/usr/include/fasttransforms.h is in libalglib-dev 3.8.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 | /*************************************************************************
Copyright (c) Sergey Bochkanov (ALGLIB project).
>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef _fasttransforms_pkg_h
#define _fasttransforms_pkg_h
#include "ap.h"
#include "alglibinternal.h"
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (DATATYPES)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
}
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS C++ INTERFACE
//
/////////////////////////////////////////////////////////////////////////
namespace alglib
{
/*************************************************************************
1-dimensional complex FFT.
Array size N may be arbitrary number (composite or prime). Composite N's
are handled with cache-oblivious variation of a Cooley-Tukey algorithm.
Small prime-factors are transformed using hard coded codelets (similar to
FFTW codelets, but without low-level optimization), large prime-factors
are handled with Bluestein's algorithm.
Fastests transforms are for smooth N's (prime factors are 2, 3, 5 only),
most fast for powers of 2. When N have prime factors larger than these,
but orders of magnitude smaller than N, computations will be about 4 times
slower than for nearby highly composite N's. When N itself is prime, speed
will be 6 times lower.
Algorithm has O(N*logN) complexity for any N (composite or prime).
INPUT PARAMETERS
A - array[0..N-1] - complex function to be transformed
N - problem size
OUTPUT PARAMETERS
A - DFT of a input array, array[0..N-1]
A_out[j] = SUM(A_in[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
-- ALGLIB --
Copyright 29.05.2009 by Bochkanov Sergey
*************************************************************************/
void fftc1d(complex_1d_array &a, const ae_int_t n);
void fftc1d(complex_1d_array &a);
/*************************************************************************
1-dimensional complex inverse FFT.
Array size N may be arbitrary number (composite or prime). Algorithm has
O(N*logN) complexity for any N (composite or prime).
See FFTC1D() description for more information about algorithm performance.
INPUT PARAMETERS
A - array[0..N-1] - complex array to be transformed
N - problem size
OUTPUT PARAMETERS
A - inverse DFT of a input array, array[0..N-1]
A_out[j] = SUM(A_in[k]/N*exp(+2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
-- ALGLIB --
Copyright 29.05.2009 by Bochkanov Sergey
*************************************************************************/
void fftc1dinv(complex_1d_array &a, const ae_int_t n);
void fftc1dinv(complex_1d_array &a);
/*************************************************************************
1-dimensional real FFT.
Algorithm has O(N*logN) complexity for any N (composite or prime).
INPUT PARAMETERS
A - array[0..N-1] - real function to be transformed
N - problem size
OUTPUT PARAMETERS
F - DFT of a input array, array[0..N-1]
F[j] = SUM(A[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
NOTE:
F[] satisfies symmetry property F[k] = conj(F[N-k]), so just one half
of array is usually needed. But for convinience subroutine returns full
complex array (with frequencies above N/2), so its result may be used by
other FFT-related subroutines.
-- ALGLIB --
Copyright 01.06.2009 by Bochkanov Sergey
*************************************************************************/
void fftr1d(const real_1d_array &a, const ae_int_t n, complex_1d_array &f);
void fftr1d(const real_1d_array &a, complex_1d_array &f);
/*************************************************************************
1-dimensional real inverse FFT.
Algorithm has O(N*logN) complexity for any N (composite or prime).
INPUT PARAMETERS
F - array[0..floor(N/2)] - frequencies from forward real FFT
N - problem size
OUTPUT PARAMETERS
A - inverse DFT of a input array, array[0..N-1]
NOTE:
F[] should satisfy symmetry property F[k] = conj(F[N-k]), so just one
half of frequencies array is needed - elements from 0 to floor(N/2). F[0]
is ALWAYS real. If N is even F[floor(N/2)] is real too. If N is odd, then
F[floor(N/2)] has no special properties.
Relying on properties noted above, FFTR1DInv subroutine uses only elements
from 0th to floor(N/2)-th. It ignores imaginary part of F[0], and in case
N is even it ignores imaginary part of F[floor(N/2)] too.
When you call this function using full arguments list - "FFTR1DInv(F,N,A)"
- you can pass either either frequencies array with N elements or reduced
array with roughly N/2 elements - subroutine will successfully transform
both.
If you call this function using reduced arguments list - "FFTR1DInv(F,A)"
- you must pass FULL array with N elements (although higher N/2 are still
not used) because array size is used to automatically determine FFT length
-- ALGLIB --
Copyright 01.06.2009 by Bochkanov Sergey
*************************************************************************/
void fftr1dinv(const complex_1d_array &f, const ae_int_t n, real_1d_array &a);
void fftr1dinv(const complex_1d_array &f, real_1d_array &a);
/*************************************************************************
1-dimensional complex convolution.
For given A/B returns conv(A,B) (non-circular). Subroutine can automatically
choose between three implementations: straightforward O(M*N) formula for
very small N (or M), overlap-add algorithm for cases where max(M,N) is
significantly larger than min(M,N), but O(M*N) algorithm is too slow, and
general FFT-based formula for cases where two previois algorithms are too
slow.
Algorithm has max(M,N)*log(max(M,N)) complexity for any M/N.
INPUT PARAMETERS
A - array[0..M-1] - complex function to be transformed
M - problem size
B - array[0..N-1] - complex function to be transformed
N - problem size
OUTPUT PARAMETERS
R - convolution: A*B. array[0..N+M-2].
NOTE:
It is assumed that A is zero at T<0, B is zero too. If one or both
functions have non-zero values at negative T's, you can still use this
subroutine - just shift its result correspondingly.
-- ALGLIB --
Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convc1d(const complex_1d_array &a, const ae_int_t m, const complex_1d_array &b, const ae_int_t n, complex_1d_array &r);
/*************************************************************************
1-dimensional complex non-circular deconvolution (inverse of ConvC1D()).
Algorithm has M*log(M)) complexity for any M (composite or prime).
INPUT PARAMETERS
A - array[0..M-1] - convolved signal, A = conv(R, B)
M - convolved signal length
B - array[0..N-1] - response
N - response length, N<=M
OUTPUT PARAMETERS
R - deconvolved signal. array[0..M-N].
NOTE:
deconvolution is unstable process and may result in division by zero
(if your response function is degenerate, i.e. has zero Fourier coefficient).
NOTE:
It is assumed that A is zero at T<0, B is zero too. If one or both
functions have non-zero values at negative T's, you can still use this
subroutine - just shift its result correspondingly.
-- ALGLIB --
Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convc1dinv(const complex_1d_array &a, const ae_int_t m, const complex_1d_array &b, const ae_int_t n, complex_1d_array &r);
/*************************************************************************
1-dimensional circular complex convolution.
For given S/R returns conv(S,R) (circular). Algorithm has linearithmic
complexity for any M/N.
IMPORTANT: normal convolution is commutative, i.e. it is symmetric -
conv(A,B)=conv(B,A). Cyclic convolution IS NOT. One function - S - is a
signal, periodic function, and another - R - is a response, non-periodic
function with limited length.
INPUT PARAMETERS
S - array[0..M-1] - complex periodic signal
M - problem size
B - array[0..N-1] - complex non-periodic response
N - problem size
OUTPUT PARAMETERS
R - convolution: A*B. array[0..M-1].
NOTE:
It is assumed that B is zero at T<0. If it has non-zero values at
negative T's, you can still use this subroutine - just shift its result
correspondingly.
-- ALGLIB --
Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convc1dcircular(const complex_1d_array &s, const ae_int_t m, const complex_1d_array &r, const ae_int_t n, complex_1d_array &c);
/*************************************************************************
1-dimensional circular complex deconvolution (inverse of ConvC1DCircular()).
Algorithm has M*log(M)) complexity for any M (composite or prime).
INPUT PARAMETERS
A - array[0..M-1] - convolved periodic signal, A = conv(R, B)
M - convolved signal length
B - array[0..N-1] - non-periodic response
N - response length
OUTPUT PARAMETERS
R - deconvolved signal. array[0..M-1].
NOTE:
deconvolution is unstable process and may result in division by zero
(if your response function is degenerate, i.e. has zero Fourier coefficient).
NOTE:
It is assumed that B is zero at T<0. If it has non-zero values at
negative T's, you can still use this subroutine - just shift its result
correspondingly.
-- ALGLIB --
Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convc1dcircularinv(const complex_1d_array &a, const ae_int_t m, const complex_1d_array &b, const ae_int_t n, complex_1d_array &r);
/*************************************************************************
1-dimensional real convolution.
Analogous to ConvC1D(), see ConvC1D() comments for more details.
INPUT PARAMETERS
A - array[0..M-1] - real function to be transformed
M - problem size
B - array[0..N-1] - real function to be transformed
N - problem size
OUTPUT PARAMETERS
R - convolution: A*B. array[0..N+M-2].
NOTE:
It is assumed that A is zero at T<0, B is zero too. If one or both
functions have non-zero values at negative T's, you can still use this
subroutine - just shift its result correspondingly.
-- ALGLIB --
Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convr1d(const real_1d_array &a, const ae_int_t m, const real_1d_array &b, const ae_int_t n, real_1d_array &r);
/*************************************************************************
1-dimensional real deconvolution (inverse of ConvC1D()).
Algorithm has M*log(M)) complexity for any M (composite or prime).
INPUT PARAMETERS
A - array[0..M-1] - convolved signal, A = conv(R, B)
M - convolved signal length
B - array[0..N-1] - response
N - response length, N<=M
OUTPUT PARAMETERS
R - deconvolved signal. array[0..M-N].
NOTE:
deconvolution is unstable process and may result in division by zero
(if your response function is degenerate, i.e. has zero Fourier coefficient).
NOTE:
It is assumed that A is zero at T<0, B is zero too. If one or both
functions have non-zero values at negative T's, you can still use this
subroutine - just shift its result correspondingly.
-- ALGLIB --
Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convr1dinv(const real_1d_array &a, const ae_int_t m, const real_1d_array &b, const ae_int_t n, real_1d_array &r);
/*************************************************************************
1-dimensional circular real convolution.
Analogous to ConvC1DCircular(), see ConvC1DCircular() comments for more details.
INPUT PARAMETERS
S - array[0..M-1] - real signal
M - problem size
B - array[0..N-1] - real response
N - problem size
OUTPUT PARAMETERS
R - convolution: A*B. array[0..M-1].
NOTE:
It is assumed that B is zero at T<0. If it has non-zero values at
negative T's, you can still use this subroutine - just shift its result
correspondingly.
-- ALGLIB --
Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convr1dcircular(const real_1d_array &s, const ae_int_t m, const real_1d_array &r, const ae_int_t n, real_1d_array &c);
/*************************************************************************
1-dimensional complex deconvolution (inverse of ConvC1D()).
Algorithm has M*log(M)) complexity for any M (composite or prime).
INPUT PARAMETERS
A - array[0..M-1] - convolved signal, A = conv(R, B)
M - convolved signal length
B - array[0..N-1] - response
N - response length
OUTPUT PARAMETERS
R - deconvolved signal. array[0..M-N].
NOTE:
deconvolution is unstable process and may result in division by zero
(if your response function is degenerate, i.e. has zero Fourier coefficient).
NOTE:
It is assumed that B is zero at T<0. If it has non-zero values at
negative T's, you can still use this subroutine - just shift its result
correspondingly.
-- ALGLIB --
Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convr1dcircularinv(const real_1d_array &a, const ae_int_t m, const real_1d_array &b, const ae_int_t n, real_1d_array &r);
/*************************************************************************
1-dimensional complex cross-correlation.
For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).
Correlation is calculated using reduction to convolution. Algorithm with
max(N,N)*log(max(N,N)) complexity is used (see ConvC1D() for more info
about performance).
IMPORTANT:
for historical reasons subroutine accepts its parameters in reversed
order: CorrC1D(Signal, Pattern) = Pattern x Signal (using traditional
definition of cross-correlation, denoting cross-correlation as "x").
INPUT PARAMETERS
Signal - array[0..N-1] - complex function to be transformed,
signal containing pattern
N - problem size
Pattern - array[0..M-1] - complex function to be transformed,
pattern to search withing signal
M - problem size
OUTPUT PARAMETERS
R - cross-correlation, array[0..N+M-2]:
* positive lags are stored in R[0..N-1],
R[i] = sum(conj(pattern[j])*signal[i+j]
* negative lags are stored in R[N..N+M-2],
R[N+M-1-i] = sum(conj(pattern[j])*signal[-i+j]
NOTE:
It is assumed that pattern domain is [0..M-1]. If Pattern is non-zero
on [-K..M-1], you can still use this subroutine, just shift result by K.
-- ALGLIB --
Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void corrc1d(const complex_1d_array &signal, const ae_int_t n, const complex_1d_array &pattern, const ae_int_t m, complex_1d_array &r);
/*************************************************************************
1-dimensional circular complex cross-correlation.
For given Pattern/Signal returns corr(Pattern,Signal) (circular).
Algorithm has linearithmic complexity for any M/N.
IMPORTANT:
for historical reasons subroutine accepts its parameters in reversed
order: CorrC1DCircular(Signal, Pattern) = Pattern x Signal (using
traditional definition of cross-correlation, denoting cross-correlation
as "x").
INPUT PARAMETERS
Signal - array[0..N-1] - complex function to be transformed,
periodic signal containing pattern
N - problem size
Pattern - array[0..M-1] - complex function to be transformed,
non-periodic pattern to search withing signal
M - problem size
OUTPUT PARAMETERS
R - convolution: A*B. array[0..M-1].
-- ALGLIB --
Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void corrc1dcircular(const complex_1d_array &signal, const ae_int_t m, const complex_1d_array &pattern, const ae_int_t n, complex_1d_array &c);
/*************************************************************************
1-dimensional real cross-correlation.
For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).
Correlation is calculated using reduction to convolution. Algorithm with
max(N,N)*log(max(N,N)) complexity is used (see ConvC1D() for more info
about performance).
IMPORTANT:
for historical reasons subroutine accepts its parameters in reversed
order: CorrR1D(Signal, Pattern) = Pattern x Signal (using traditional
definition of cross-correlation, denoting cross-correlation as "x").
INPUT PARAMETERS
Signal - array[0..N-1] - real function to be transformed,
signal containing pattern
N - problem size
Pattern - array[0..M-1] - real function to be transformed,
pattern to search withing signal
M - problem size
OUTPUT PARAMETERS
R - cross-correlation, array[0..N+M-2]:
* positive lags are stored in R[0..N-1],
R[i] = sum(pattern[j]*signal[i+j]
* negative lags are stored in R[N..N+M-2],
R[N+M-1-i] = sum(pattern[j]*signal[-i+j]
NOTE:
It is assumed that pattern domain is [0..M-1]. If Pattern is non-zero
on [-K..M-1], you can still use this subroutine, just shift result by K.
-- ALGLIB --
Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void corrr1d(const real_1d_array &signal, const ae_int_t n, const real_1d_array &pattern, const ae_int_t m, real_1d_array &r);
/*************************************************************************
1-dimensional circular real cross-correlation.
For given Pattern/Signal returns corr(Pattern,Signal) (circular).
Algorithm has linearithmic complexity for any M/N.
IMPORTANT:
for historical reasons subroutine accepts its parameters in reversed
order: CorrR1DCircular(Signal, Pattern) = Pattern x Signal (using
traditional definition of cross-correlation, denoting cross-correlation
as "x").
INPUT PARAMETERS
Signal - array[0..N-1] - real function to be transformed,
periodic signal containing pattern
N - problem size
Pattern - array[0..M-1] - real function to be transformed,
non-periodic pattern to search withing signal
M - problem size
OUTPUT PARAMETERS
R - convolution: A*B. array[0..M-1].
-- ALGLIB --
Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void corrr1dcircular(const real_1d_array &signal, const ae_int_t m, const real_1d_array &pattern, const ae_int_t n, real_1d_array &c);
/*************************************************************************
1-dimensional Fast Hartley Transform.
Algorithm has O(N*logN) complexity for any N (composite or prime).
INPUT PARAMETERS
A - array[0..N-1] - real function to be transformed
N - problem size
OUTPUT PARAMETERS
A - FHT of a input array, array[0..N-1],
A_out[k] = sum(A_in[j]*(cos(2*pi*j*k/N)+sin(2*pi*j*k/N)), j=0..N-1)
-- ALGLIB --
Copyright 04.06.2009 by Bochkanov Sergey
*************************************************************************/
void fhtr1d(real_1d_array &a, const ae_int_t n);
/*************************************************************************
1-dimensional inverse FHT.
Algorithm has O(N*logN) complexity for any N (composite or prime).
INPUT PARAMETERS
A - array[0..N-1] - complex array to be transformed
N - problem size
OUTPUT PARAMETERS
A - inverse FHT of a input array, array[0..N-1]
-- ALGLIB --
Copyright 29.05.2009 by Bochkanov Sergey
*************************************************************************/
void fhtr1dinv(real_1d_array &a, const ae_int_t n);
}
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (FUNCTIONS)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
void fftc1d(/* Complex */ ae_vector* a, ae_int_t n, ae_state *_state);
void fftc1dinv(/* Complex */ ae_vector* a, ae_int_t n, ae_state *_state);
void fftr1d(/* Real */ ae_vector* a,
ae_int_t n,
/* Complex */ ae_vector* f,
ae_state *_state);
void fftr1dinv(/* Complex */ ae_vector* f,
ae_int_t n,
/* Real */ ae_vector* a,
ae_state *_state);
void fftr1dinternaleven(/* Real */ ae_vector* a,
ae_int_t n,
/* Real */ ae_vector* buf,
fasttransformplan* plan,
ae_state *_state);
void fftr1dinvinternaleven(/* Real */ ae_vector* a,
ae_int_t n,
/* Real */ ae_vector* buf,
fasttransformplan* plan,
ae_state *_state);
void convc1d(/* Complex */ ae_vector* a,
ae_int_t m,
/* Complex */ ae_vector* b,
ae_int_t n,
/* Complex */ ae_vector* r,
ae_state *_state);
void convc1dinv(/* Complex */ ae_vector* a,
ae_int_t m,
/* Complex */ ae_vector* b,
ae_int_t n,
/* Complex */ ae_vector* r,
ae_state *_state);
void convc1dcircular(/* Complex */ ae_vector* s,
ae_int_t m,
/* Complex */ ae_vector* r,
ae_int_t n,
/* Complex */ ae_vector* c,
ae_state *_state);
void convc1dcircularinv(/* Complex */ ae_vector* a,
ae_int_t m,
/* Complex */ ae_vector* b,
ae_int_t n,
/* Complex */ ae_vector* r,
ae_state *_state);
void convr1d(/* Real */ ae_vector* a,
ae_int_t m,
/* Real */ ae_vector* b,
ae_int_t n,
/* Real */ ae_vector* r,
ae_state *_state);
void convr1dinv(/* Real */ ae_vector* a,
ae_int_t m,
/* Real */ ae_vector* b,
ae_int_t n,
/* Real */ ae_vector* r,
ae_state *_state);
void convr1dcircular(/* Real */ ae_vector* s,
ae_int_t m,
/* Real */ ae_vector* r,
ae_int_t n,
/* Real */ ae_vector* c,
ae_state *_state);
void convr1dcircularinv(/* Real */ ae_vector* a,
ae_int_t m,
/* Real */ ae_vector* b,
ae_int_t n,
/* Real */ ae_vector* r,
ae_state *_state);
void convc1dx(/* Complex */ ae_vector* a,
ae_int_t m,
/* Complex */ ae_vector* b,
ae_int_t n,
ae_bool circular,
ae_int_t alg,
ae_int_t q,
/* Complex */ ae_vector* r,
ae_state *_state);
void convr1dx(/* Real */ ae_vector* a,
ae_int_t m,
/* Real */ ae_vector* b,
ae_int_t n,
ae_bool circular,
ae_int_t alg,
ae_int_t q,
/* Real */ ae_vector* r,
ae_state *_state);
void corrc1d(/* Complex */ ae_vector* signal,
ae_int_t n,
/* Complex */ ae_vector* pattern,
ae_int_t m,
/* Complex */ ae_vector* r,
ae_state *_state);
void corrc1dcircular(/* Complex */ ae_vector* signal,
ae_int_t m,
/* Complex */ ae_vector* pattern,
ae_int_t n,
/* Complex */ ae_vector* c,
ae_state *_state);
void corrr1d(/* Real */ ae_vector* signal,
ae_int_t n,
/* Real */ ae_vector* pattern,
ae_int_t m,
/* Real */ ae_vector* r,
ae_state *_state);
void corrr1dcircular(/* Real */ ae_vector* signal,
ae_int_t m,
/* Real */ ae_vector* pattern,
ae_int_t n,
/* Real */ ae_vector* c,
ae_state *_state);
void fhtr1d(/* Real */ ae_vector* a, ae_int_t n, ae_state *_state);
void fhtr1dinv(/* Real */ ae_vector* a, ae_int_t n, ae_state *_state);
}
#endif
|