This file is indexed.

/usr/include/alberta/alberta_inlines.h is in libalberta2-dev 2.0.1-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
#ifndef _ALBERT_INLINES_H_
#define _ALBERT_INLINES_H_

/*--------------------------------------------------------------------------*/
/* ALBERT:   an Adaptive multi Level finite element toolbox using           */
/*           Bisectioning refinement and Error control by Residual          */
/*           Techniques                                                     */
/*                                                                          */
/* file: albert_inlines.h                                                   */
/*                                                                          */
/*                                                                          */
/* description: Blas-like inline functions for REAL_Ds and REAL_DDs         */
/*                                                                          */
/*--------------------------------------------------------------------------*/
/*                                                                          */
/*  authors:   Alfred Schmidt                                               */
/*             Zentrum fuer Technomathematik                                */
/*             Fachbereich 3 Mathematik/Informatik                          */
/*             Universitaet Bremen                                          */
/*             Bibliothekstr. 2                                             */
/*             D-28359 Bremen, Germany                                      */
/*                                                                          */
/*             Kunibert G. Siebert                                          */
/*             Institut fuer Mathematik                                     */
/*             Universitaet Augsburg                                        */
/*             Universitaetsstr. 14                                         */
/*             D-86159 Augsburg, Germany                                    */
/*                                                                          */
/*             Claus-Justus Heine                                           */
/*             Abteilung fuer Angewandte Mathematik                         */
/*             Albert-Ludwigs-Universitaet Freiburg                         */
/*             Hermann-Herder-Str. 10                                       */
/*             D-79104 Freiburg im Breisgau, Germany                        */
/*                                                                          */
/*  http://www.mathematik.uni-freiburg.de/IAM/ALBERT                        */
/*                                                                          */
/*  (c) by A. Schmidt, K.G. Siebert, C.-J. Heine (1996-2003)                */
/*                                                                          */
/*--------------------------------------------------------------------------*/

#include "alberta.h" /* essentially a no-op when included from alberta.h */

#ifndef DIM_OF_WORLD
# error Need to know the dimension of the World :)
#endif

/* multiple invocations of macro-arguments can be harmful, if the macro
 * argument is, e.g., a function-call.
 *
 * NOTE: as DIM_OF_WORLD is a constant, the C-compiler should unroll all 
 * loops when compiling with optimizations, so there should be no need
 * for hand-unrolling, except in some simple 1D cases.
 *
 * Also, all modern compilers do function inlining, so the
 * function-call  over-head is _not_ a problem.
 *
 * Note: the function may be nested, they return the address of the
 * _modified_ operand. So AXPY(a, AX(b, x), y) is valid.
 */

/* The following functions are defined here:
 *
 *   AX(a, x)              --  x *= a (alias SCAL_DOW is also defined)
 *   AXEY(a, x, y)         --  y  = a x
 *   AXPBY(a, x, b, y, z)  --  z  = a x + by
 *   AXPBYP(a, x, b, y, z) --  z += a x + by
 *   AXPY(a, x, y)         --  y += a x
 *   COPY(src, dst)        --  dst := src
 *   DIST(x, y)            --  sqrt(DST2(x, y))
 *   DST2(x, y)            --  SCP(x-y, x-y)
 *   NRM2(x)               --  SCP(x, x)
 *   NORM(x)               --  sqrt(NRM2(x))
 *   MTV(m, v, b)          --  b += m^t v
 *   MV(m, v, b)           --  b += m v   (m is a matrix)
 *   MDIV(m, v, b)         --  scale v by the inverse of the diagonal -> b
 *   SCP(x, y)             --  <x, y>
 *   SET(val, x)           --  x[i] = val, i=1, ..., DOW
 *   WEDGE(x, y, n)        --  n  = x /\ y             in 3D
 *   WEDGE(x, y)           --  x0 * y1 - x1 * y0       in 2D
 *
 * The actual function named is generated by adding a _DOW() suffix.
 *
 * Prefix        Version
 * none          REAL_D
 * M             REAL_DD
 * DM            diagonal matrix, diagonal stored in REAL_D vector
 * SM            symmetric matrix, data type REAL_DDS (albert.h)
 *
 * Further:
 * Macros EXPAND and FORMAT (with named pre- and suffixes) for easier 
 * print-out of REAL_D and REAL_DD, use like this:
 *
 * printf("text"MFORMAT_DOW"more text\n", MEXPAND_DOW(m));
 *
 */

#ifndef C_CONST_IS_BRAIN_DAMAGED
# define C_CONST_IS_BRAIN_DAMAGED 1
#endif
#if C_CONST_IS_BRAIN_DAMAGED
# define CCIBD_CONST /* */
#else
# define CCIBD_CONST const /* actually, this will never happen ... :( */
#endif

#define SCAL_DOW(a, x) AX_DOW(a, x)
static inline REAL *AX_DOW(REAL a, REAL_D x)
{
  int i;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    x[i] *= a;
  }
  return x;
}

#define MSCAL_DOW(a, m) MAX_DOW(a, m)
static inline REAL_D *MAX_DOW(REAL a, REAL_DD m)
{
  int i;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    AX_DOW(a, m[i]);
  }
  return m;
}

#define DMSCAL_DOW(a, m) DMAX_DOW(a, m)
#define DMAX_DOW(a, m) AX_DOW(a, m)

#define SMSCAL_DOW(a, m) SMAX_DOW(a, m)
static inline REAL_DDS *SMAX_DOW(REAL a, REAL_DDS *m)
{
  int i;

  AX_DOW(a, m->row0);
  for (i = 0; i < DIM_OF_WORLD - 1; i++) {
    m->row1[i] *= a;
  }
  for (i = 0; i < DIM_OF_WORLD - 2; i++) {
    m->row2[i] *= a;
  }
  return m;
}

static inline REAL *AXEY_DOW(REAL a, const REAL_D x, REAL_D y)
{
  int i;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    y[i] = a * x[i];
  }
  return y;
}

static inline REAL_D *MAXEY_DOW(REAL a, CCIBD_CONST REAL_DD x, REAL_DD y)
{
  int i;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    AXEY_DOW(a, x[i], y[i]);
  }
  return y;
}

#define DMAXEY_DOW(a, x, y) AXEY_DOW(a, x, y)

static inline REAL_DDS *SMAXEY_DOW(REAL a, const REAL_DDS *x, REAL_DDS *y)
{
  int i;

  AXEY_DOW(a, x->row0, y->row0);
  for (i = 0; i < DIM_OF_WORLD - 1; i++) {
    y->row1[i] = a*x->row1[i];
  }
  for (i = 0; i < DIM_OF_WORLD - 2; i++) {
    y->row2[i] = a*x->row2[i];
  }
  return y;
}

static inline REAL *AXPY_DOW(REAL a, const REAL_D x, REAL_D y)
{
  int i;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    y[i] += a * x[i];
  }
  return y;
}

static inline REAL_D *MAXPY_DOW(REAL a, CCIBD_CONST REAL_DD x, REAL_DD y)
{
  int i;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    AXPY_DOW(a, x[i], y[i]);
  }
  return y;
}

/* same as above, but add the transposed matrix to y */
static inline REAL_D *MAXTPY_DOW(REAL a, CCIBD_CONST REAL_DD x, REAL_DD y)
{
  int i, j;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    for (j = 0; j < DIM_OF_WORLD; j++) {
      y[i][j] += a*x[j][i];
    }
  }
  return y;
}

#define DMAXPY_DOW(a, x, y) AXPY_DOW(a, x, y)
#define DMAXTPY_DOW(a, x, y) AXPY_DOW(a, x, y) /* transpose of diagonal matrix :) */

static inline REAL_DDS *SMAXPY_DOW(REAL a, const REAL_DDS *x, REAL_DDS *y)
{
  int i;

  AXPY_DOW(a, x->row0, y->row0);
  for (i = 0; i < DIM_OF_WORLD - 1; i++) {
    y->row1[i] += a*x->row1[i];
  }
  for (i = 0; i < DIM_OF_WORLD - 2; i++) {
    y->row2[i] += a*x->row2[i];
  }
  return y;
}

#define SMAXTPY_DOW(a, x, y) SMAXPY_DOW(a, x, y) /* transpose of symmetric matrix :) */

static inline REAL *AXPBY_DOW(REAL a, const REAL_D x, REAL b, const REAL_D y,
			      REAL_D z)
{
  int i;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    z[i] = b*y[i] + a * x[i];
  }
  return z;
}

static inline REAL_D *MAXPBY_DOW(REAL a, CCIBD_CONST REAL_DD x,
				 REAL b, CCIBD_CONST REAL_DD y,
				 REAL_DD z)
{
  int i;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    AXPBY_DOW(a, x[i], b, y[i], z[i]);
  }
  return z;
}

#define DMAXPBY_DOW(a, x, b, y, z) AXPBY_DOW(a, x, b, y, z)

static inline REAL_DDS *SMAXPBY_DOW(REAL a, const REAL_DDS *x,
				    REAL b, const REAL_DDS *y,
				    REAL_DDS *z)
{
  int i;

  AXPBY_DOW(a, x->row0, b, y->row0, z->row0);
  for (i = 0; i < DIM_OF_WORLD - 1; i++) {
    z->row1[i] = a*x->row1[i] + b*y->row1[i];
  }
  for (i = 0; i < DIM_OF_WORLD - 2; i++) {
    z->row2[i] = a*x->row2[i] + b*y->row2[i];
  }
  return z;
}

static inline REAL *AXPBYP_DOW(REAL a, const REAL_D x, REAL b, const REAL_D y,
			       REAL_D z)
{
  int i;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    z[i] += b*y[i] + a * x[i];
  }
  return z;
}

static inline REAL_D *MAXPBYP_DOW(REAL a, CCIBD_CONST REAL_DD x,
				  REAL b, CCIBD_CONST REAL_DD y,
				  REAL_DD z)
{
  int i;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    AXPBYP_DOW(a, x[i], b, y[i], z[i]);
  }
  return z;
}

#define DMAXPBYP_DOW(a, x, b, y, z) AXPBYP_DOW(a, x, b, y, z)

static inline REAL_DDS *SMAXPBYP_DOW(REAL a, const REAL_DDS *x,
				     REAL b, const REAL_DDS *y,
				     REAL_DDS *z)
{
  int i;

  AXPBYP_DOW(a, x->row0, b, y->row0, z->row0);
  for (i = 0; i < DIM_OF_WORLD - 1; i++) {
    z->row1[i] += a*x->row1[i] + b*y->row1[i];
  }
  for (i = 0; i < DIM_OF_WORLD - 2; i++) {
    z->row2[i] += a*x->row2[i] + b*y->row2[i];
  }
  return z;
}

static inline REAL *COPY_DOW(const REAL_D x, REAL_D y)
{
  memcpy(y, x, sizeof(REAL_D));
  return y;
}

static inline REAL_D *MCOPY_DOW(CCIBD_CONST REAL_DD x, REAL_DD y)
{
  memcpy(y, x, sizeof(REAL_DD));
  return y;
}

#define DMCOPY_DOW(src, dst) COPY_DOW(src, dst)

static inline REAL_DDS *SMCOPY_DOW(CCIBD_CONST REAL_DDS *x, REAL_DDS *y)
{
  memcpy(y, x, sizeof(REAL_DDS));
  return y;
}


static inline REAL DST2_DOW(const REAL_D x, const REAL_D y)
{
# if DIM_OF_WORLD == 1
  return SQR(ABS(x[0] - y[0]));
# else
  int i;
  REAL accu;

  accu = SQR(x[0] - y[0]);
  for (i = 1; i < DIM_OF_WORLD; i++) {
    accu += SQR(x[i] - y[i]);
  }
  return accu;
# endif
}

static inline REAL MDST2_DOW(CCIBD_CONST REAL_DD a, CCIBD_CONST REAL_DD b)
{
  int  i;
  REAL res = 0.0;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    res += DST2_DOW(a[i], b[i]);
  }
  return res;
}

#define DMDST2_DOW(x, y) DST2_DOW(x, y)

static inline REAL SMDST2_DOW(const REAL_DDS *a, const REAL_DDS *b)
{
  int  i;
  REAL res = 0.0;

  res = SQR(a->row0[0] - b->row0[0]);
  for (i = 1; i < DIM_OF_WORLD; i++) {
    res += 2.0*SQR(a->row0[i] - b->row0[i]);
  }
#if DIM_OF_WORLD > 1
  res += SQR(a->row1[0] - b->row1[0]);
  for (i = 1; i < DIM_OF_WORLD-1; i++) {
    res += 2.0*SQR(a->row1[i] - b->row1[i]);
  }
#endif
#if DIM_OF_WORLD > 2
  res += SQR(a->row2[0] - b->row2[0]);
  for (i = 1; i < DIM_OF_WORLD-2; i++) {
    res += 2.0*SQR(a->row2[i] - b->row2[i]);
  }
#endif
  return res;
}

static inline REAL NRM2_DOW(const REAL_D x)
{
  int i;
  REAL accu;

  accu = SQR(x[0]);
  for (i = 1; i < DIM_OF_WORLD; i++) {
    accu += SQR(x[i]);
  }
  return accu;
}

static inline REAL MNRM2_DOW(CCIBD_CONST REAL_DD m)
{
  int  i;
  REAL res = 0.0;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    res += NRM2_DOW(m[i]);
  }
  return res;
}

#define DMNRM2_DOW(m) NRM2_DOW(x)

static inline REAL SMNRM2_DOW(const REAL_DDS *a)
{
  int  i;
  REAL res = 0.0;

  res = SQR(a->row0[0]);
  for (i = 1; i < DIM_OF_WORLD; i++) {
    res += 2.0*SQR(a->row0[i]);
  }
#if DIM_OF_WORLD > 1
  res += SQR(a->row1[0]);
  for (i = 1; i < DIM_OF_WORLD-1; i++) {
    res += 2.0*SQR(a->row1[i]);
  }
#endif
#if DIM_OF_WORLD > 2
  res += SQR(a->row2[0]);
  for (i = 1; i < DIM_OF_WORLD-2; i++) {
    res += 2.0*SQR(a->row2[i]);
  }
#endif
  return res;
}

static inline REAL SCP_DOW(const REAL_D x, const REAL_D y)
{
  REAL res;
  int  i;

  res = x[0] * y[0];
  for (i = 1; i < DIM_OF_WORLD; i++) {
    res += x[i]*y[i];
    
  }
  return res;
}

/* symmetric case, no need to load all values, should result in faster
 * code (less registers needed)
 */
static inline REAL *SMV_DOW(const REAL_DDS *m, const REAL_D v, REAL_D b)
{
  b[0] += SCP_DOW(m->row0, v);
#if DIM_OF_WORLD == 2
  b[1] +=  m->row0[1]*v[0] + m->row1[0]*v[1];
#endif
#if DIM_OF_WORLD == 3
  b[1] +=  m->row0[1]*v[0] + m->row1[0]*v[1] + m->row1[1]*v[2];
  b[2] +=  m->row0[2]*v[0] + m->row1[1]*v[1] + m->row2[0]*v[2];
#endif
  return b;
}

static inline REAL *MTV_DOW(CCIBD_CONST REAL_DD m, const REAL_D v, REAL_D b)
{
  int i, j;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    for (j = 0; j < DIM_OF_WORLD; j++) {
      b[i] += m[j][i] * v[j];
    }
  }
  return b;
}

#define SMTV_DOW(m, v, b) SMV_DOW(m, v, b)
#define DMTV_DOW(m, v, b) DMV_DOW(m, v, b)

static inline REAL *MDIV_DOW(CCIBD_CONST REAL_DD m, const REAL_D v, REAL_D b)
{
  int i;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    b[i] = v[i] / m[i][i];
  }
  return b;
}

static inline REAL *SMDIV_DOW(const REAL_DDS *m, const REAL_D v, REAL_D b)
{
  b[0] = v[0] / m->row0[0];
#if DIM_OF_WORLD == 2
  b[1] = v[1] / m->row1[0];
#endif
#if DIM_OF_WORLD == 3
  b[1] = v[2] / m->row2[0];
#endif
  return b;
}

static inline REAL *DMDIV_DOW(const REAL_D m, const REAL_D y, REAL_D r)
{
  int i;
  for (i = 0; i < DIM_OF_WORLD; i++) {
    r[i] = y[i] / m[i];
  }
  return r;
}

static inline REAL *DMV_DOW(const REAL_D x, const REAL_D y, REAL_D r)
{
  int i;
  for (i = 0; i < DIM_OF_WORLD; i++) {
    r[i] += x[i]*y[i];
  }
  return r;
}

static inline REAL *MV_DOW(CCIBD_CONST REAL_DD m, const REAL_D v, REAL_D b)
{
  int i;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    b[i] += SCP_DOW(m[i], v);
  }
  return b;
}

static inline REAL *MGEMV_DOW(REAL a, CCIBD_CONST REAL_DD m,
			      const REAL_D v, REAL beta,
			      REAL_D b)
{
  int i;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    b[i] = beta*b[i] + a * SCP_DOW(m[i], v);
  }
  return b;
}

static inline REAL *SMGEMV_DOW(REAL a, const REAL_DDS *m,
			       const REAL_D v, REAL beta,
			       REAL_D b)
{
  b[0] = beta*b[0] + a*SCP_DOW(m->row0, v);
#if DIM_OF_WORLD == 2
  b[1] = beta*b[1] + a*(m->row0[1]*v[0] + m->row1[0]*v[1]);
#endif
#if DIM_OF_WORLD == 3
  b[1] = beta*b[1] + a*(m->row0[1]*v[0] + m->row1[0]*v[1] + m->row1[1]*v[2]);
  b[2] = beta*b[2] + a*(m->row0[2]*v[0] + m->row1[1]*v[1] + m->row2[0]*v[2]);
#endif
  return b;
}

static inline REAL *DMGEMV_DOW(REAL a, const REAL_D x, const REAL_D y,
			       REAL beta, REAL_D r)
{
  int i;
  for (i = 0; i < DIM_OF_WORLD; i++) {
    r[i] = beta*r[i] + a*x[i]*y[i];
  }
  return r;
}

static inline REAL MSCP_DOW(CCIBD_CONST REAL_DD x, CCIBD_CONST REAL_DD y)
{
  REAL res;
  int  i;

  res = SCP_DOW(x[0], y[0]);
  for (i = 1; i < DIM_OF_WORLD; i++) {
    res += SCP_DOW(x[i], y[i]);    
  }
  return res;
}

#define DMSCP_DOW(x, y) SCP_DOW(x, y)

static inline REAL SMSCP_DOW(const REAL_DDS *x, const REAL_DDS *y)
{
#if DIM_OF_WORLD > 1
  int i;
#endif
  REAL res;

  res = SCP_DOW(x->row0, y->row1);
#if DIM_OF_WORLD > 1
  res += x->row1[0]*y->row1[0];
  for (i = 1; i < DIM_OF_WORLD - 1; i++) {
    res += 2.0*x->row1[i]*y->row1[i];
  }
#endif
#if DIM_OF_WORLD > 2
  res += x->row2[0]*y->row2[0];
  for (i = 1; i < DIM_OF_WORLD - 2; i++) {
    res += 2.0*x->row2[i]*y->row2[i];
  }
#endif
  return res;
}

static inline REAL *SET_DOW(REAL val, REAL_D x)
{
  int i;
  for (i = 0; i < DIM_OF_WORLD; i++) {
    x[i] = val;
  }
  return x;
}

static inline REAL_D *MSET_DOW(REAL val, REAL_DD m)
{
  int i, j;

  for (i = 0; i < DIM_OF_WORLD; i++) {
    m[i][i] = val;
    for (j = i+1; j < DIM_OF_WORLD; j++) {
      m[j][i] = m[i][j] = 0.0;
    }
  }
  return m;
}

#define DMSET_DOW(val, m) SET_DOW(val, m)

static inline REAL_DDS *SMSET_DOW(REAL val, REAL_DDS *m)
{
  int i;

  m->row0[0] = val;
  for (i = 1; i < DIM_OF_WORLD; i++) {
    m->row0[i] = 0.0;
  }
#if DIM_OF_WORLD > 1
  m->row1[0] = val;
  for (i = 1; i < DIM_OF_WORLD - 1; i++) {
    m->row1[i] = val;
  }
#endif
#if DIM_OF_WORLD > 1
  m->row2[0] = val;
  for (i = 1; i < DIM_OF_WORLD - 2; i++) {
    m->row2[i] = val;
  }
#endif

  return m;
}

#if DIM_OF_WORLD == 2
static inline REAL WEDGE_DOW(const REAL_D a, const REAL_D b)
{
  return a[0]*b[1] - a[1]*b[0];
}
#endif

#if DIM_OF_WORLD == 3
static inline REAL *WEDGE_DOW(const REAL_D a, const REAL_D b, REAL_D r)
{
  r[0] = a[1]*b[2] - a[2]*b[1];
  r[1] = a[2]*b[0] - a[0]*b[2];
  r[2] = a[0]*b[1] - a[1]*b[0];
  return r;
}
#endif

#define MAT_SWITCH_TYPE(type, body_f, body_s, body_d)		\
switch (type) {							\
 case dowbm_full: body_f; break;				\
 case dowbm_symm: body_s; break;				\
 case dowbm_diag: body_d; break;				\
 default: ERROR_EXIT("Unknown DOWBM_TYPE (%d)\n", type);	\
}

/* BODY(F, CAST, PRE, SUF) is supposed to be a "multiplex" macro where
 * BLAS routines are accessed via F##AXPY(..., CAST PRE var##SUF, ...)
 */
#define MAT_EMIT_BODY_SWITCH(type)			\
	MAT_SWITCH_TYPE(type,				\
			MAT_BODY(M, (REAL_D *),, full),	\
			MAT_BODY(SM, ,& , symm),	\
			MAT_BODY(DM, , , diag))

/* defines where only DOW == 1 plays a special role */
# if DIM_OF_WORLD == 1
#  define DIST_DOW(x,y)    ABS((x)[0]-(y)[0])
#  define NORM_DOW(x)      ABS((x)[0])
#  define MNRM_DOW(m)      ABS((m)[0][0])
#  define DMNRM_DOW(m)     NRM_DOW(m)
#  define SMNRM_DOW(m)     ABS((m)->row0[0])
#  define MDIST_DOW(a,b)   ABS((a)[0][0] - (b)[0][0])
#  define DMDIST_DOW(a,b)  DIST_DOW(a, b)
#  define SDMDIST_DOW(a,b) ABS((a)->row0[0] - (b)->row0[0])
# else
#  define NORM_DOW(x)     sqrt(NRM2_DOW(x))
#  define DIST_DOW(x,y)   sqrt(DST2_DOW(x, y))
#  define MNORM_DOW(m)    sqrt(MNRM2_DOW(m))
#  define DMNORM_DOW(m)   sqrt(DMNRM2_DOW(m))
#  define SMNORM_DOW(m)   sqrt(DMNRM2_DOW(m))
#  define MDIST_DOW(a,b)  sqrt(MDST2_DOW(a, b))
#  define DMDIST_DOW(a,b) sqrt(DMDST2_DOW(a, b))
#  define SMDIST_DOW(a,b) sqrt(SMDST2_DOW(a, b))
# endif

/* defines different for all DOWs */
# if   DIM_OF_WORLD == 1
#  define REAL_DDS_ENT(a,i,j) (a).row0[0]
#  define EXPAND_DOW(x)  (x)[0]
#  define FORMAT_DOW     "%10.5le"
#  define MEXPAND_DOW(m) (m)[0][0]
#  define MFORMAT_DOW    FORMAT_DOW
#  define SMEXPAND_DOW(m) (m)->row0[0]
#  define SMFORMAT_DOW    FORMAT_DOW
#  define DMEXPAND_DOW(m) EXPAND_DOW(m)
#  define DMFORMAT_DOW    FORMAT_DOW
# elif DIM_OF_WORLD == 2
#  define REAL_DDS_ENT(a,i,j) ((i) == 0 ? (a).row0[j] : (a).row1[j-1])
#  define EXPAND_DOW(x)  (x)[0], (x)[1]
#  define FORMAT_DOW     "[%10.5le, %10.5le]"
#  define MEXPAND_DOW(m) (m)[0][0], (m)[0][1], (m)[1][0], (m)[1][1]
#  define MFORMAT_DOW    "["FORMAT_DOW", "FORMAT_DOW"]"
#  define DMEXPAND_DOW(m) EXPAND_DOW(m)
#  define DMFORMAT_DOW    FORMAT_DOW
#  define SMEXPAND_DOW(m) (m)->row0[0], (m)->row0[1], (m)->row0[1], (m)->row1[0]
#  define SMFORMAT_DOW    MFORMAT_DOW
# elif DIM_OF_WORLD == 3
#  define REAL_DDS_ENT(a,i,j) \
  ((i) == 0 ? (a).row0[j] : ((i) == 1 ? (a).row1[j-1] : (a).row2[0]))
#  define EXPAND_DOW(x)  (x)[0], (x)[1], (x)[2]
#  define FORMAT_DOW     "[%10.5le, %10.5le, %10.5le]"
#  define MEXPAND_DOW(m) \
  (m)[0][0], (m)[0][1], (m)[0][2], \
  (m)[1][0], (m)[1][1], (m)[1][2], \
  (m)[2][0], (m)[2][1], (m)[2][2]
#  define MFORMAT_DOW    "["FORMAT_DOW", "FORMAT_DOW", "FORMAT_DOW"]"
#  define DMEXPAND_DOW(m) EXPAND_DOW(m)
#  define DMFORMAT_DOW    FORMAT_DOW
#  define SMEXPAND_DOW(m)			\
  (m)->row0[0], (m)->row0[1], (m)->row0[2],	\
  (m)->row0[1], (m)->row1[0], (m)->row1[1],	\
  (m)->row0[2], (m)->row1[1], (m)->row2[0]
#  define SMFORMAT_DOW    MFORMAT_DOW
# endif

#endif /* _ALBERT_INLINES_H_ */