex. a^1 * a^4 * ... a^8 for n=13 *)
val generic_pow : zero:'a -> one:'a -> div_two:('a -> 'a) -> mod_two:('a -> 'a) -> mul:('a -> 'a -> 'a) -> 'a -> 'a -> 'a
|