/usr/include/anfo/stream.h is in libanfo0-dev 0.98-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 | // Copyright 2009 Udo Stenzel
// This file is part of ANFO
//
// ANFO is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Anfo is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Anfo. If not, see <http://www.gnu.org/licenses/>.
#ifndef INCLUDED_STREAM_H
#define INCLUDED_STREAM_H
#include "compress_stream.h"
#include "logdom.h"
#include "output.pb.h"
#include "sequence.h"
#include "util.h"
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <iostream>
#include <algorithm>
#include <deque>
#include <fstream>
#include <limits>
#include <memory>
#include <vector>
#include <sys/types.h>
#include <sys/wait.h>
// Including Elk defines some macros that collide with protobuf. We
// undefine them (and hope they aren't needed...).
#include <elk/scheme.h>
#undef Print
#undef MAX_TYPE
namespace streams {
using namespace output ;
using namespace std ;
inline uint32_t mk_msg_tag( uint32_t i ) { return i << 3 | 2 ; }
//! \defgroup outputfile Convenience functions to handle output files
//! The output file is a series of protocol buffer messages. This makes
//! it compact and extensible. Instead of writing a serial file, the
//! very same messages could be entered into a Berkeley-DB type
//! database. Since conversion to all sorts of text files is a no
//! brainer, the binary format is not considered undue hardship on the
//! users of scripting languages.
//!
//! (If you are a user of a glorified logfile munching language and want
//! an ASCII-based table, define a sensible layout and ask for it. Or
//! write the single function yourself, it isn't that hard.)
//!
//! The protobuf format itself is not self-delimiting, therefore we
//! prepend each message with the number of bytes it occupies, in
//! variable protobuf format. The first message in a file
//! one is of type output::Header and should contain all sorts of
//! meta information, maybe even configuration of the mapper that was
//! used to create it (an option would be to include the full set of
//! policies). Subsequent messages are of type output::Result.
//!
//! \note The output file is essentially a single, giant protobuf message.
//! However, it is impossible to read it in one go (due to memory
//! constraints), but it's also impossible to read it through a single
//! CodedInputStream. That's why methods in here tend to construct and
//! destruct a fresh CodedInputStream on each invocation.
//!
//! @{
template< typename Msg >
void write_delimited_message( google::protobuf::io::CodedOutputStream& os, int tag, const Msg& m )
{
os.WriteTag( mk_msg_tag( tag ) ) ;
os.WriteVarint32( m.ByteSize() ) ;
if( !m.SerializeToCodedStream( &os ) )
{
string s ;
google::protobuf::TextFormat::PrintToString( m, &s ) ;
cerr << s ;
throw "error while serializing: " ;
}
}
template< typename Msg >
void write_delimited_message( google::protobuf::io::ZeroCopyOutputStream *os, int tag, const Msg& m )
{
google::protobuf::io::CodedOutputStream o( os ) ;
write_delimited_message( o, tag, m ) ;
}
template< typename Msg >
bool read_delimited_message( google::protobuf::io::CodedInputStream& is, Msg &m )
{
uint32_t size ;
std::string code ;
if( !is.ReadVarint32( &size ) ) return false ;
int lim = is.PushLimit( size ) ;
if( !m.ParseFromCodedStream( &is ) ) throw "error while deserializing" ;
is.PopLimit( lim ) ;
return true ;
}
void sanitize( Header& ) ;
void sanitize( Result& ) ;
void merge_sensibly( output::Header& lhs, const output::Header& rhs ) ;
void merge_sensibly( output::Footer& lhs, const output::Footer& rhs ) ;
void merge_sensibly( output::Result& lhs, const output::Result& rhs ) ;
//! \brief returns the hit to some genome
//! If an empty genome is asked for, returns the best hit. Behaviour is
//! undefined if no suitable hit exists.
const output::Hit* hit_to( const output::Result& ) ;
const output::Hit* hit_to( const output::Result&, const string& ) ;
inline const output::Hit* hit_to( const output::Result& r, const char* g ) { return g ? hit_to( r ) : hit_to( r, string(g) ) ; }
template< typename I > const output::Hit* hit_to( const output::Result& r, I begin, I end )
{
for( ; begin != end ; ++begin )
if( const output::Hit* h = hit_to( r, *begin ) ) return h ;
return 0 ;
}
//! \brief returns the mutable hit to some genome
//! If an empty genome is asked for, returns the best hit. If no
//! suitable hit exists, a new one is created.
output::Hit* mutable_hit_to( output::Result* ) ;
output::Hit* mutable_hit_to( output::Result*, const string& ) ;
inline output::Hit::Operation cigar_op( uint32_t c ) { return (output::Hit::Operation)(c & 0xf) ; }
inline uint32_t cigar_len( uint32_t c ) { return c >> 4 ; }
//! \brief computes (trimmed) query length from CIGAR line
template< typename C > unsigned len_from_bin_cigar( const C& cig )
{
unsigned l = 0 ;
for( typename C::const_iterator i = cig.begin(), e = cig.end() ; i != e ; ++i )
{
switch( cigar_op( *i ) )
{
case output::Hit::Match:
case output::Hit::Mismatch:
case output::Hit::Insert:
case output::Hit::SoftClip:
l += cigar_len( *i ) ;
break ;
case output::Hit::Delete:
case output::Hit::Skip:
case output::Hit::HardClip:
case output::Hit::Pad:
break ;
}
}
return l ;
}
inline uint32_t mk_cigar( output::Hit::Operation op, uint32_t len ) { return len << 4 | op ; }
inline void push_op( std::vector<unsigned>& s, unsigned m, output::Hit::Operation op )
{
if( m && !s.empty() && (streams::cigar_op( s.back() ) == op) && streams::cigar_len( s.back() ) )
s.back() = streams::mk_cigar( op, m + streams::cigar_len( s.back() ) ) ;
else if( m ) s.push_back( streams::mk_cigar( op, m ) ) ;
}
inline void push_m( std::vector<unsigned>& s, unsigned m ) { push_op( s, m, output::Hit::Match ) ; }
inline void push_M( std::vector<unsigned>& s, unsigned m ) { push_op( s, m, output::Hit::Mismatch ) ; }
inline void push_i( std::vector<unsigned>& s, unsigned i ) { push_op( s, i, output::Hit::Insert ) ; }
inline void push_d( std::vector<unsigned>& s, unsigned d ) { push_op( s, d, output::Hit::Delete ) ; }
inline int effective_length( const Read& rd )
{ return (rd.has_trim_right() ? rd.trim_right() : rd.sequence().length()) - rd.trim_left() ; }
//! @}
//! \brief stream of result messages
//! Each stream is a header, followed by many results, followed by a
//! single footer. The header will be cached internally, so it can be
//! asked for repeatedly. Results are forgotten once read, the footer
//! is only available after all results have been read, and then it is
//! stored and can be read repeatedly.
//!
//! This class is both an input stream, an output stream and a stream
//! transducer. Concrete implementations decide what sets of methods to
//! actually implement. Streams behave as state machine, cycling
//! between need_input, have_output and end_of_stream. It's undefined
//! behaviour to call methods in states where they don't make sense.
class Stream
{
public:
int refcount_ ;
enum state { invalid, end_of_stream, need_input, have_output } ;
static void cleanup( Stream* p ) { delete p ; }
protected:
// internal state---not strictly necessary here, but used almost
// everywhere and therefore simply convenient
Header hdr_ ;
Result res_ ;
Footer foot_ ;
state state_ ;
virtual ~Stream() {} // want control over instantiation
private:
Stream( const Stream& ) ; // must not copy
void operator = ( const Stream& ) ; // must not copy
public:
Stream() : refcount_(0), state_( end_of_stream ) {}
//! \brief returns stream state
//! The state determines which methods may be called: get_header
//! can be called unless the satet is \c invalid, get_result can
//! be called in state have_output, put_result only in
//! need_input, get_footer only in end_of_stream. put_footer
//! can only be called in need_input and it will signal the end
//! of the input stream (if there is such a thing). put_header
//! can only be called in state invalid, it may change the state
//! to either need_input or have_output. Particular streams may
//! need special initialization before the state bacomes
//! something other than invalid.
virtual state get_state() { return state_ ; }
//! \brief returns the header
//! The header can be requested any time, unless the stream is
//! in the invalid state.
virtual Header fetch_header() { return hdr_ ; }
//! \brief reads the next result
//! Every result can only be read once, internal iterator style.
//! If the stream state is have_output, this method returns the
//! next result. Otherwise the behavior is undefined.
virtual Result fetch_result() { state_ = need_input ; return res_ ; }
//! \brief returns the footer
//! Only after all results have been consumed is the footer
//! available. If anything goes wrong internally, the LSB
//! should be set in \c exit_code.
virtual Footer fetch_footer() { return foot_ ; }
//! \brief sets the stream header
//! Output streams and stream filters need the header to become
//! valid streams.
virtual void put_header( const Header& h ) { hdr_ = h ; state_ = need_input ; }
//! \brief outputs one result
//! This method can only be called in state need_input, and it
//! will insert a result record into the stream. Else the
//! behaviour is undefined.
virtual void put_result( const Result& r ) { res_ = r ; state_ = have_output ; }
//! \brief sets the footer
//! This method can only be called in state need_input, and it
//! signals that no more input is available. A filter will then
//! flush internal buffers and signal end_of_stream.
virtual void put_footer( const Footer& f ) { foot_ = f ; state_ = end_of_stream ; }
//! \brief get the 'summary' of having processed this stream
//! This functionality is dependent on Elk being present: since
//! the meaning of what the 'summary' is differs from stream to
//! stream, the result is simply an Elk object. The default is
//! to return the exit code contained in the footer.
virtual Object get_summary() const { return False ; }
//! \brief some debugging info
virtual string type_name() const { return "Stream" ; }
protected:
// doesn't belong here, but it's convenient
void read_next_message( google::protobuf::io::CodedInputStream&, const std::string& ) ;
} ;
typedef ::Holder<Stream> StreamHolder ;
int transfer( Stream& in, Stream& out ) ;
//! \brief base class of streams that read from many streams
class StreamBundle : public Stream
{
protected:
std::deque< StreamHolder > streams_ ;
typedef std::deque< StreamHolder >::const_iterator citer ;
typedef std::deque< StreamHolder >::const_reverse_iterator criter ;
public:
void add_stream( StreamHolder s ) { streams_.push_back( s ) ; }
} ;
struct ParseError : public Exception {
std::string msg_ ;
ParseError( const std::string& m ) : msg_(m) {}
virtual void print_to( std::ostream& s ) const { s << "AnfoReader: " << msg_ ; }
} ;
//! \brief presents ANFO files as series of messages
//! This class will read a stream of results formatted as a continuous
//! protobuf message.
class AnfoReader : public Stream
{
private:
std::auto_ptr< google::protobuf::io::ZeroCopyInputStream > is_ ;
std::string name_ ;
public:
AnfoReader( std::auto_ptr< google::protobuf::io::ZeroCopyInputStream > is, const std::string& name ) ;
virtual Result fetch_result() ;
//! \internal
virtual string type_name() const { return "AnfoReader(" + name_ + ")" ; }
} ;
// \brief reader for all supported formats
// Here we take care not to open files before the header is requested.
// This is necessary to allow merging thousands of files without
// directly running into a filedescriptor limit.
// To this end, the UniversalReader can be initialized with or without a
// stream object. If the stream exists, we take care not to read from
// it until the header is needed, and the name given serves just for
// informational purposes. If no stream exists, we create a
// FileInputStream from the name (which must be a filename, obviously)
// when the header is requested. At this point we also inspect the
// stream to determine its format and create the appropriate filters to
// decode it.
class UniversalReader : public Stream
{
private:
std::auto_ptr< google::protobuf::io::ZeroCopyInputStream > is_ ;
std::string name_ ;
StreamHolder str_ ;
bool solexa_scores_ ;
int origin_ ;
string genome_ ;
public:
UniversalReader(
const std::string& name,
google::protobuf::io::ZeroCopyInputStream* is = 0,
bool solexa_scores = false,
int origin = 33,
const string& genome = ""
) ;
virtual state get_state() { return str_ ? str_->get_state() : invalid ; }
virtual Header fetch_header() ;
virtual Result fetch_result() { if( get_state() == have_output ) return str_->fetch_result() ; throw "calling sequence violated" ; }
virtual Footer fetch_footer() { return str_->fetch_footer() ; }
virtual string type_name() const { return "UniversalReader(" + name_ + ")" ; }
} ;
//! \brief new blocked native format
//! Writes in a format that can be read by stream::ChunkedReader. The
//! file is made up of individually compressed blocks so that
//! near-random access is possible... in principle.
class ChunkedWriter : public Stream
{
public:
// sensible buffer size: big enough to make compression worthwhile,
// small enough that BZip won't split it again
enum { default_buffer_size = 850000 } ;
// supported compression methods
enum method { none, fastlz, gzip, bzip } ;
private:
std::auto_ptr< google::protobuf::io::ZeroCopyOutputStream > zos_ ; // final output
std::vector< char > buf_ ; // in-memory buffer
std::auto_ptr< google::protobuf::io::ArrayOutputStream > aos_ ; // output to buffer
Chan chan_ ;
std::string name_ ;
int64_t wrote_ ;
uint8_t method_, level_ ;
void flush_buffer( unsigned needed = 0 ) ;
void init() ;
public:
static uint8_t method_of( int ) ;
static uint8_t level_of( int ) ;
ChunkedWriter( const pair< google::protobuf::io::ZeroCopyOutputStream*, string >&, int ) ;
ChunkedWriter( int fd, int, const char* = "<pipe>" ) ;
ChunkedWriter( const char* fname, int ) ;
virtual ~ChunkedWriter() ;
virtual void put_header( const Header& h ) ;
virtual void put_result( const Result& r ) ;
virtual void put_footer( const Footer& f ) ;
virtual string type_name() const { return "ChunkedWriter(" + name_ + ")" ; }
} ;
class ChunkedReader : public Stream
{
private:
std::auto_ptr< google::protobuf::io::ZeroCopyInputStream > is_ ;
std::vector< char > buf_ ; // in-memory buffer
std::auto_ptr< google::protobuf::io::ArrayInputStream > ais_ ; // output to buffer
std::string name_ ;
bool get_next_chunk() ;
public:
ChunkedReader( std::auto_ptr< google::protobuf::io::ZeroCopyInputStream > is, const std::string& name ) ;
virtual Result fetch_result() ;
//! \internal
virtual string type_name() const { return "ChunkedReader(" + name_ + ")" ; }
} ;
//! \brief filters that drop or modify isolated records
//! Think "mapMaybe".
//! \todo Maybe some stats could be gathered into some sort of a result.
class Filter : public Stream
{
public:
virtual bool xform( Result& ) = 0 ;
virtual void put_result( const Result& res ) { res_ = res ; if( xform( res_ ) ) state_ = have_output ; }
} ;
//! \brief filters that drop some alignments
//! Filtering only applies to hits to the specified genome(s), or to all
//! hits if no genomes are specified. Other hits pass through.
//! \todo Maybe some stats could be gathered into some sort of a result.
class HitFilter : public Stream
{
private:
vector<string> gs_ ;
public:
HitFilter() {}
HitFilter( const vector<string> &gs ) : gs_(gs) {}
virtual void put_header( const Header& h ) {
Stream::put_header( h ) ;
hdr_.clear_is_sorted_by_coordinate() ;
hdr_.clear_is_sorted_by_all_genomes() ;
}
virtual bool keep( const Hit& ) = 0 ;
virtual void put_result( const Result& res ) ;
} ;
namespace {
template < typename C, typename V > bool contains( const C& c, const V& v )
{ return find( c.begin(), c.end(), v ) != c.end() ; }
}
//! \brief deletes some alignments
//! A list of sequences and a list of genomes can be given. An
//! alignment is deleted if a) the list of genomes is empty or the hit
//! genome is a member of that list and b) the list of sequences is
//! empty or the hit sequence is a member of that list.
class IgnoreHit : public HitFilter
{
private:
vector< string > ss_ ;
public:
IgnoreHit( const vector< string > &gs, const vector< string > &ss ) : HitFilter( gs ), ss_( ss ) {}
virtual bool keep( const Hit& h ) { return !ss_.empty() && !contains( ss_, h.sequence() ) ; }
} ;
//! \brief deletes hits to uninteresting genomes
//! Hits to the specified genomes pass through, all others are dropped.
class OnlyGenome : public Filter
{
private:
vector< string > gs_ ;
public:
OnlyGenome( const vector< string > &gs ) : Filter(), gs_( gs ) {}
virtual bool xform( Result& r ) ;
} ;
//! \brief stream that filters for a given score
//! Alignments that exceed the score are deleted, but the sequences are
//! kept. If genomes are given, only alignments to that genome are
//! tested and removed, else all are considered individually and
//! selectively removed. If no alignments remains, \c reason is set to
//! \c bad_alignment. Most interesting downstream operations will
//! ignore sequences without alignments. Scores are in Phred scale now,
//! experience tells that a typical butoff between good alignments and
//! junk is \f$ 7.5 \cdot ( \mbox{length} - 20 ) \f$
class ScoreFilter : public HitFilter
{
private:
double slope_ ;
double intercept_ ;
public:
ScoreFilter( double s, double i, const vector<string> &gs ) : HitFilter(gs), slope_(s), intercept_(i) {}
virtual bool keep( const Hit& ) ;
} ;
class TotalScoreFilter : public Filter
{
private:
double slope_ ;
double intercept_ ;
vector< string > gs_ ;
public:
TotalScoreFilter( double s, double i, const vector<string> &gs ) : slope_(s), intercept_(i), gs_(gs) {}
virtual bool xform( Result& ) ;
} ;
//! \brief stream that filters for minimum mapping quality
//! All alignments of sequences where the difference to the next hit is
//! too low are deleted. Filtering can be restricted to some genomes.
//! The sequence itself is always kept.
class MapqFilter : public HitFilter
{
private:
int minmapq_ ; ;
public:
MapqFilter( const vector<string> &gs, int q ) : HitFilter(gs), minmapq_(q) {}
virtual bool keep( const Hit& ) ;
} ;
//! \brief filter for some average quality
class QualFilter : public Filter
{
private:
double minqual_ ; ;
public:
QualFilter( double q ) : minqual_(q) {}
virtual bool xform( Result& ) ;
} ;
//! \brief stream that filters for minimum sequence length
//! All alignments of sequences that are too short are deleted, relying
//! on down stream filters to completely get rid of the sequences
//! themselves.
class LengthFilter : public Filter
{
private:
int minlength_, maxlength_ ;
public:
LengthFilter( int l = 0, int h = std::numeric_limits<int>::max() )
: minlength_(l), maxlength_(h) {}
virtual bool xform( Result& ) ;
} ;
class GcFilter : public Filter
{
private:
int mingc_, maxgc_ ;
public:
GcFilter( int l = 0, int h = 100 ) : mingc_(l), maxgc_(h) {}
virtual bool xform( Result& ) ;
} ;
//! \brief a stream that removes sequences without a specific hit
//! This is intended to shrink a file by removing junk that didn't
//! align at all.
class RequireHit : public Filter
{
private:
vector< string > gs_, ss_ ;
public:
RequireHit( const vector<string> &gs, const vector<string> &ss ) : gs_(gs), ss_(ss) {}
virtual bool xform( Result& ) ;
} ;
//! \brief a stream that removes sequences without a specific best hit
//! This is intended to shrink a file by removing junk that didn't
//! align to the expected genome.
class RequireBestHit : public Filter
{
private:
vector< string > gs_, ss_ ;
public:
RequireBestHit( const vector<string> &gs, const vector<string> &ss ) : gs_(gs), ss_(ss) {}
virtual bool xform( Result& ) ;
} ;
class Subsample : public Filter
{
private:
const float f_ ;
public:
Subsample( float f ) : f_(f) {}
virtual bool xform( Result& ) ;
} ;
//! \brief filters for minimum multiplicity
//! Only results that stem from duplicate removal with a minimum
//! multiplicity are retained. Intended for the analysis of libraries
//! sequenced with high redundancy to lower sequencing error.
class MultiFilter : public Filter
{
private:
unsigned n_ ;
public:
MultiFilter( unsigned n ) : n_(n) {}
virtual bool xform( Result& r ) { return r.members_size() + r.nmembers() >= n_ ; }
} ;
//! \brief stream that filters out low quality bases
//! Bases with insufficient quality are replaced by N symbols.
//! (Originally I used gap symbols, which doesn't make sense and
//! actually confused the legacy tool downstream. Ns should be fine and
//! are actually the correct symbol in a certain sense.)
//! This suppresses the counting of low quality bases in whatever
//! follows downstream.
class QualMasker : public Filter
{
private:
int q_ ;
public:
QualMasker( int q ) : q_(q) {}
virtual bool xform( Result& ) ;
} ;
/*! \brief stream with PCR duplicates removed
A set of duplicates is (more or less by definition) a set of reads
that map to the same position.
Any set of duplicates is merged (retaining the original reads in an
auxilliary structure), and a consensus is called with new quality
scores. A quality score (for base A) is defined as \f[ Q := -10
\log_{10} P( \bar{A} | \omega ), \f] that is, a representation of
the probability of the base being wrong given some observation \f$
\omega. \f$ It follows that \f[ Q = -10 \log_{10} \frac{
P(\omega|\bar{A}) P(\bar{A}) }{ P(\omega) } = -10 \log_{10} P( \omega
| \bar{A} ) \f] by assuming a uniform base composition in the sample
(\f$ P(A)=\frac{1}{4} \f$) and after base calling (\f$
P(\omega)=\frac{1}{4} \f$).
When combining observations \f$ \omega_1, \ldots, \omega_n \f$
conditional on the same base, they are all independent, hence the
probabilities conditioned on the actual base can be multiplied. To
get the final quality when calling an A:
\f[ P(A|\bigcap_n \omega_n) = \frac{ P(\bigcap_n \omega_n | A) P(A) }{ P(\bigcap_n \omega_n) }
= \frac{ P(A) \prod_n P(\omega_n | A) }{ P(\bigcap_n \omega_n) } \f]
The unconditional probabilities in the denominator are not
independent (for they collectively depend on the true base), we have
to replace them by total probabilites:
\f[ = \frac{ P(A) \prod_n P(\omega_n | A) }{ \sum_N P(\bigcap_n \omega_n | N) P(N) } \f]
Again, assuming a uniform base composition, the priors are all equal
and cancel, and now the conditional probabilities are again
independent.
\f[ = \frac{ \prod_n P(\omega_n | A) }{ \sum_N \prod_n P(\omega_n | N) } \f]
Tracking this incrementally is easy, we need to store the four
products. Computation needs to be done in the log domain to avoid
loss of precision. Likewise, computation of a quality must not involve \f$ P(A|\omega) \f$,
since that is too close to one to be representable, so we calculate the quality as
\f[ Q := -10 \log_{10} P( \bar{A} | \omega ) = -10 \log_{10} ( P(C | \omega ) + P(G | \omega ) + P(T | \omega ) ) \f]
What remains is how to get an estimate of \f$
P(\omega | N) \f$. We easily get \f$ P(\omega | A) \f$ (see above),
which will normally be very close to one, and the sum of the other
three. To estimate the summands, we set
\f[ P(\omega|N) = \frac{P(N|\omega) * P(\omega)}{P(N)} =
P(N|\omega) = P(N|\bar{A}) * P(\bar{A}|\omega) \f]
and estimate \f$ P(N|\bar{A}) \f$ from misclassfication statistics
of the base caller.
*/
class RmdupStream : public Stream
{
private:
output::Result cur_ ;
std::vector< Logdom > quals_[4] ;
double slope_ ;
double intercept_ ;
vector<string> gs_ ;
int maxq_ ;
bool have_foot_ ;
// XXX double err_prob_[4][4] ; // get this from config or
// something?
bool is_duplicate( const Result& , const Result& ) const ;
void add_read( const Result& ) ;
void call_consensus() ;
bool good_score( const Hit* ) const ;
public:
//! \brief sets parameters
//! \param s Slope of score function, bad alignments are disregarded.
//! \param i Intercept of score function.
//! \param q (Assumed) quality of the polymerase.
RmdupStream( double s, double i, int q ) :
slope_(s), intercept_(i), maxq_( std::min(q,127) ), have_foot_(false) {}
virtual void put_header( const Header& h )
{
if( !h.has_is_sorted_by_all_genomes() && !h.is_sorted_by_coordinate_size() )
throw "RmdupStream: need sorted stream to remove duplicates" ;
gs_.assign( h.is_sorted_by_coordinate().begin(), h.is_sorted_by_coordinate().end() ) ;
Stream::put_header( h ) ;
}
virtual void put_result( const Result& ) ;
virtual void put_footer( const Footer& ) ;
virtual Result fetch_result() ;
} ;
//! \brief a stream that concatenates its input streams
//! The headers and footers are merged sensibly (plain merge with removal of
//! redundant information), then the results are simply concatenated.
class ConcatStream : public StreamBundle
{
public:
virtual Header fetch_header() ;
virtual Result fetch_result() ;
} ;
class FastqReader : public Stream
{
private:
std::auto_ptr< google::protobuf::io::ZeroCopyInputStream > is_ ;
bool sol_scores_ ;
char origin_ ;
void read_next_message() {
if( read_fastq( is_.get(), *res_.mutable_read(), sol_scores_, origin_ ) ) {
state_ = have_output ;
sanitize( res_ ) ;
} else {
state_ = end_of_stream ;
is_.reset( 0 ) ;
}
}
public:
FastqReader( std::auto_ptr< google::protobuf::io::ZeroCopyInputStream > is, bool solexa_scores, char origin ) :
is_( is ), sol_scores_(solexa_scores), origin_(origin) { read_next_message() ; }
virtual Result fetch_result() { Result r ; std::swap( r, res_ ) ; read_next_message() ; return r ; }
virtual string type_name() const { return "FastqReader" ; }
} ;
class SamReader : public Stream
{
private:
std::auto_ptr< google::protobuf::io::ZeroCopyInputStream > is_ ;
string name_, genome_ ;
Chan progress_ ;
int nmsg_ ;
void read_next_message() {
if( read_sam( is_.get(), genome_, res_ ) ) {
state_ = have_output ;
sanitize( res_ ) ;
if( (++nmsg_ & 0xffff) == 0 ) {
stringstream ss ;
ss << name_ << ": " << nmsg_ << " records" ;
progress_( Console::info, ss.str() ) ;
}
} else {
state_ = end_of_stream ;
is_.reset( 0 ) ;
progress_.close() ;
foot_.set_exit_code( 0 ) ;
}
}
public:
SamReader( std::auto_ptr< google::protobuf::io::ZeroCopyInputStream > is, const string& n, const string& g ) :
is_( is ), name_( n ), genome_( g ), nmsg_(0) { read_next_message() ; }
virtual Header fetch_header() { hdr_.add_is_sorted_by_coordinate( "" ) ; return Stream::fetch_header() ; }
virtual Result fetch_result() { Result r ; std::swap( r, res_ ) ; read_next_message() ; return r ; }
virtual string type_name() const { return "SamReader" ; }
} ;
class SffReader : public Stream
{
private:
std::auto_ptr< google::protobuf::io::ZeroCopyInputStream > is_ ;
string name_ ;
unsigned remaining_ ;
unsigned number_of_flows_ ;
const void* buf_ ;
int buf_size_ ;
uint8_t read_uint8() ;
uint16_t read_uint16() ;
uint32_t read_uint32() ;
void read_string( unsigned, string* ) ;
void skip( int ) ;
public:
SffReader( auto_ptr< google::protobuf::io::ZeroCopyInputStream > is, const string& name ) :
is_( is ), name_( name ), buf_(0), buf_size_(0) {}
virtual Header fetch_header() ;
virtual Result fetch_result() ;
virtual string type_name() const { return "SffReader(" + name_ + ")" ; }
} ;
class BamReader : public Stream
{
private:
std::auto_ptr< google::protobuf::io::ZeroCopyInputStream > is_ ;
string name_ ;
string genome_ ;
vector< string > refseqs_ ;
const void* buf_ ;
int buf_size_ ;
uint8_t read_uint8() ;
uint16_t read_uint16() ;
uint32_t read_uint32() ;
void read_string( unsigned, string* ) ;
public:
BamReader( auto_ptr< google::protobuf::io::ZeroCopyInputStream > is, const string& name, const string& genome ) ;
virtual Result fetch_result() ;
virtual string type_name() const { return "BamReader(" + name_ + ")" ; }
} ;
} // namespace streams
class PipeInputStream : public google::protobuf::io::FileInputStream
{
private:
pid_t cpid_ ;
public:
PipeInputStream( int fd, pid_t cpid ) : google::protobuf::io::FileInputStream( fd ), cpid_( cpid ) {}
virtual ~PipeInputStream() { Close() ; throw_errno_if_minus1( waitpid( cpid_, 0, 0 ), "waiting for pipe process" ) ; }
} ;
std::pair< PipeInputStream*, std::string > make_PipeInputStream( const std::string& ) ;
class PipeOutputStream : public google::protobuf::io::FileOutputStream
{
private:
pid_t cpid_ ;
public:
PipeOutputStream( int fd, pid_t cpid ) : google::protobuf::io::FileOutputStream( fd ), cpid_( cpid ) {}
virtual ~PipeOutputStream() { Close() ; throw_errno_if_minus1( waitpid( cpid_, 0, 0 ), "waiting for pipe process" ) ; }
} ;
std::pair< PipeOutputStream*, std::string > make_PipeOutputStream( const std::string& ) ;
//! \brief adapts a ZeroCopyOutputStream into a streambuf
class zero_copy_output_buf : public std::streambuf {
private:
std::auto_ptr< google::protobuf::io::ZeroCopyOutputStream > os_ ;
public:
zero_copy_output_buf( google::protobuf::io::ZeroCopyOutputStream* os ) : os_(os) {}
virtual ~zero_copy_output_buf() ;
virtual int sync() ;
virtual int_type overflow( int_type ) ;
} ;
class zero_copy_ostream : public std::ostream {
private:
zero_copy_output_buf b_ ;
public:
zero_copy_ostream( google::protobuf::io::ZeroCopyOutputStream* os )
: std::ostream( &b_ ), b_( os ) {}
} ;
#endif
|