This file is indexed.

/usr/lib/ocaml/apron/interval.idl is in libapron-ocaml-dev 0.9.10-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/* -*- mode: c -*- */

/* This file is part of the APRON Library, released under LGPL license.
   Please read the COPYING file packaged in the distribution  */

quote(C, "\n\
#include <limits.h>\n\
#include \"ap_coeff.h\"\n\
#include \"apron_caml.h\"\n\
")

import "scalar.idl";

/* For ap_interval_t, 

- the conversion from ML to C may use allocation, but it is automatically freed 
  by Camlidl mechanisms
- the conversion from C to ML duplicate the C allocated memory.
  Hence, the C type should be explicitly deallocated
  (if allocated from the underlying C function)
*/

struct ap_interval_t {
  [ref,mlname(mutable_inf)] ap_scalar_t* inf;
  [ref,mlname(mutable_sup)] ap_scalar_t* sup;
};
typedef [ref]struct ap_interval_t* ap_interval_ptr;
struct ap_interval_array_t {
  [size_is(size)]ap_interval_ptr* p;
  int size;
};
quote(MLMLI,"(** APRON Intervals on scalars *)\n\n")

quote(MLI,"\n\
val of_scalar : Scalar.t -> Scalar.t -> t\n\
  (** Build an interval from a lower and an upper bound *)\n\
val of_infsup : Scalar.t -> Scalar.t -> t\n\
  (** depreciated *)\n\
\n\
val of_mpq : Mpq.t -> Mpq.t -> t\n\
val of_mpqf : Mpqf.t -> Mpqf.t -> t\n\
val of_int : int -> int -> t\n\
val of_frac : int -> int -> int -> int -> t\n\
val of_float : float -> float -> t\n\
val of_mpfr : Mpfr.t -> Mpfr.t -> t\n\
  (** Create an interval from resp. two\n\
    - multi-precision rationals [Mpq.t] \n\
    - multi-precision rationals [Mpqf.t] \n\
    - integers \n\
    - fractions [x/y] and [z/w]\n\
    - machine floats\n\
    - Mpfr floats\n\
  *)\n\
\n\
val is_top : t -> bool\n\
  (** Does the interval represent the universe ([[-oo,+oo]]) ? *)\n\
\n\
val is_bottom : t -> bool\n\
  (** Does the interval contain no value ([[a,b]] with a>b) ? *)\n\
\n\
val is_leq : t -> t -> bool\n\
  (** Inclusion test. [is_leq x y] returns [true] if [x] is included in [y] *)\n\
\n\
val cmp : t -> t -> int\n\
  (** Non Total Comparison:\n\
     0: equality\n\
     -1: i1 included in i2\n\
     +1: i2 included in i1\n\
     -2: i1.inf less than or equal to i2.inf\n\
     +2: i1.inf greater than i2.inf\n\
  *)\n\
val equal : t -> t -> bool\n\
  (** Equality test *)\n\
val is_zero : t -> bool\n\
  (** Is the interval equal to [0,0] ? *)\n\
val equal_int : t -> int -> bool\n\
  (** Is the interval equal to [i,i] ? *)\n\
val neg : t -> t\n\
  (** Negation *)\n\
val top : t\n\
val bottom : t\n\
  (** Top and bottom intervals (using [DOUBLE] coefficients) *)\n\
\n\
val set_infsup : t -> Scalar.t -> Scalar.t -> unit\n\
  (** Fill the interval with the given lower and upper bouunds *)\n\
\n\
val set_top : t -> unit\n\
val set_bottom : t -> unit\n\
  (** Fill the interval with top (resp. bottom) value *)\n\
  \n\
val print : Format.formatter -> t -> unit\n\
  (** Print an interval, under the format [[inf,sup]] *)\n\
")

quote(ML,"\n\
let of_scalar inf sup = { inf = inf; sup = sup }\n\
let of_infsup = of_scalar\n\
let of_mpq x y = { \n\
  inf = Scalar.of_mpq x;\n\
  sup = Scalar.of_mpq y\n\
}\n\
let of_mpqf x y = {\n\
  inf = Scalar.of_mpqf x;\n\
  sup = Scalar.of_mpqf y\n\
}\n\
let of_int x y = {\n\
  inf = Scalar.of_int x;\n\
  sup = Scalar.of_int y\n\
}\n\
let of_frac x y z w = {\n\
  inf = Scalar.of_frac x y;\n\
  sup = Scalar.of_frac z w\n\
}\n\
let of_float x y = {\n\
  inf = Scalar.of_float x;\n\
  sup = Scalar.of_float y\n\
}\n\
let of_mpfr x y = {\n\
  inf = Scalar.of_mpfr x;\n\
  sup = Scalar.of_mpfr y\n\
}\n\
let is_top itv =\n\
  Scalar.is_infty itv.inf < 0 && Scalar.is_infty itv.sup > 0\n\
let is_bottom itv =\n\
  Scalar.cmp itv.inf itv.sup > 0\n\
let is_leq itv1 itv2 =\n\
  Scalar.cmp itv1.inf itv2.inf >= 0 &&\n\
  Scalar.cmp itv1.sup itv2.sup <= 0\n\
let cmp itv1 itv2 =\n\
  let s1 = Scalar.cmp itv1.inf itv2.inf in\n\
  let s2 = Scalar.cmp itv1.sup itv2.sup in\n\
  if s1=0 && s2=0 then 0\n\
  else if s1>=0 && s2<=0 then -1\n\
  else if s1<=0 && s2>=0 then 1\n\
  else if s1<=0 then -2\n\
  else 2\n\
let equal itv1 itv2 =\n\
  Scalar.equal itv1.inf itv2.inf &&\n\
  Scalar.equal itv1.sup itv2.sup \n\
let is_zero itv =\n\
  Scalar.sgn itv.inf=0 && Scalar.sgn itv.sup = 0\n\
let equal_int itv b = \n\
  Scalar.equal_int itv.inf b && Scalar.equal_int itv.sup b\n\
let neg itv = \n\
  { inf = Scalar.neg itv.sup; sup = Scalar.neg itv.inf }\n\
let top = { inf = Scalar.Float neg_infinity; sup = Scalar.Float infinity }\n\
let bottom = { inf = Scalar.Float infinity; sup = Scalar.Float neg_infinity }\n\
let set_infsup itv inf sup =\n\
  itv.inf <- inf;\n\
  itv.sup <- sup\n\
let set_top itv =\n\
  itv.inf <- Scalar.Float neg_infinity;\n\
  itv.sup <- Scalar.Float infinity\n\
let set_bottom itv =\n\
  itv.inf <- Scalar.Float infinity;\n\
  itv.sup <- Scalar.Float neg_infinity\n\
let print fmt itv =\n\
  Format.fprintf fmt \"[@[<hv>%a;@ %a@]]\"\n\
    Scalar.print itv.inf Scalar.print itv.sup\n\
")