/usr/include/alberta/alberta_inlines.h is in libalberta2-dev 2.0.1-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 | #ifndef _ALBERT_INLINES_H_
#define _ALBERT_INLINES_H_
/*--------------------------------------------------------------------------*/
/* ALBERT: an Adaptive multi Level finite element toolbox using */
/* Bisectioning refinement and Error control by Residual */
/* Techniques */
/* */
/* file: albert_inlines.h */
/* */
/* */
/* description: Blas-like inline functions for REAL_Ds and REAL_DDs */
/* */
/*--------------------------------------------------------------------------*/
/* */
/* authors: Alfred Schmidt */
/* Zentrum fuer Technomathematik */
/* Fachbereich 3 Mathematik/Informatik */
/* Universitaet Bremen */
/* Bibliothekstr. 2 */
/* D-28359 Bremen, Germany */
/* */
/* Kunibert G. Siebert */
/* Institut fuer Mathematik */
/* Universitaet Augsburg */
/* Universitaetsstr. 14 */
/* D-86159 Augsburg, Germany */
/* */
/* Claus-Justus Heine */
/* Abteilung fuer Angewandte Mathematik */
/* Albert-Ludwigs-Universitaet Freiburg */
/* Hermann-Herder-Str. 10 */
/* D-79104 Freiburg im Breisgau, Germany */
/* */
/* http://www.mathematik.uni-freiburg.de/IAM/ALBERT */
/* */
/* (c) by A. Schmidt, K.G. Siebert, C.-J. Heine (1996-2003) */
/* */
/*--------------------------------------------------------------------------*/
#include "alberta.h" /* essentially a no-op when included from alberta.h */
#ifndef DIM_OF_WORLD
# error Need to know the dimension of the World :)
#endif
/* multiple invocations of macro-arguments can be harmful, if the macro
* argument is, e.g., a function-call.
*
* NOTE: as DIM_OF_WORLD is a constant, the C-compiler should unroll all
* loops when compiling with optimizations, so there should be no need
* for hand-unrolling, except in some simple 1D cases.
*
* Also, all modern compilers do function inlining, so the
* function-call over-head is _not_ a problem.
*
* Note: the function may be nested, they return the address of the
* _modified_ operand. So AXPY(a, AX(b, x), y) is valid.
*/
/* The following functions are defined here:
*
* AX(a, x) -- x *= a (alias SCAL_DOW is also defined)
* AXEY(a, x, y) -- y = a x
* AXPBY(a, x, b, y, z) -- z = a x + by
* AXPBYP(a, x, b, y, z) -- z += a x + by
* AXPY(a, x, y) -- y += a x
* COPY(src, dst) -- dst := src
* DIST(x, y) -- sqrt(DST2(x, y))
* DST2(x, y) -- SCP(x-y, x-y)
* NRM2(x) -- SCP(x, x)
* NORM(x) -- sqrt(NRM2(x))
* MTV(m, v, b) -- b += m^t v
* MV(m, v, b) -- b += m v (m is a matrix)
* MDIV(m, v, b) -- scale v by the inverse of the diagonal -> b
* SCP(x, y) -- <x, y>
* SET(val, x) -- x[i] = val, i=1, ..., DOW
* WEDGE(x, y, n) -- n = x /\ y in 3D
* WEDGE(x, y) -- x0 * y1 - x1 * y0 in 2D
*
* The actual function named is generated by adding a _DOW() suffix.
*
* Prefix Version
* none REAL_D
* M REAL_DD
* DM diagonal matrix, diagonal stored in REAL_D vector
* SM symmetric matrix, data type REAL_DDS (albert.h)
*
* Further:
* Macros EXPAND and FORMAT (with named pre- and suffixes) for easier
* print-out of REAL_D and REAL_DD, use like this:
*
* printf("text"MFORMAT_DOW"more text\n", MEXPAND_DOW(m));
*
*/
#ifndef C_CONST_IS_BRAIN_DAMAGED
# define C_CONST_IS_BRAIN_DAMAGED 1
#endif
#if C_CONST_IS_BRAIN_DAMAGED
# define CCIBD_CONST /* */
#else
# define CCIBD_CONST const /* actually, this will never happen ... :( */
#endif
#define SCAL_DOW(a, x) AX_DOW(a, x)
static inline REAL *AX_DOW(REAL a, REAL_D x)
{
int i;
for (i = 0; i < DIM_OF_WORLD; i++) {
x[i] *= a;
}
return x;
}
#define MSCAL_DOW(a, m) MAX_DOW(a, m)
static inline REAL_D *MAX_DOW(REAL a, REAL_DD m)
{
int i;
for (i = 0; i < DIM_OF_WORLD; i++) {
AX_DOW(a, m[i]);
}
return m;
}
#define DMSCAL_DOW(a, m) DMAX_DOW(a, m)
#define DMAX_DOW(a, m) AX_DOW(a, m)
#define SMSCAL_DOW(a, m) SMAX_DOW(a, m)
static inline REAL_DDS *SMAX_DOW(REAL a, REAL_DDS *m)
{
int i;
AX_DOW(a, m->row0);
for (i = 0; i < DIM_OF_WORLD - 1; i++) {
m->row1[i] *= a;
}
for (i = 0; i < DIM_OF_WORLD - 2; i++) {
m->row2[i] *= a;
}
return m;
}
static inline REAL *AXEY_DOW(REAL a, const REAL_D x, REAL_D y)
{
int i;
for (i = 0; i < DIM_OF_WORLD; i++) {
y[i] = a * x[i];
}
return y;
}
static inline REAL_D *MAXEY_DOW(REAL a, CCIBD_CONST REAL_DD x, REAL_DD y)
{
int i;
for (i = 0; i < DIM_OF_WORLD; i++) {
AXEY_DOW(a, x[i], y[i]);
}
return y;
}
#define DMAXEY_DOW(a, x, y) AXEY_DOW(a, x, y)
static inline REAL_DDS *SMAXEY_DOW(REAL a, const REAL_DDS *x, REAL_DDS *y)
{
int i;
AXEY_DOW(a, x->row0, y->row0);
for (i = 0; i < DIM_OF_WORLD - 1; i++) {
y->row1[i] = a*x->row1[i];
}
for (i = 0; i < DIM_OF_WORLD - 2; i++) {
y->row2[i] = a*x->row2[i];
}
return y;
}
static inline REAL *AXPY_DOW(REAL a, const REAL_D x, REAL_D y)
{
int i;
for (i = 0; i < DIM_OF_WORLD; i++) {
y[i] += a * x[i];
}
return y;
}
static inline REAL_D *MAXPY_DOW(REAL a, CCIBD_CONST REAL_DD x, REAL_DD y)
{
int i;
for (i = 0; i < DIM_OF_WORLD; i++) {
AXPY_DOW(a, x[i], y[i]);
}
return y;
}
/* same as above, but add the transposed matrix to y */
static inline REAL_D *MAXTPY_DOW(REAL a, CCIBD_CONST REAL_DD x, REAL_DD y)
{
int i, j;
for (i = 0; i < DIM_OF_WORLD; i++) {
for (j = 0; j < DIM_OF_WORLD; j++) {
y[i][j] += a*x[j][i];
}
}
return y;
}
#define DMAXPY_DOW(a, x, y) AXPY_DOW(a, x, y)
#define DMAXTPY_DOW(a, x, y) AXPY_DOW(a, x, y) /* transpose of diagonal matrix :) */
static inline REAL_DDS *SMAXPY_DOW(REAL a, const REAL_DDS *x, REAL_DDS *y)
{
int i;
AXPY_DOW(a, x->row0, y->row0);
for (i = 0; i < DIM_OF_WORLD - 1; i++) {
y->row1[i] += a*x->row1[i];
}
for (i = 0; i < DIM_OF_WORLD - 2; i++) {
y->row2[i] += a*x->row2[i];
}
return y;
}
#define SMAXTPY_DOW(a, x, y) SMAXPY_DOW(a, x, y) /* transpose of symmetric matrix :) */
static inline REAL *AXPBY_DOW(REAL a, const REAL_D x, REAL b, const REAL_D y,
REAL_D z)
{
int i;
for (i = 0; i < DIM_OF_WORLD; i++) {
z[i] = b*y[i] + a * x[i];
}
return z;
}
static inline REAL_D *MAXPBY_DOW(REAL a, CCIBD_CONST REAL_DD x,
REAL b, CCIBD_CONST REAL_DD y,
REAL_DD z)
{
int i;
for (i = 0; i < DIM_OF_WORLD; i++) {
AXPBY_DOW(a, x[i], b, y[i], z[i]);
}
return z;
}
#define DMAXPBY_DOW(a, x, b, y, z) AXPBY_DOW(a, x, b, y, z)
static inline REAL_DDS *SMAXPBY_DOW(REAL a, const REAL_DDS *x,
REAL b, const REAL_DDS *y,
REAL_DDS *z)
{
int i;
AXPBY_DOW(a, x->row0, b, y->row0, z->row0);
for (i = 0; i < DIM_OF_WORLD - 1; i++) {
z->row1[i] = a*x->row1[i] + b*y->row1[i];
}
for (i = 0; i < DIM_OF_WORLD - 2; i++) {
z->row2[i] = a*x->row2[i] + b*y->row2[i];
}
return z;
}
static inline REAL *AXPBYP_DOW(REAL a, const REAL_D x, REAL b, const REAL_D y,
REAL_D z)
{
int i;
for (i = 0; i < DIM_OF_WORLD; i++) {
z[i] += b*y[i] + a * x[i];
}
return z;
}
static inline REAL_D *MAXPBYP_DOW(REAL a, CCIBD_CONST REAL_DD x,
REAL b, CCIBD_CONST REAL_DD y,
REAL_DD z)
{
int i;
for (i = 0; i < DIM_OF_WORLD; i++) {
AXPBYP_DOW(a, x[i], b, y[i], z[i]);
}
return z;
}
#define DMAXPBYP_DOW(a, x, b, y, z) AXPBYP_DOW(a, x, b, y, z)
static inline REAL_DDS *SMAXPBYP_DOW(REAL a, const REAL_DDS *x,
REAL b, const REAL_DDS *y,
REAL_DDS *z)
{
int i;
AXPBYP_DOW(a, x->row0, b, y->row0, z->row0);
for (i = 0; i < DIM_OF_WORLD - 1; i++) {
z->row1[i] += a*x->row1[i] + b*y->row1[i];
}
for (i = 0; i < DIM_OF_WORLD - 2; i++) {
z->row2[i] += a*x->row2[i] + b*y->row2[i];
}
return z;
}
static inline REAL *COPY_DOW(const REAL_D x, REAL_D y)
{
memcpy(y, x, sizeof(REAL_D));
return y;
}
static inline REAL_D *MCOPY_DOW(CCIBD_CONST REAL_DD x, REAL_DD y)
{
memcpy(y, x, sizeof(REAL_DD));
return y;
}
#define DMCOPY_DOW(src, dst) COPY_DOW(src, dst)
static inline REAL_DDS *SMCOPY_DOW(CCIBD_CONST REAL_DDS *x, REAL_DDS *y)
{
memcpy(y, x, sizeof(REAL_DDS));
return y;
}
static inline REAL DST2_DOW(const REAL_D x, const REAL_D y)
{
# if DIM_OF_WORLD == 1
return SQR(ABS(x[0] - y[0]));
# else
int i;
REAL accu;
accu = SQR(x[0] - y[0]);
for (i = 1; i < DIM_OF_WORLD; i++) {
accu += SQR(x[i] - y[i]);
}
return accu;
# endif
}
static inline REAL MDST2_DOW(CCIBD_CONST REAL_DD a, CCIBD_CONST REAL_DD b)
{
int i;
REAL res = 0.0;
for (i = 0; i < DIM_OF_WORLD; i++) {
res += DST2_DOW(a[i], b[i]);
}
return res;
}
#define DMDST2_DOW(x, y) DST2_DOW(x, y)
static inline REAL SMDST2_DOW(const REAL_DDS *a, const REAL_DDS *b)
{
int i;
REAL res = 0.0;
res = SQR(a->row0[0] - b->row0[0]);
for (i = 1; i < DIM_OF_WORLD; i++) {
res += 2.0*SQR(a->row0[i] - b->row0[i]);
}
#if DIM_OF_WORLD > 1
res += SQR(a->row1[0] - b->row1[0]);
for (i = 1; i < DIM_OF_WORLD-1; i++) {
res += 2.0*SQR(a->row1[i] - b->row1[i]);
}
#endif
#if DIM_OF_WORLD > 2
res += SQR(a->row2[0] - b->row2[0]);
for (i = 1; i < DIM_OF_WORLD-2; i++) {
res += 2.0*SQR(a->row2[i] - b->row2[i]);
}
#endif
return res;
}
static inline REAL NRM2_DOW(const REAL_D x)
{
int i;
REAL accu;
accu = SQR(x[0]);
for (i = 1; i < DIM_OF_WORLD; i++) {
accu += SQR(x[i]);
}
return accu;
}
static inline REAL MNRM2_DOW(CCIBD_CONST REAL_DD m)
{
int i;
REAL res = 0.0;
for (i = 0; i < DIM_OF_WORLD; i++) {
res += NRM2_DOW(m[i]);
}
return res;
}
#define DMNRM2_DOW(m) NRM2_DOW(x)
static inline REAL SMNRM2_DOW(const REAL_DDS *a)
{
int i;
REAL res = 0.0;
res = SQR(a->row0[0]);
for (i = 1; i < DIM_OF_WORLD; i++) {
res += 2.0*SQR(a->row0[i]);
}
#if DIM_OF_WORLD > 1
res += SQR(a->row1[0]);
for (i = 1; i < DIM_OF_WORLD-1; i++) {
res += 2.0*SQR(a->row1[i]);
}
#endif
#if DIM_OF_WORLD > 2
res += SQR(a->row2[0]);
for (i = 1; i < DIM_OF_WORLD-2; i++) {
res += 2.0*SQR(a->row2[i]);
}
#endif
return res;
}
static inline REAL SCP_DOW(const REAL_D x, const REAL_D y)
{
REAL res;
int i;
res = x[0] * y[0];
for (i = 1; i < DIM_OF_WORLD; i++) {
res += x[i]*y[i];
}
return res;
}
/* symmetric case, no need to load all values, should result in faster
* code (less registers needed)
*/
static inline REAL *SMV_DOW(const REAL_DDS *m, const REAL_D v, REAL_D b)
{
b[0] += SCP_DOW(m->row0, v);
#if DIM_OF_WORLD == 2
b[1] += m->row0[1]*v[0] + m->row1[0]*v[1];
#endif
#if DIM_OF_WORLD == 3
b[1] += m->row0[1]*v[0] + m->row1[0]*v[1] + m->row1[1]*v[2];
b[2] += m->row0[2]*v[0] + m->row1[1]*v[1] + m->row2[0]*v[2];
#endif
return b;
}
static inline REAL *MTV_DOW(CCIBD_CONST REAL_DD m, const REAL_D v, REAL_D b)
{
int i, j;
for (i = 0; i < DIM_OF_WORLD; i++) {
for (j = 0; j < DIM_OF_WORLD; j++) {
b[i] += m[j][i] * v[j];
}
}
return b;
}
#define SMTV_DOW(m, v, b) SMV_DOW(m, v, b)
#define DMTV_DOW(m, v, b) DMV_DOW(m, v, b)
static inline REAL *MDIV_DOW(CCIBD_CONST REAL_DD m, const REAL_D v, REAL_D b)
{
int i;
for (i = 0; i < DIM_OF_WORLD; i++) {
b[i] = v[i] / m[i][i];
}
return b;
}
static inline REAL *SMDIV_DOW(const REAL_DDS *m, const REAL_D v, REAL_D b)
{
b[0] = v[0] / m->row0[0];
#if DIM_OF_WORLD == 2
b[1] = v[1] / m->row1[0];
#endif
#if DIM_OF_WORLD == 3
b[1] = v[2] / m->row2[0];
#endif
return b;
}
static inline REAL *DMDIV_DOW(const REAL_D m, const REAL_D y, REAL_D r)
{
int i;
for (i = 0; i < DIM_OF_WORLD; i++) {
r[i] = y[i] / m[i];
}
return r;
}
static inline REAL *DMV_DOW(const REAL_D x, const REAL_D y, REAL_D r)
{
int i;
for (i = 0; i < DIM_OF_WORLD; i++) {
r[i] += x[i]*y[i];
}
return r;
}
static inline REAL *MV_DOW(CCIBD_CONST REAL_DD m, const REAL_D v, REAL_D b)
{
int i;
for (i = 0; i < DIM_OF_WORLD; i++) {
b[i] += SCP_DOW(m[i], v);
}
return b;
}
static inline REAL *MGEMV_DOW(REAL a, CCIBD_CONST REAL_DD m,
const REAL_D v, REAL beta,
REAL_D b)
{
int i;
for (i = 0; i < DIM_OF_WORLD; i++) {
b[i] = beta*b[i] + a * SCP_DOW(m[i], v);
}
return b;
}
static inline REAL *SMGEMV_DOW(REAL a, const REAL_DDS *m,
const REAL_D v, REAL beta,
REAL_D b)
{
b[0] = beta*b[0] + a*SCP_DOW(m->row0, v);
#if DIM_OF_WORLD == 2
b[1] = beta*b[1] + a*(m->row0[1]*v[0] + m->row1[0]*v[1]);
#endif
#if DIM_OF_WORLD == 3
b[1] = beta*b[1] + a*(m->row0[1]*v[0] + m->row1[0]*v[1] + m->row1[1]*v[2]);
b[2] = beta*b[2] + a*(m->row0[2]*v[0] + m->row1[1]*v[1] + m->row2[0]*v[2]);
#endif
return b;
}
static inline REAL *DMGEMV_DOW(REAL a, const REAL_D x, const REAL_D y,
REAL beta, REAL_D r)
{
int i;
for (i = 0; i < DIM_OF_WORLD; i++) {
r[i] = beta*r[i] + a*x[i]*y[i];
}
return r;
}
static inline REAL MSCP_DOW(CCIBD_CONST REAL_DD x, CCIBD_CONST REAL_DD y)
{
REAL res;
int i;
res = SCP_DOW(x[0], y[0]);
for (i = 1; i < DIM_OF_WORLD; i++) {
res += SCP_DOW(x[i], y[i]);
}
return res;
}
#define DMSCP_DOW(x, y) SCP_DOW(x, y)
static inline REAL SMSCP_DOW(const REAL_DDS *x, const REAL_DDS *y)
{
#if DIM_OF_WORLD > 1
int i;
#endif
REAL res;
res = SCP_DOW(x->row0, y->row1);
#if DIM_OF_WORLD > 1
res += x->row1[0]*y->row1[0];
for (i = 1; i < DIM_OF_WORLD - 1; i++) {
res += 2.0*x->row1[i]*y->row1[i];
}
#endif
#if DIM_OF_WORLD > 2
res += x->row2[0]*y->row2[0];
for (i = 1; i < DIM_OF_WORLD - 2; i++) {
res += 2.0*x->row2[i]*y->row2[i];
}
#endif
return res;
}
static inline REAL *SET_DOW(REAL val, REAL_D x)
{
int i;
for (i = 0; i < DIM_OF_WORLD; i++) {
x[i] = val;
}
return x;
}
static inline REAL_D *MSET_DOW(REAL val, REAL_DD m)
{
int i, j;
for (i = 0; i < DIM_OF_WORLD; i++) {
m[i][i] = val;
for (j = i+1; j < DIM_OF_WORLD; j++) {
m[j][i] = m[i][j] = 0.0;
}
}
return m;
}
#define DMSET_DOW(val, m) SET_DOW(val, m)
static inline REAL_DDS *SMSET_DOW(REAL val, REAL_DDS *m)
{
int i;
m->row0[0] = val;
for (i = 1; i < DIM_OF_WORLD; i++) {
m->row0[i] = 0.0;
}
#if DIM_OF_WORLD > 1
m->row1[0] = val;
for (i = 1; i < DIM_OF_WORLD - 1; i++) {
m->row1[i] = val;
}
#endif
#if DIM_OF_WORLD > 1
m->row2[0] = val;
for (i = 1; i < DIM_OF_WORLD - 2; i++) {
m->row2[i] = val;
}
#endif
return m;
}
#if DIM_OF_WORLD == 2
static inline REAL WEDGE_DOW(const REAL_D a, const REAL_D b)
{
return a[0]*b[1] - a[1]*b[0];
}
#endif
#if DIM_OF_WORLD == 3
static inline REAL *WEDGE_DOW(const REAL_D a, const REAL_D b, REAL_D r)
{
r[0] = a[1]*b[2] - a[2]*b[1];
r[1] = a[2]*b[0] - a[0]*b[2];
r[2] = a[0]*b[1] - a[1]*b[0];
return r;
}
#endif
#define MAT_SWITCH_TYPE(type, body_f, body_s, body_d) \
switch (type) { \
case dowbm_full: body_f; break; \
case dowbm_symm: body_s; break; \
case dowbm_diag: body_d; break; \
default: ERROR_EXIT("Unknown DOWBM_TYPE (%d)\n", type); \
}
/* BODY(F, CAST, PRE, SUF) is supposed to be a "multiplex" macro where
* BLAS routines are accessed via F##AXPY(..., CAST PRE var##SUF, ...)
*/
#define MAT_EMIT_BODY_SWITCH(type) \
MAT_SWITCH_TYPE(type, \
MAT_BODY(M, (REAL_D *),, full), \
MAT_BODY(SM, ,& , symm), \
MAT_BODY(DM, , , diag))
/* defines where only DOW == 1 plays a special role */
# if DIM_OF_WORLD == 1
# define DIST_DOW(x,y) ABS((x)[0]-(y)[0])
# define NORM_DOW(x) ABS((x)[0])
# define MNRM_DOW(m) ABS((m)[0][0])
# define DMNRM_DOW(m) NRM_DOW(m)
# define SMNRM_DOW(m) ABS((m)->row0[0])
# define MDIST_DOW(a,b) ABS((a)[0][0] - (b)[0][0])
# define DMDIST_DOW(a,b) DIST_DOW(a, b)
# define SDMDIST_DOW(a,b) ABS((a)->row0[0] - (b)->row0[0])
# else
# define NORM_DOW(x) sqrt(NRM2_DOW(x))
# define DIST_DOW(x,y) sqrt(DST2_DOW(x, y))
# define MNORM_DOW(m) sqrt(MNRM2_DOW(m))
# define DMNORM_DOW(m) sqrt(DMNRM2_DOW(m))
# define SMNORM_DOW(m) sqrt(DMNRM2_DOW(m))
# define MDIST_DOW(a,b) sqrt(MDST2_DOW(a, b))
# define DMDIST_DOW(a,b) sqrt(DMDST2_DOW(a, b))
# define SMDIST_DOW(a,b) sqrt(SMDST2_DOW(a, b))
# endif
/* defines different for all DOWs */
# if DIM_OF_WORLD == 1
# define REAL_DDS_ENT(a,i,j) (a).row0[0]
# define EXPAND_DOW(x) (x)[0]
# define FORMAT_DOW "%10.5le"
# define MEXPAND_DOW(m) (m)[0][0]
# define MFORMAT_DOW FORMAT_DOW
# define SMEXPAND_DOW(m) (m)->row0[0]
# define SMFORMAT_DOW FORMAT_DOW
# define DMEXPAND_DOW(m) EXPAND_DOW(m)
# define DMFORMAT_DOW FORMAT_DOW
# elif DIM_OF_WORLD == 2
# define REAL_DDS_ENT(a,i,j) ((i) == 0 ? (a).row0[j] : (a).row1[j-1])
# define EXPAND_DOW(x) (x)[0], (x)[1]
# define FORMAT_DOW "[%10.5le, %10.5le]"
# define MEXPAND_DOW(m) (m)[0][0], (m)[0][1], (m)[1][0], (m)[1][1]
# define MFORMAT_DOW "["FORMAT_DOW", "FORMAT_DOW"]"
# define DMEXPAND_DOW(m) EXPAND_DOW(m)
# define DMFORMAT_DOW FORMAT_DOW
# define SMEXPAND_DOW(m) (m)->row0[0], (m)->row0[1], (m)->row0[1], (m)->row1[0]
# define SMFORMAT_DOW MFORMAT_DOW
# elif DIM_OF_WORLD == 3
# define REAL_DDS_ENT(a,i,j) \
((i) == 0 ? (a).row0[j] : ((i) == 1 ? (a).row1[j-1] : (a).row2[0]))
# define EXPAND_DOW(x) (x)[0], (x)[1], (x)[2]
# define FORMAT_DOW "[%10.5le, %10.5le, %10.5le]"
# define MEXPAND_DOW(m) \
(m)[0][0], (m)[0][1], (m)[0][2], \
(m)[1][0], (m)[1][1], (m)[1][2], \
(m)[2][0], (m)[2][1], (m)[2][2]
# define MFORMAT_DOW "["FORMAT_DOW", "FORMAT_DOW", "FORMAT_DOW"]"
# define DMEXPAND_DOW(m) EXPAND_DOW(m)
# define DMFORMAT_DOW FORMAT_DOW
# define SMEXPAND_DOW(m) \
(m)->row0[0], (m)->row0[1], (m)->row0[2], \
(m)->row0[1], (m)->row1[0], (m)->row1[1], \
(m)->row0[2], (m)->row1[1], (m)->row2[0]
# define SMFORMAT_DOW MFORMAT_DOW
# endif
#endif /* _ALBERT_INLINES_H_ */
|