/usr/include/anfo/align.h is in libanfo0-dev 0.98-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 | // Copyright 2009 Udo Stenzel
// This file is part of ANFO
//
// ANFO is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Anfo is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Anfo. If not, see <http://www.gnu.org/licenses/>.
#ifndef INCLUDED_ALIGN_H
#define INCLUDED_ALIGN_H
#include "align_fwd.h"
#include "index.h"
#include "stream.h"
#include <cmath>
#include <deque>
#include <ostream>
#include <sstream>
template< int N, typename T > class Array
{
private:
T arr_[N] ;
public:
Array() {}
Array( T t ) { for( int i = 0 ; i != N ; ++i ) arr_[i] = t ; }
T& operator[] ( int i ) { return arr_[i] ; }
const T& operator[] ( int i ) const { return arr_[i] ; }
} ;
//! \brief an alignment that has been seeded
//! When initializing an alignment, the seed region is traversed and
//! then extended greedily. We store the final seed region (a pointer
//! into the reference, an offset into the query, the seeded length) and
//! the score over the seed region.
struct SeededAlignment {
DnaP reference_ ;
Logdom score_ ;
int qoffs_ ;
int size_ ;
SeededAlignment() : qoffs_(0), size_(0) {}
SeededAlignment( const adna_parblock& pb, DnaP reference, const QSequence& query, int qoffs, int size )
: reference_( reference ), score_( Logdom::one() ), qoffs_( qoffs ), size_( size )
{
// greedy initialization: run over the seed, accumulating a
// score. then extend greedily as long as there are
// matches, store the resulting score.
for( int i = 0 ; i <= size_ ; ++i )
score_ *= pb.subst_penalty( 0, reference_[i], query[qoffs_+i] ) ;
for( ; reference_[size_] && query[qoffs_+size_].ambicode &&
reference_[size_] == query[qoffs_+size_].ambicode ; ++size_ )
score_ *= pb.subst_penalty( 0, reference_[size_], query[qoffs_+size_] ) ;
for( ; reference_[-1] && query[qoffs_-1].ambicode &&
reference_[-1] == query[qoffs_-1].ambicode ;
++size_, --reference_, --qoffs_ )
score_ *= pb.subst_penalty( 0, reference_[-1], query[qoffs_-1] ) ;
}
} ;
struct FullCell {
Logdom score ;
uint8_t from_state ;
uint8_t from_x_offset ;
uint8_t from_y_offset ;
void clear() { score = Logdom::null() ; }
void assign( Logdom z, int os, int xo, int yo )
{
if( score < z )
{
score = z ;
from_state = os ;
from_x_offset = xo ;
from_y_offset = yo ;
}
}
} ;
struct SimpleCell {
Logdom score ;
void clear() { score = Logdom::null() ; }
void assign( Logdom z, int, int, int ) { if( score < z ) score = z ; }
} ;
//! \brief extension of an alignment through DP
//! This starts with two pointers and a cost limit, and it returns the
//! penalty that was incurred. The limit can be exceeded while
//! producing an alignment (it would be foolish to throw it away), if
//! nothing is found, std::numeric_limits<uint32_t>::max() is returned.
//!
//! We align until we hit a zero in either query or reference. Starting
//! state is 0, late the state is inly held implicitly.
//!
//! If only there were real lexical closures... *sigh*
template< typename Cell > class ExtendAlignment {
private:
int width_ ;
std::vector< Array< adna_parblock::num_states, Cell > > cells_ ;
std::vector< int > mins_, maxs_ ;
Logdom limit_, result_ ;
int max_s_, max_x_, max_y_, max_tail_ ;
void extend(const adna_parblock &pb_,Logdom score,int s,int x,int y,DnaP ref,const QSequence::Base *qry );
public:
ExtendAlignment() {}
ExtendAlignment( const adna_parblock& pb, DnaP reference, const QSequence::Base *query, Logdom limit ) ;
Logdom get_result() const { return result_ ; }
int max_x() const { return max_x_ ; }
void backtrace( std::vector<unsigned>& ) const ;
void swap( ExtendAlignment<Cell>& rhs ) throw()
{
std::swap( width_, rhs.width_ ) ;
std::swap( cells_, rhs.cells_ ) ;
std::swap( mins_, rhs.mins_ ) ;
std::swap( maxs_, rhs.maxs_ ) ;
std::swap( limit_, rhs.limit_ ) ;
std::swap( result_, rhs.result_ ) ;
std::swap( max_s_, rhs.max_s_ ) ;
std::swap( max_x_, rhs.max_x_ ) ;
std::swap( max_y_, rhs.max_y_ ) ;
std::swap( max_tail_, rhs.max_tail_ ) ;
}
} ;
template< typename Cell > struct ExtendBothEnds {
ExtendAlignment<Cell> forwards_, backwards_ ;
Logdom score_ ;
ExtendBothEnds() {}
ExtendBothEnds( const adna_parblock& pb, const QSequence& query, const SeededAlignment& seed, Logdom limit ) ;
//! \brief backtraces an alignment and return a CIGAR line
//!
//! Backtracing works by simply walking the chain of ols states and
//! x/y offsets stored in the DP matrix. See output.proto for the
//! encoding of the produced CIGAR lines.
//!
//! \param minpos will be filled by position of first aligned
//! reference base
//! \param maxpos will be filled by position of first non-aligned
//! reference base, so that maxpos-minpos gives the
//! aligned length
//! \return binary CIGAR string
//! \internal
//! \todo Write mismatches with different code (to allow various
//! calculations without the genome being available).
std::vector<unsigned> backtrace( const SeededAlignment& seed, DnaP &minpos, DnaP &maxpos ) const ;
void swap( ExtendBothEnds<Cell>& rhs ) throw()
{
forwards_.swap( rhs.forwards_ ) ;
backwards_.swap( rhs.backwards_ ) ;
score_.swap( rhs.score_ ) ;
}
} ;
namespace {
inline int query_length( const QSequence::Base *query )
{
int r = 0 ;
while( query->ambicode ) ++query, ++r ;
return r ;
}
} ;
// Alignment proper: the intial greedy matching must have been done,
// here we extend one side of this into a full alignment, as long as it
// doesn't score more than a prescribed limit.
template< typename Cell >
ExtendAlignment<Cell>::ExtendAlignment( const adna_parblock& pb, DnaP reference, const QSequence::Base *query, Logdom limit ) :
width_( 2*query_length( query )+2 ), cells_( width_*width_ ), mins_( width_ ), maxs_( width_ ),
limit_( limit ), result_( Logdom::null() )
{
if( limit > Logdom::one() ) return ;
mins_[0] = 0 ;
maxs_[0] = 1 ;
cells_[0][0].assign( Logdom::one(), 0, 0, 0 ) ;
for( int s = 1 ; s != adna_parblock::num_states ; ++s ) cells_[ 0 ][ s ].clear() ;
for( int y = 0 ; y != width_-1 && mins_[y] != maxs_[y] ; ++y )
{
assert( y <= width_ ) ;
assert( mins_[y] >= 0 ) ;
assert( maxs_[y] <= width_ ) ;
assert( mins_[y] <= maxs_[y] ) ;
mins_[y+1] = maxs_[y+1] = 0 ;
// expand the current row for each state in turn... of course,
// each state is a special case.
for( int x = mins_[y] ; x != width_-1 && x != maxs_[y] ; ++x )
{
for( int s = 0 ; s != adna_parblock::num_states ; ++s )
{
assert( width_*y + x < width_ * width_ ) ;
assert( width_*y + x < (int)cells_.size() ) ;
Logdom score = cells_[ width_*y + x ][ s ].score ;
if( score > limit_ ) extend( pb, score, s, x, y, reference+x, query+y ) ;
}
}
}
}
#define PUT(ns,xo,yo,z) \
if( (z) >= limit_ ) { \
if( mins_[ y+(yo) ] == maxs_[ y+(yo) ] ) \
mins_[ y+(yo) ] = maxs_[ y+(yo) ] = x+(xo) ; \
\
for( ; maxs_[ y+(yo) ] <= x+(xo) ; ++maxs_[ y+(yo) ] ) \
for( int ss = 0 ; ss != adna_parblock::num_states ; ++ss ) \
cells_[ width_*(y+(yo)) + maxs_[ y+(yo) ] ][ ss ].clear() ; \
\
assert( y+(yo) < width_ ) ; \
assert( x+(xo) < width_ ) ; \
assert( width_*(y+(yo)) + x+(xo) < width_ * width_ ) ; \
\
cells_[ width_*(y+(yo)) + x+(xo) ][ ns ].assign( z, s, xo, yo ) ; \
} else {}
// what to do?
// If in matching state, we know there's no immediate match, so we can...
// - mismatch
// - detect deamination and change to SS state (while matching)
// - open ref gap
// - open query gap
//
// If a gap is open, we can...
// - extend it
// - close it
//
// If we hit a gap symbol, we must...
// - start over at second half in initial state
template< typename Cell >
void ExtendAlignment<Cell>::extend( const adna_parblock &pb_, Logdom score, int s, int x, int y, DnaP ref, const QSequence::Base *qry )
{
// Note the penalties: The appropriate substitution penalty is
// applied whenever we (mis-)match two codes, the gap open penalties
// are applied when opening/extending a gap, the
// overhang_enter_penalty is applied when changing to SS mode and
// the overhang_ext_penalty is applied whenever moving along the
// query while single stranded, even when a gap is open! This gives
// correct scores for a geometric distribution of overhang lengths.
if( !*ref || !qry->ambicode )
{
// We hit a gap in either the reference or the query. Whatever
// is left of the query (if any) must be penalized. To do this,
// we virtually extend the reference with Ns and align to those.
// This is a white lie in that it will overestimate the real
// penalty, but that's okay, because such an alignment isn't all
// that interesting in reality anyway. Afterwards we're
// finished and adjust result and limit accordingly.
int yy = 0 ;
for( ; qry[ yy ].ambicode ; ++yy )
{
score *= pb_.subst_penalty( s, 15, qry[ yy ] ) ;
if( s & adna_parblock::mask_ss ) score *= pb_.overhang_ext_penalty ;
}
if( score > result_ ) {
result_ = limit_ = score ;
max_s_ = s ;
max_x_ = x ;
max_y_ = y ;
max_tail_ = yy ;
}
}
else if( (s & adna_parblock::mask_gaps) == 0 )
{
// no gaps open --> mismatch, open either gap, enter SS
PUT( s, 1, 1, score * pb_.subst_penalty( s, *ref, *qry )
* ( s & adna_parblock::mask_ss ? pb_.overhang_ext_penalty : Logdom::one() ) ) ;
if( *ref != qry->ambicode ) { // only on a mismatch try anything fancy
PUT( s | adna_parblock::mask_gap_qry, 1, 0, score * pb_.gap_open_penalty ) ;
PUT( s | adna_parblock::mask_gap_ref, 0, 1, score * pb_.gap_open_penalty ) ;
if( pb_.overhang_enter_penalty.is_finite() && (s & adna_parblock::mask_ss) == 0 ) {
// To enter single stranded we require that the penalty for
// doing so is immediately recovered by the better match.
// This is easily the case for the observed deamination
// rates in aDNA.
Logdom p0 = pb_.subst_penalty( s, *ref, *qry ) ;
Logdom p4 = pb_.subst_penalty( s | adna_parblock::mask_ss, *ref, *qry )
* pb_.overhang_enter_penalty * pb_.overhang_ext_penalty ;
if( p4 > p0 ) { PUT( s | adna_parblock::mask_ss, 1, 1, score * p4 ) ; }
}
}
}
else if( (s & adna_parblock::mask_gaps) == adna_parblock::mask_gap_ref )
{
PUT( s, 0, 1, score * pb_.gap_ext_penalty *
( s & adna_parblock::mask_ss ? pb_.overhang_ext_penalty : Logdom::one() ) ) ;
PUT( s & ~adna_parblock::mask_gap_ref, 1, 1, score * pb_.subst_penalty( s, *ref, *qry ) *
( s & adna_parblock::mask_ss ? pb_.overhang_ext_penalty : Logdom::one() ) ) ;
}
else
{
PUT( s, 1, 0, score * pb_.gap_ext_penalty ) ;
PUT( s & ~adna_parblock::mask_gap_qry, 1, 1, score * pb_.subst_penalty( s, *ref, *qry ) *
( s & adna_parblock::mask_ss ? pb_.overhang_ext_penalty : Logdom::one() ) ) ;
}
}
#undef PUT
// Extension of both sides. We first run a forward extension at half
// the limit. If this succeeds, we do the backwards extension limited
// to whatever is left. If forward extension fails, we do backwards
// extension to half the limit, then add forward using up what's left.
//
// Only one alignment is produced, but we make sure it is the cheapest
// one. The score may exceed the limit, if we happen to finish right
// when stepping over the limit. If really nothing is found, we return
// Logdom::null().
template< typename Cell>
ExtendBothEnds<Cell>::ExtendBothEnds(
const adna_parblock& pb,
const QSequence& query,
const SeededAlignment& seed,
Logdom limit ) :
forwards_(
pb,
seed.reference_ + seed.size_,
query.start() + seed.qoffs_ + seed.size_,
( limit / seed.score_ ).sqrt() ),
backwards_(
pb,
seed.reference_.reverse() + 1,
query.start() - seed.qoffs_ + 1,
limit / seed.score_ / forwards_.get_result() ),
score_( seed.score_ * forwards_.get_result() * backwards_.get_result() )
{
if( score_.is_finite() ) return ;
ExtendAlignment<Cell> backwards2(
pb,
seed.reference_.reverse() + 1,
query.start() - seed.qoffs_ + 1,
(limit / seed.score_).sqrt() ) ;
ExtendAlignment<Cell> forwards2(
pb,
seed.reference_ + seed.size_,
query.start() + seed.qoffs_ + seed.size_,
limit / backwards2.get_result() / seed.score_ ) ;
Logdom score2 = forwards2.get_result() * backwards2.get_result() * seed.score_ ;
if( score2.is_finite() )
{
score_ = score2 ;
forwards_.swap( forwards2 ) ;
backwards_.swap( backwards2 ) ;
}
}
template<> inline void ExtendAlignment<FullCell>::backtrace( std::vector<unsigned>& out ) const
{
if( max_tail_ ) streams::push_i( out, max_tail_ ) ;
for( size_t x = max_x_, y = max_y_, s = max_s_ ; x || y ; )
{
const FullCell& c = cells_[ width_*y + x ][ s ] ;
if( !c.from_x_offset && !c.from_y_offset ) throw "stuck in backtracing" ;
else if( !c.from_x_offset ) streams::push_i( out, c.from_y_offset ) ;
else if( !c.from_y_offset ) streams::push_d( out, c.from_x_offset ) ;
else if( c.from_y_offset == c.from_x_offset ) streams::push_m( out, c.from_x_offset ) ;
else throw "inconsistency in backtracing" ;
x -= c.from_x_offset ;
y -= c.from_y_offset ;
s = c.from_state ;
}
}
template<> inline
std::vector<unsigned> ExtendBothEnds<FullCell>::backtrace( const SeededAlignment& seed, DnaP &minpos, DnaP &maxpos ) const
{
minpos = seed.reference_ - backwards_.max_x() ;
maxpos = seed.reference_ + seed.size_ + forwards_.max_x() ;
std::vector<unsigned> trace ;
backwards_.backtrace( trace ) ;
trace.push_back( 0 ) ;
streams::push_m( trace, seed.size_ ) ;
trace.push_back( 0 ) ;
std::vector<unsigned> rtrace ;
forwards_.backtrace( rtrace ) ;
std::copy( rtrace.rbegin(), rtrace.rend(), back_inserter( trace ) ) ;
return trace ;
}
#endif
|