This file is indexed.

/usr/include/ace/Containers_T.h is in libace-dev 6.0.3+dfsg-0.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
// -*- C++ -*-

//=============================================================================
/**
 *  @file    Containers_T.h
 *
 *  $Id: Containers_T.h 91995 2010-09-24 12:45:24Z johnnyw $
 *
 *  @author Douglas C. Schmidt <schmidt@cs.wustl.edu>
 */
//=============================================================================

#ifndef ACE_CONTAINERS_T_H
#define ACE_CONTAINERS_T_H

#include /**/ "ace/pre.h"

#include /**/ "ace/config-all.h"

#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */

// Need by ACE_DLList_Node.
#include "ace/Containers.h"

// Shared with "ace/Unbounded_Set.h"
#include "ace/Node.h"

// Backwards compatibility, please include "ace/Array_Base.h" directly.
#include "ace/Array_Base.h"

// Backwards compatibility, please include "ace/Unbounded_Set.h" directly.
#include "ace/Unbounded_Set.h"

// Backwards compatibility, please include "ace/Unbounded_Queue.h" directly.
#include "ace/Unbounded_Queue.h"

ACE_BEGIN_VERSIONED_NAMESPACE_DECL

class ACE_Allocator;


/**
 * @class ACE_Bounded_Stack
 *
 * @brief Implement a generic LIFO abstract data type.
 *
 * This implementation of a Stack uses a bounded array
 * that is allocated dynamically.  The Stack interface
 * provides the standard constant time push, pop, and top
 * operations.
 *
 * <b> Requirements and Performance Characteristics</b>
 *   - Internal Structure
 *       Dynamic array
 *   - Duplicates allowed?
 *       Yes
 *   - Random access allowed?
 *       No
 *   - Search speed
 *       N/A
 *   - Insert/replace speed
 *       N/A
 *   - Iterator still valid after change to container?
 *       N/A
 *   - Frees memory for removed elements?
 *       No
 *   - Items inserted by
 *       Value
 *   - Requirements for contained type
 *       -# Default constructor
 *       -# Copy constructor
 *       -# operator=
 *
 */
template <class T>
class ACE_Bounded_Stack
{
public:
  // = Initialization, assignment, and termination methods.

  /// Initialize a new empty stack with the provided size..
  /**
   * Initialize and allocate space for a new Bounded_Stack with the provided
   * size.
   */
  ACE_Bounded_Stack (size_t size);

  /// Initialize the stack to be a copy of the stack provided.
  /**
   * Initialize the stack to be an exact copy of the Bounded_Stack provided
   * as a parameter.
   */
  ACE_Bounded_Stack (const ACE_Bounded_Stack<T> &s);

  /// Assignment operator
  /**
   * Perform a deep copy operation using the Bounded_Stack parameter.  If the
   * capacity of the lhs isn't sufficient for the rhs, then the underlying data
   * structure will be reallocated to accomadate the larger number of elements.
   */
  void operator= (const ACE_Bounded_Stack<T> &s);

  /// Perform actions needed when stack goes out of scope.
  /**
   * Deallocate the memory used by the Bounded_Stack.
   */
  ~ACE_Bounded_Stack (void);

  // = Classic Stack operations.

  ///Add an element to the top of the stack.
  /**
   * Place a new item on top of the stack.  Returns -1 if the stack
   * is already full, 0 if the stack is not already full, and -1 if
   * failure occurs.
   */
  int push (const T &new_item);

  ///Remove an item from the top of stack.
  /**
   * Remove and return the top stack item.  Returns -1 if the stack is
   * already empty, 0 if the stack is not already empty, and -1 if
   * failure occurs.
   */
  int pop (T &item);

  ///Examine the contents of the top of stack.
  /**
   * Return top stack item without removing it.  Returns -1 if the
   * stack is already empty, 0 if the stack is not already empty, and
   * -1 if failure occurs.
   */
  int top (T &item) const;

  // = Check boundary conditions.

  /// Returns 1 if the container is empty, otherwise returns 0.
  /**
   * Performs constant time check to determine if the stack is empty.
   */
  int is_empty (void) const;

  /// Returns 1 if the container is full, otherwise returns 0.
  /**
   * Performs constant time check to determine if the stack is at capacity.
   */
  int is_full (void) const;

  /// The number of items in the stack.
  /**
   * Return the number of items currently in the stack.
   */
  size_t size (void) const;

  /// Dump the state of an object.
  void dump (void) const;

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;

private:
  /// Size of the dynamically allocated data.
  size_t size_;

  /// Keeps track of the current top of stack.
  size_t top_;

  /// Holds the stack's contents.
  T *stack_;
};

//----------------------------------------


/**
 * @class ACE_Fixed_Stack
 *
 * @brief Implement a generic LIFO abstract data type.
 *
 * This implementation of a Stack uses a fixed array
 * with the size fixed at instantiation time.
 *
 * <b> Requirements and Performance Characteristics</b>
 *   - Internal Structure
 *       Fixed array
 *   - Duplicates allowed?
 *       Yes
 *   - Random access allowed?
 *       No
 *   - Search speed
 *       N/A
 *   - Insert/replace speed
 *       N/A
 *   - Iterator still valid after change to container?
 *       N/A
 *   - Frees memory for removed elements?
 *       No
 *   - Items inserted by
 *       Value
 *   - Requirements for contained type
 *       -# Default constructor
 *       -# Copy constructor
 *       -# operator=
 *
 */
template <class T, size_t ACE_SIZE>
class ACE_Fixed_Stack
{
public:
  // = Initialization, assignment, and termination methods.
  /// Initialize a new stack so that it is empty.
  /**
   * Initialize an empty stack.
   */
  ACE_Fixed_Stack (void);

  /// The copy constructor (performs initialization).
  /**
   * Initialize the stack and copy the provided stack into the current stack.
   */
  ACE_Fixed_Stack (const ACE_Fixed_Stack<T, ACE_SIZE> &s);

  /// Assignment operator (performs assignment).
  /**
   * Perform a deep copy of the provided stack.
   */
  void operator= (const ACE_Fixed_Stack<T, ACE_SIZE> &s);

  /// Perform actions needed when stack goes out of scope.
  /**
   * Destroy the stack.
   */
  ~ACE_Fixed_Stack (void);

  // = Classic Stack operations.

  ///Constant time placement of element on top of stack.
  /**
   * Place a new item on top of the stack.  Returns -1 if the stack
   * is already full, 0 if the stack is not already full, and -1 if
   * failure occurs.
   */
  int push (const T &new_item);

  ///Constant time removal of top of stack.
  /**
   * Remove and return the top stack item.  Returns -1 if the stack is
   * already empty, 0 if the stack is not already empty, and -1 if
   * failure occurs.
   */
  int pop (T &item);

  ///Constant time examination of top of stack.
  /**
   * Return top stack item without removing it.  Returns -1 if the
   * stack is already empty, 0 if the stack is not already empty, and
   * -1 if failure occurs.
   */
  int top (T &item) const;

  // = Check boundary conditions.

  /// Returns 1 if the container is empty, otherwise returns 0.
  /**
   * Performs constant time check to see if stack is empty.
   */
  int is_empty (void) const;

  /// Returns 1 if the container is full, otherwise returns 0.
  /**
   * Performs constant time check to see if stack is full.
   */
  int is_full (void) const;

  /// The number of items in the stack.
  /**
   * Constant time access to the current size of the stack.
   */
  size_t size (void) const;

  /// Dump the state of an object.
  void dump (void) const;

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;

private:
  /// Size of the allocated data.
  size_t size_;

  /// Keeps track of the current top of stack.
  size_t top_;

  /// Holds the stack's contents.
  T stack_[ACE_SIZE];
};

//----------------------------------------

template<class T> class ACE_Ordered_MultiSet;
template<class T> class ACE_Ordered_MultiSet_Iterator;

/**
 * @class ACE_DNode
 *
 * @brief Implementation element in a bilinked list.
 */
template<class T>
class ACE_DNode
{
  friend class ACE_Ordered_MultiSet<T>;
  friend class ACE_Ordered_MultiSet_Iterator<T>;

public:

  /// This isn't necessary, but it keeps some compilers happy.
  ~ACE_DNode (void);

private:

  // = Initialization methods
  ACE_DNode (const T &i, ACE_DNode<T> *n = 0, ACE_DNode<T> *p = 0);

  /// Pointer to next element in the list of {ACE_DNode}s.
  ACE_DNode<T> *next_;

  /// Pointer to previous element in the list of {ACE_DNode}s.
  ACE_DNode<T> *prev_;

  /// Current value of the item in this node.
  T item_;
};



/**
 * @class ACE_Unbounded_Stack
 *
 * @brief Implement a generic LIFO abstract data type.
 *
 * This implementation of an unbounded Stack uses a linked list.
 * If you use the {insert} or {remove} methods you should keep
 * in mind that duplicate entries aren't allowed.  In general,
 * therefore, you should avoid the use of these methods since
 * they aren't really part of the ADT stack.  The stack is implemented
 * as a doubly linked list.
 *
 * <b> Requirements and Performance Characteristics</b>
 *   - Internal Structure
 *       Double linked list
 *   - Duplicates allowed?
 *       No
 *   - Random access allowed?
 *       No
 *   - Search speed
 *       Linear
 *   - Insert/replace speed
 *       Linear
 *   - Iterator still valid after change to container?
 *       Yes
 *   - Frees memory for removed elements?
 *       Yes
 *   - Items inserted by
 *       Value
 *   - Requirements for contained type
 *       -# Default constructor
 *       -# Copy constructor
 *       -# operator=
 *
 */
template <class T>
class ACE_Unbounded_Stack
{
public:
  friend class ACE_Unbounded_Stack_Iterator<T>;

  // Trait definition.
  typedef ACE_Unbounded_Stack_Iterator<T> ITERATOR;

  // = Initialization, assignment, and termination methods.
  /// Initialize a new stack so that it is empty.  Use user defined
  /// allocation strategy if specified.
  /**
   * Initialize an empty stack using the user specified allocation strategy
   * if provided.
   */
  ACE_Unbounded_Stack (ACE_Allocator *the_allocator = 0);

  /// The copy constructor (performs initialization).
  /**
   * Initialize this stack to be an exact copy of {s}.
   */
  ACE_Unbounded_Stack (const ACE_Unbounded_Stack<T> &s);

  /// Assignment operator (performs assignment).
  /**
   * Perform a deep copy of the rhs into the lhs.
   */
  void operator= (const ACE_Unbounded_Stack<T> &s);

  /// Perform actions needed when stack goes out of scope.
  /**
   * Destroy the underlying list for the stack.
   */
  ~ACE_Unbounded_Stack (void);

  // = Classic Stack operations.


  ///Push an element onto the top of stack.
  /**
   * Place a new item on top of the stack.  Returns -1 if the stack
   * is already full, 0 if the stack is not already full, and -1 if
   * failure occurs.
   */
  int push (const T &new_item);

  ///Pop the top element of the stack.
  /**
   * Remove and return the top stack item.  Returns -1 if the stack is
   * already empty, 0 if the stack is not already empty, and -1 if
   * failure occurs.
   */
  int pop (T &item);

  ///Examine the top of the stack.
  /**
   * Return top stack item without removing it.  Returns -1 if the
   * stack is already empty, 0 if the stack is not already empty, and
   * -1 if failure occurs.
   */
  int top (T &item) const;

  // = Check boundary conditions.

  /// Returns 1 if the container is empty, otherwise returns 0.
  /**
   * Constant time check to see if the stack is empty.
   */
  int is_empty (void) const;

  /// Returns 1 if the container is full, otherwise returns 0.
  /**
   * Always resturns 0 since the stack is unbounded.
   */
  int is_full (void) const;

  // = Auxiliary methods (not strictly part of the Stack ADT).

  ///Linear Insert of an item.
  /**
   * Insert {new_item} into the Stack at the head (but doesn't allow
   * duplicates).  Returns -1 if failures occur, 1 if item is already
   * present (i.e., no duplicates are allowed), else 0.
   */
  int insert (const T &new_item);

  /// Remove @a item from the Stack.  Returns 0 if it removes the item,
  /// -1 if it can't find the item, and -1 if a failure occurs.
  /**
   * Linear remove operation.
   */
  int remove (const T &item);

  /// Finds if @a item occurs the set.  Returns 0 if finds, else -1.
  /**
   * Linear find operation.
   */
  int find (const T &item) const;

  /// The number of items in the stack.
  /**
   * Constant time access to the current stack size.
   */
  size_t size (void) const;

  /// Dump the state of an object.
  void dump (void) const;

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;

private:
  /// Delete all the nodes in the stack.
  void delete_all_nodes (void);

  /// Copy all nodes from {s} to {this}.
  void copy_all_nodes (const ACE_Unbounded_Stack<T> &s);

  /// Head of the linked list of Nodes.
  ACE_Node<T> *head_;

  /// Current size of the stack.
  size_t cur_size_;

  /// Allocation strategy of the stack.
  ACE_Allocator *allocator_;
};

/**
 * @class ACE_Unbounded_Stack_Iterator
 *
 * @brief Implement an iterator over an unbounded Stack.
 */
template <class T>
class ACE_Unbounded_Stack_Iterator
{
public:
  // = Initialization method.
  /// Move to the first element in the {stack}.
  ACE_Unbounded_Stack_Iterator (ACE_Unbounded_Stack<T> &stack);

  // = Iteration methods.

  /// Pass back the @a next_item that hasn't been seen in the Stack.
  /// Returns 0 when all items have been seen, else 1.
  int next (T *&next_item);

  /// Move forward by one element in the Stack.  Returns 0 when all the
  /// items in the Stack have been seen, else 1.
  int advance (void);

  /// Move to the first element in the Stack.  Returns 0 if the
  /// Stack is empty, else 1.
  int first (void);

  /// Returns 1 when all items have been seen, else 0.
  int done (void) const;

  /// Dump the state of an object.
  void dump (void) const;

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;

private:
  /// Pointer to the current node in the iteration.
  ACE_Node<T> *current_;

  /// Pointer to the Stack we're iterating over.
  ACE_Unbounded_Stack<T> &stack_;
};

template <class T>
class ACE_Double_Linked_List;

/**
 * @class ACE_Double_Linked_List_Iterator_Base
 *
 * @brief Implements a common base class for iterators for a double
 * linked list ADT
 */
template <class T>
class ACE_Double_Linked_List_Iterator_Base
{
public:
  // = Iteration methods.

  /// Passes back the {entry} under the iterator. Returns 0 if the
  /// iteration has completed, otherwise 1
  int next (T *&) const;

  /**
   * @deprecated Return the address of next (current) unvisited item in
   * the list. 0 if there is no more element available.
   */
  T *next (void) const;

  /// Returns 1 when all items have been seen, else 0.
  int done (void) const;

  /// STL-like iterator dereference operator: returns a reference
  /// to the node underneath the iterator.
  T & operator* (void) const ;

  /**
   * Retasks the iterator to iterate over a new
   * Double_Linked_List. This allows clients to reuse an iterator
   * without incurring the constructor overhead. If you do use this,
   * be aware that if there are more than one reference to this
   * iterator, the other "clients" may be very bothered when their
   * iterator changes.  @@ Here be dragons. Comments?
   */
  void reset (ACE_Double_Linked_List<T> &);

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;

protected:
  // = Initialization methods.

  /// Constructor
  ACE_Double_Linked_List_Iterator_Base (const ACE_Double_Linked_List<T> &);

  /// Copy constructor.
  ACE_Double_Linked_List_Iterator_Base (const
                                        ACE_Double_Linked_List_Iterator_Base<T>
                                        &iter);

  // = Iteration methods.
  /**
   * Move to the first element of the list. Returns 0 if the list is
   * empty, else 1.
   * @note the head of the ACE_DLList is actually a null entry, so the
   * first element is actually the 2n'd entry
   */
  int go_head (void);

  /// Move to the last element of the list. Returns 0 if the list is
  /// empty, else 1.
  int go_tail (void);

  /**
   * Check if we reach the end of the list.  Can also be used to get
   * the *current* element in the list.  Return the address of the
   * current item if there are still elements left , 0 if we run out
   * of element.
   */
  T *not_done (void) const ;

  /// Advance to the next element in the list.  Return the address of the
  /// next element if there are more, 0 otherwise.
  T *do_advance (void);

  /// Retreat to the previous element in the list.  Return the address
  /// of the previous element if there are more, 0 otherwise.
  T *do_retreat (void);

  /// Dump the state of an object.
  void dump_i (void) const;

  /// Remember where we are.
  T *current_;

  const ACE_Double_Linked_List<T> *dllist_;
};

/**
 * @class ACE_Double_Linked_List_Iterator
 *
 * @brief Implements an iterator for a double linked list ADT
 *
 * Iterate thru the double-linked list.  This class provides
 * an interface that let users access the internal element
 * addresses directly. Notice {class T} must declare
 * ACE_Double_Linked_List&lt;T&gt;,
 * ACE_Double_Linked_List_Iterator_Base &lt;T&gt; and
 * ACE_Double_Linked_List_Iterator as friend classes and class T
 * should also have data members T* next_ and T* prev_.
 */
template <class T>
class ACE_Double_Linked_List_Iterator : public ACE_Double_Linked_List_Iterator_Base <T>
{
public:
  // = Initialization method.
  ACE_Double_Linked_List_Iterator (const ACE_Double_Linked_List<T> &);

  /**
   * Retasks the iterator to iterate over a new
   * Double_Linked_List. This allows clients to reuse an iterator
   * without incurring the constructor overhead. If you do use this,
   * be aware that if there are more than one reference to this
   * iterator, the other "clients" may be very bothered when their
   * iterator changes.
   * @@ Here be dragons. Comments?
   */
  void reset (ACE_Double_Linked_List<T> &);

  /// Move to the first element in the list.  Returns 0 if the
  /// list is empty, else 1.
  int first (void);

  /// Move forward by one element in the list.  Returns 0 when all the
  /// items in the list have been seen, else 1.
  int advance (void);

  /**
   * Advance the iterator while removing the original item from the
   * list.  Return a pointer points to the original (removed) item.
   * If @a dont_remove equals false, this function behaves like {advance}
   * but return 0 (NULL) instead.
   */
  T* advance_and_remove (bool dont_remove);

  // = STL-style iteration methods

  /// Prefix advance.
  ACE_Double_Linked_List_Iterator<T> & operator++ (void);

  /// Postfix advance.
  ACE_Double_Linked_List_Iterator<T> operator++ (int);

  /// Prefix reverse.
  ACE_Double_Linked_List_Iterator<T> & operator-- (void);

  /// Postfix reverse.
  ACE_Double_Linked_List_Iterator<T> operator-- (int);

  /// Dump the state of an object.
  void dump (void) const;

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;
};

/**
 * @class ACE_Double_Linked_List_Reverse_Iterator
 *
 * @brief Implements a reverse iterator for a double linked list ADT
 *
 * Iterate backwards over the double-linked list.  This class
 * provide an interface that let users access the internal
 * element addresses directly, which seems to break the
 * encapsulation.  Notice {class T} must declare
 * ACE_Double_Linked_List&lt;T&gt;,
 * ACE_Double_Linked_List_Iterator_Base &lt;T&gt; and
 * ACE_Double_Linked_List_Iterator as friend classes and class T
 * should also have data members T* next_ and T* prev_.
 */
template <class T>
class ACE_Double_Linked_List_Reverse_Iterator : public ACE_Double_Linked_List_Iterator_Base <T>
{
public:
  // = Initialization method.
  ACE_Double_Linked_List_Reverse_Iterator (ACE_Double_Linked_List<T> &);

  /**
   * Retasks the iterator to iterate over a new
   * Double_Linked_List. This allows clients to reuse an iterator
   * without incurring the constructor overhead. If you do use this,
   * be aware that if there are more than one reference to this
   * iterator, the other "clients" may be very bothered when their
   * iterator changes.
   * @@ Here be dragons. Comments?
   */
  void reset (ACE_Double_Linked_List<T> &);

  /// Move to the first element in the list.  Returns 0 if the
  /// list is empty, else 1.
  int first (void);

  /// Move forward by one element in the list.  Returns 0 when all the
  /// items in the list have been seen, else 1.
  int advance (void);

  /**
   * Advance the iterator while removing the original item from the
   * list.  Return a pointer points to the original (removed) item.
   * If @a dont_remove equals false, this function behaves like {advance}
   * but return 0 (NULL) instead.
   */
  T* advance_and_remove (bool dont_remove);

  // = STL-style iteration methods

  /// Prefix advance.
  ACE_Double_Linked_List_Reverse_Iterator<T> & operator++ (void);

  /// Postfix advance.
  ACE_Double_Linked_List_Reverse_Iterator<T> operator++ (int);

  /// Prefix reverse.
  ACE_Double_Linked_List_Reverse_Iterator<T> & operator-- (void);

  /// Postfix reverse.
  ACE_Double_Linked_List_Reverse_Iterator<T> operator-- (int);

  /// Dump the state of an object.
  void dump (void) const;

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;
};


/**
 * @class ACE_Double_Linked_List
 *
 * @brief A double-linked list implementation.
 *
 * This implementation of an unbounded double-linked list uses a
 * circular linked list with a dummy node.  It is pretty much
 * like the {ACE_Unbounded_Queue} except that it allows removing
 * of a specific element from a specific location.
 * Notice that this class is an implementation of a very simple
 * data structure. This is *NOT* a container class.  You can use the
 * class to implement other contains classes but it is *NOT* a
 * general purpose container class.
 * The parameter class *MUST* have members T* prev and T* next
 * and users of this class are responsible to follow the general
 * rules of using double-linked lists to maintaining the list
 * integrity.
 * If you need a double linked container class, use the DLList
 * class which is a container but delegates to the Double_Linked_List
 * class.
 *
 * <b> Requirements and Performance Characteristics</b>
 *   - Internal Structure
 *       Double Linked List
 *   - Duplicates allowed?
 *       Yes
 *   - Random access allowed?
 *       No
 *   - Search speed
 *       N/A
 *   - Insert/replace speed
 *       Linear
 *   - Iterator still valid after change to container?
 *       Yes
 *   - Frees memory for removed elements?
 *       No
 *   - Items inserted by
 *       Value
 *   - Requirements for contained type
 *       -# Default constructor
 *       -# Copy constructor
 *       -# operator=
 *
 */
template <class T>
class ACE_Double_Linked_List
{
public:
  friend class ACE_Double_Linked_List_Iterator_Base<T>;
  friend class ACE_Double_Linked_List_Iterator<T>;
  friend class ACE_Double_Linked_List_Reverse_Iterator<T>;

  // Trait definition.
  typedef ACE_Double_Linked_List_Iterator<T> ITERATOR;
  typedef ACE_Double_Linked_List_Reverse_Iterator<T> REVERSE_ITERATOR;

  // = Initialization and termination methods.
  /// construction.  Use user specified allocation strategy
  /// if specified.
  /**
   * Initialize an empy list using the allocation strategy specified by the user.
   * If none is specified, then use default allocation strategy.
   */
  ACE_Double_Linked_List (ACE_Allocator *the_allocator = 0);

  /// Copy constructor.
  /**
   * Create a double linked list that is a copy of the provided
   * parameter.
   */
  ACE_Double_Linked_List (const ACE_Double_Linked_List<T> &);

  /// Assignment operator.
  /**
   * Perform a deep copy of the provided list by first deleting the nodes of the
   * lhs and then copying the nodes of the rhs.
   */
  void operator= (const ACE_Double_Linked_List<T> &);

  /// Destructor.
  /**
   * Clean up the memory allocated for the nodes of the list.
   */
  ~ACE_Double_Linked_List (void);

  // = Check boundary conditions.

  /// Returns 1 if the container is empty, 0 otherwise.
  /**
   * Performs constant time check to determine if the list is empty.
   */
  int is_empty (void) const;

  /// The list is unbounded, so this always returns 0.
  /**
   * Since the list is unbounded, the method simply returns 0.
   */
  int is_full (void) const;

  // = Classic queue operations.

  /// Adds @a new_item to the tail of the list. Returns the new item
  /// that was inserted.
  /**
   * Provides constant time insertion at the end of the list structure.
   */
  T *insert_tail (T *new_item);

  /// Adds @a new_item to the head of the list.Returns the new item that
  /// was inserted.
  /**
   * Provides constant time insertion at the head of the list.
   */
  T *insert_head (T *new_item);

  /// Removes the head of the list and returns a pointer to that item.
  /**
   * Removes and returns the first {item} in the list.  Returns
   * internal node's address on success, 0 if the queue was empty.
   * This method will *not* free the internal node.
   */
  T* delete_head (void);

  /// Removes the tail of the list and returns a pointer to that item.
  /**
   * Removes and returns the last {item} in the list.  Returns
   * internal nodes's address on success, 0 if the queue was
   * empty. This method will *not* free the internal node.
   */
  T *delete_tail (void);

  // = Additional utility methods.

  ///Empty the list.
  /**
   * Reset the {ACE_Double_Linked_List} to be empty.
   * Notice that since no one is interested in the items within,
   * This operation will delete all items.
   */
  void reset (void);

  /// Get the {slot}th element in the set.  Returns -1 if the element
  /// isn't in the range {0..{size} - 1}, else 0.
  /**
   * Iterates through the list to the desired index and assigns the provides pointer
   * with the address of the node occupying that index.
   */
  int get (T *&item, size_t slot = 0);

  /// The number of items in the queue.
  /**
   * Constant time call to return the current size of the list.
   */
  size_t size (void) const;

  /// Dump the state of an object.
  void dump (void) const;

  /// Use DNode address directly.
  /**
   * Constant time removal of an item from the list using it's address.
   */
  int remove (T *n);

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;

protected:
  /// Delete all the nodes in the list.
  /**
   * Removes and deallocates memory for all of the list nodes.
   */
  void delete_nodes (void);

  /// Copy nodes from {rhs} into this list.
  /**
   * Copy the elements of the provided list by allocated new nodes and assigning
   * them with the proper data.
   */
  void copy_nodes (const ACE_Double_Linked_List<T> &rhs);

  /// Setup header pointer.  Called after we create the head node in ctor.
  /**
   * Initialize the head pointer so that the list has a dummy node.
   */
  void init_head (void);

  ///Constant time insert a new item into the list structure.
  /**
   * Insert a @a new_item into the list.  It will be added before
   * or after @a old_item.  Default is to insert the new item *after*
   * {head_}.  Return 0 if succeed, -1 if error occured.
   */
  int insert_element (T *new_item,
                      int before = 0,
                      T *old_item = 0);

  ///Constant time delete an item from the list structure.
  /**
   * Remove @a item from the list.  Return 0 if succeed, -1 otherwise.
   * Notice that this function checks if item is {head_} and either its
   * {next_} or {prev_} is NULL.  The function resets item's {next_} and
   * {prev_} to 0 to prevent clobbering the double-linked list if a user
   * tries to remove the same node again.
   */
  int remove_element (T *item);

  /// Head of the circular double-linked list.
  T *head_;

  /// Size of this list.
  size_t size_;

  /// Allocation Strategy of the queue.
  ACE_Allocator *allocator_;
};


template <class T> class ACE_DLList;
template <class T> class ACE_DLList_Iterator;
template <class T> class ACE_DLList_Reverse_Iterator;

typedef ACE_Double_Linked_List<ACE_DLList_Node> ACE_DLList_Base;

//typedef ACE_Double_Linked_List_Iterator <ACE_DLList_Node>
//        ACE_DLList_Iterator_Base;
//typedef ACE_Double_Linked_List_Reverse_Iterator <ACE_DLList_Node>
//        ACE_DLList_Reverse_Iterator_Base;
//@@ These two typedefs (inherited from James Hu's original design)
// have been removed because Sun CC 4.2 had problems with it. I guess
// having the DLList_Iterators inheriting from a class which is
// actually a typedef leads to problems. #define'ing rather than
// typedef'ing worked, but as per Carlos's reccomendation, I'm just
// replacing all references to the base classes with their actual
// type.  Matt Braun (6/15/99)

/**
 * @class ACE_DLList
 *
 * @brief A double-linked list container class.
 *
 * ACE_DLList is a simple, unbounded container implemented using a
 * double-linked list. It is critical to remember that ACE_DLList inherits
 * from ACE_Double_Linked_List, wrapping each T pointer in a ACE_DLList_Node
 * object which satisfies the next/prev pointer requirements imposed by
 * ACE_Double_Linked_List.
 *
 * Each item inserted to an ACE_DLList is a pointer to a T object. The
 * caller is responsible for lifetime of the T object. ACE_DLList takes no
 * action on the T object; it is not copied on insertion and it is not
 * deleted on removal from the ACE_DLList.
 */
template <class T>
class ACE_DLList : public ACE_DLList_Base
{
  friend class ACE_DLList_Node;
  friend class ACE_Double_Linked_List_Iterator<T>;
  friend class ACE_DLList_Iterator<T>;
  friend class ACE_DLList_Reverse_Iterator<T>;

public:

  /// Delegates to ACE_Double_Linked_List.
  void operator= (const ACE_DLList<T> &l);

  /**
   * @name Queue-like insert and delete methods
   */
  //@{

  /**
   * Insert pointer for a new item at the tail of the list.
   *
   * @return Pointer to item inserted; 0 on error.
   */
  T *insert_tail (T *new_item);

  /**
   * Insert pointer for a new item at the head of the list.
   *
   * @return Pointer to item inserted; 0 on error.
   */
  T *insert_head (T *new_item);

  /**
   * Removes the item at the head of the list and returns its pointer.
   *
   * @return Pointer to previously inserted item; 0 if the list is empty,
   *         an error occurred, or the original pointer inserted was 0.
   */
  T *delete_head (void);

  /**
   * Removes the item at the tail of the list and returns its pointer.
   *
   * @return Pointer to previously inserted item; 0 if the list is empty,
   *         an error occurred, or the original pointer inserted was 0.
   */
  T *delete_tail (void);
  //@}

  /**
   * Provide random access to any item in the list.
   *
   * @param item  Receives a pointer to the T object pointer held at the
   *              specified position in the list.
   * @param slot  Position in the list to access. The first position is 0.
   *
   * @retval 0  Success; T pointer returned in item.
   * @retval -1 Error, most likely slot is outside the range of the list.
   */
  int get (T *&item, size_t slot = 0);

  /// Delegates to ACE_Double_Linked_List.
  void dump (void) const;

  /// Delegates to ACE_Double_Linked_List.
  int remove (ACE_DLList_Node *n);

  /**
   * Constructor.
   *
   * @param the_allocator  Allocator to use for allocating ACE_DLList_Node
   *                       objects that wrap T objects for inclusion in the
   *                       list. If 0, ACE_Allocator::instance() is used.
   */
  ACE_DLList (ACE_Allocator *the_allocator = 0);

  /// Delegates to ACE_Double_Linked_List.
  ACE_DLList (const ACE_DLList<T> &l);

  /**
   * Deletes all ACE_DLList_Node objects in the list starting from the head.
   * No T objects referred to by the deleted ACE_DLList_Node objects are
   * modified or freed. If you desire all of the T objects in the list to
   * be deleted as well, code such as this should be used prior to destroying
   * the ACE_DLList:
   * @code
        ACE_DLList<Item> list;
        ...   // insert dynamically allocated Items...
        Item *p;
        while ((p = list.delete_head()) != 0)
          delete *p;
      @endcode
   */
  ~ACE_DLList (void);
};

/**
 * @class ACE_DLList_Iterator
 *
 * @brief A double-linked list container class iterator.
 *
 * This implementation uses ACE_Double_Linked_List_Iterator to
 * perform the logic behind this container class.  It delegates
 * all of its calls to ACE_Double_Linked_List_Iterator.
 */
template <class T>
class ACE_DLList_Iterator : public ACE_Double_Linked_List_Iterator <ACE_DLList_Node>
{

  friend class ACE_DLList<T>;
  friend class ACE_DLList_Node;

public:

  // = Initialization method.
  ACE_DLList_Iterator (ACE_DLList<T> &l);

  /**
   * Retasks the iterator to iterate over a new
   * Double_Linked_List. This allows clients to reuse an iterator
   * without incurring the constructor overhead. If you do use this,
   * be aware that if there are more than one reference to this
   * iterator, the other "clients" may be very bothered when their
   * iterator changes.
   * @@ Here be dragons. Comments?
   */
  void reset (ACE_DLList<T> &l);

  // = Iteration methods.
  /// Move forward by one element in the list.  Returns 0 when all the
  /// items in the list have been seen, else 1.
  int advance (void);

  /// Pass back the {next_item} that hasn't been seen in the list.
  /// Returns 0 when all items have been seen, else 1.
  int next (T *&);

  /**
   * @deprecated Delegates to ACE_Double_Linked_List_Iterator, except that
   * whereas the Double_Linked_List version of next returns the node, this next
   * returns the contents of the node
   */
  T *next (void) const;

  /**
   * Removes the current item (i.e., {next}) from the list.
   * Note that DLList iterators do not support {advance_and_remove}
   * directly (defined in its base class) and you will need to
   * release the element returned by it.
   */
  int remove (void);

  /// Delegates to ACE_Double_Linked_List_Iterator.
  void dump (void) const;

private:
  ACE_DLList<T> *list_;
};

/**
 * @class ACE_DLList_Reverse_Iterator
 *
 * @brief A double-linked list container class iterator.
 *
 * This implementation uses ACE_Double_Linked_List_Iterator to
 * perform the logic behind this container class.  It delegates
 * all of its calls to ACE_Double_Linked_List_Iterator.
 */
template <class T>
class ACE_DLList_Reverse_Iterator : public ACE_Double_Linked_List_Reverse_Iterator <ACE_DLList_Node>
{

  friend class ACE_DLList<T>;
  friend class ACE_DLList_Node;

public:

  // = Initialization method.
  ACE_DLList_Reverse_Iterator (ACE_DLList<T> &l);

  /**
   * Retasks the iterator to iterate over a new
   * Double_Linked_List. This allows clients to reuse an iterator
   * without incurring the constructor overhead. If you do use this,
   * be aware that if there are more than one reference to this
   * iterator, the other "clients" may be very bothered when their
   * iterator changes.
   * @@ Here be dragons. Comments?
   */
  void reset (ACE_DLList<T> &l);

  // = Iteration methods.
  /// Move forward by one element in the list.  Returns 0 when all the
  /// items in the list have been seen, else 1.
  int advance (void);

  /// Pass back the {next_item} that hasn't been seen in the list.
  /// Returns 0 when all items have been seen, else 1.
  int next (T *&);

  /// @deprecated Delegates to ACE_Double_Linked_List_Iterator.
  T *next (void) const;

  /// Removes the current item (i.e., {next}) from the list.
  /// Note that DLList iterators do not support {advance_and_remove}
  /// directly (defined in its base class) and you will need to
  /// release the element returned by it.
  int remove (void);

  /// Delegates to ACE_Double_Linked_List_Iterator.
  void dump (void) const;

private:
  ACE_DLList<T> *list_;
};

// Forward declaration.
template <class T, size_t ACE_SIZE>
class ACE_Fixed_Set;

/**
 * @class ACE_Fixed_Set_Iterator_Base
 *
 * @brief Implements a common base class for iterators for a unordered set.
 */
template <class T, size_t ACE_SIZE>
class ACE_Fixed_Set_Iterator_Base
{
public:
  // = Iteration methods.

  /// Pass back the {next_item} that hasn't been seen in the Set.
  /// Returns 0 when all items have been seen, else 1.
  int next (T *&next_item);

  /// Move forward by one element in the set.  Returns 0 when all the
  /// items in the set have been seen, else 1.
  int advance (void);

  /// Move to the first element in the set.  Returns 0 if the
  /// set is empty, else 1.
  int first (void);

  /// Returns 1 when all items have been seen, else 0.
  int done (void) const;

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;

protected:
  // = Initialization method.
  ACE_Fixed_Set_Iterator_Base (ACE_Fixed_Set<T, ACE_SIZE> &s);

  /// Set we are iterating over.
  ACE_Fixed_Set<T, ACE_SIZE> &s_;

  /// How far we've advanced over the set.
  ssize_t next_;

  /// The number of non free items that the iterator had pointed at.
  size_t iterated_items_;

  /// Dump the state of an object.
  void dump_i (void) const;

  /// Pass back the {next_item} that hasn't been seen in the Set.
  /// Returns 0 when all items have been seen, else 1.
  int next_i (T *&next_item);
};

/**
 * @class ACE_Fixed_Set_Iterator
 *
 * @brief Iterates through an unordered set.
 *
 * This implementation of an unordered set uses a fixed array.
 * Allows deletions while iteration is occurring.
 */
template <class T, size_t ACE_SIZE>
class ACE_Fixed_Set_Iterator : public ACE_Fixed_Set_Iterator_Base <T, ACE_SIZE>
{
public:
  // = Initialization method.
  ACE_Fixed_Set_Iterator (ACE_Fixed_Set<T, ACE_SIZE> &s);

  // = Iteration methods.

  /// Pass back the {next_item} that hasn't been seen in the Set.
  /// Returns 0 when all items have been seen, else 1.
  int next (T *&next_item);

  /// Dump the state of an object.
  void dump (void) const;

  /// Remove the item where the itearetor is located at.
  /// Returns 1 if it removes a item, else 0.
  /// Pass back the removed {item}.
  int remove (T *&item);

  /// STL-like iterator dereference operator: returns a reference
  /// to the node underneath the iterator.
  T & operator* (void);

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;
};

/**
 * @class ACE_Fixed_Set_Const_Iterator
 *
 * @brief Iterates through a const unordered set.
 *
 * This implementation of an unordered set uses a fixed array.
 */
template <class T, size_t ACE_SIZE>
class ACE_Fixed_Set_Const_Iterator : public ACE_Fixed_Set_Iterator_Base <T, ACE_SIZE>
{
public:
  // = Initialization method.
  ACE_Fixed_Set_Const_Iterator (const ACE_Fixed_Set<T, ACE_SIZE> &s);

  // = Iteration methods.

  /// Pass back the {next_item} that hasn't been seen in the Set.
  /// Returns 0 when all items have been seen, else 1.
  int next (const T *&next_item);

  /// Dump the state of an object.
  void dump (void) const;

  /// STL-like iterator dereference operator: returns a reference
  /// to the node underneath the iterator.
  const T & operator* (void) const ;

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;
};

/**
 * @class ACE_Fixed_Set
 *
 * @brief Implement a simple unordered set of {T} with maximum {ACE_SIZE}.
 *
 * This implementation of an unordered set uses a fixed array.
 * It does not allow duplicate members.  The set provides linear insertion/deletion
 * operations.
 *
 * <b> Requirements and Performance Characteristics</b>
 *   - Internal Structure
 *       Fixed array
 *   - Duplicates allowed?
 *       No
 *   - Random access allowed?
 *       No
 *   - Search speed
 *       Linear
 *   - Insert/replace speed
 *       Linear
 *   - Iterator still valid after change to container?
 *       Yes
 *   - Frees memory for removed elements?
 *       No
 *   - Items inserted by
 *       Value
 *   - Requirements for contained type
 *       -# Default constructor
 *       -# Copy constructor
 *       -# operator=
 *       -# operator==
 *
 */
template <class T, size_t ACE_SIZE>
class ACE_Fixed_Set
{
public:
  friend class ACE_Fixed_Set_Iterator_Base<T, ACE_SIZE>;
  friend class ACE_Fixed_Set_Iterator<T, ACE_SIZE>;
  friend class ACE_Fixed_Set_Const_Iterator<T, ACE_SIZE>;

  // Trait definitions.
  typedef ACE_Fixed_Set_Iterator<T, ACE_SIZE> ITERATOR;
  typedef ACE_Fixed_Set_Const_Iterator<T, ACE_SIZE> CONST_ITERATOR;

  // = Initialization and termination methods.
  /// Default Constructor.
  /**
   * Creates an empy set
   */
  ACE_Fixed_Set (void);

  /// Copy constructor.
  /**
   * Initializes a set to be a copy of the set parameter.
   */
  ACE_Fixed_Set (const ACE_Fixed_Set<T, ACE_SIZE> &);

  /// Assignment operator.
  /**
   * Deep copy of one set to another.
   */
  void operator= (const ACE_Fixed_Set<T, ACE_SIZE> &);

  /// Destructor.
  /**
   * Destroys a set.
   */
  ~ACE_Fixed_Set (void);

  // = Check boundary conditions.

  /// Returns 1 if the container is empty, otherwise returns 0.
  /**
   * Performs constant time check to determine if a set is empty.
   */
  int is_empty (void) const;

  /// Returns 1 if the container is full, otherwise returns 0.
  /**
   * Performs a constant time check to see if the set is full.
   */
  int is_full (void) const;

  // = Classic unordered set operations.

  ///Linear time insertion of an item unique to the set.
  /**
   * Insert @a new_item into the set (doesn't allow duplicates).
   * Returns -1 if failures occur, 1 if item is already present, else
   * 0.
   */
  int insert (const T &new_item);

  ///Linear time removal operation of an item.
  /**
   * Remove first occurrence of {item} from the set.  Returns 0 if
   * it removes the item, -1 if it can't find the item, and -1 if a
   * failure occurs.  Removal doesn't reclaim memory for the @a item.
   */
  int remove (const T &item);

  /// Finds if @a item occurs in the set.  Returns 0 if finds, else -1.
  /**
   * Performs a linear find operation for the specified @a item.
   */
  int find (const T &item) const;

  /// Size of the set.
  /**
   * Returns the current size of the set.
   */
  size_t size (void) const;

  /// Dump the state of an object.
  void dump (void) const;

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;

private:
  /// Holds the contents of the set.
  struct
  {
    /// Item in the set.
    T item_;

    /// Keeps track of whether this item is in use or not.
    int is_free_;
  } search_structure_[ACE_SIZE];

  /// Current size of the set.
  size_t cur_size_;

  /// Maximum size of the set.
  size_t max_size_;
};

// Forward declaration.
template <class T>
class ACE_Bounded_Set;

/**
 * @class ACE_Bounded_Set_Iterator
 *
 * @brief Iterates through an unordered set.
 *
 * This implementation of an unordered set uses a Bounded array.
 * Allows deletions while iteration is occurring.
 */
template <class T>
class ACE_Bounded_Set_Iterator
{
public:
  // = Initialization method.
  ACE_Bounded_Set_Iterator (ACE_Bounded_Set<T> &s);

  // = Iteration methods.

  /// Pass back the {next_item} that hasn't been seen in the Set.
  /// Returns 0 when all items have been seen, else 1.
  int next (T *&next_item);

  /// Move forward by one element in the set.  Returns 0 when all the
  /// items in the set have been seen, else 1.
  int advance (void);

  /// Move to the first element in the set.  Returns 0 if the
  /// set is empty, else 1.
  int first (void);

  /// Returns 1 when all items have been seen, else 0.
  int done (void) const;

  /// Dump the state of an object.
  void dump (void) const;

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;

private:
  /// Set we are iterating over.
  ACE_Bounded_Set<T> &s_;

  /// How far we've advanced over the set.
  ssize_t next_;
};


/**
 * @class ACE_Bounded_Set
 *
 * @brief Implement a simple unordered set of {T} with maximum
 * set at creation time.
 *
 * This implementation of an unordered set uses a Bounded array.
 * This implementation does not allow duplicates.  It provides
 * linear insert/remove/find operations.  Insertion/removal does not
 * invalidate iterators, but caution should be taken to ensure
 * expected behavior.  Once initialized, the object has a maximum size
 * which can only be increased by the assignment of another larger Bounded_Set.
 *
 * <b> Requirements and Performance Characteristics</b>
 *   - Internal Structure
 *       Bounded array which can grow via assignment
 *   - Duplicates allowed?
 *       No
 *   - Random access allowed?
 *       No
 *   - Search speed
 *       Linear
 *   - Insert/replace speed
 *       Linear
 *   - Iterator still valid after change to container?
 *       Yes
 *   - Frees memory for removed elements?
 *       No
 *   - Items inserted by
 *       Value
 *   - Requirements for contained type
 *       -# Default constructor
 *       -# Copy constructor
 *       -# operator=
 *       -# operator==
 *
 */
template <class T>
class ACE_Bounded_Set
{
public:
  friend class ACE_Bounded_Set_Iterator<T>;

  // Trait definition.
  typedef ACE_Bounded_Set_Iterator<T> ITERATOR;

  enum
  {
    DEFAULT_SIZE = 10
  };

  // = Initialization and termination methods.
  /// Construct a Bounded_Set using the default size.
  /**
   * The default constructor initializes the Bounded_Set to a maximum size
   * specified by the DEFAULT_SIZE.
   */
  ACE_Bounded_Set (void);

  /// Construct a Bounded_Set with the provided sizeB.
  /**
   * Initialize the Bounded_Set to have a maximum size equal to the size
   * parameter specified.
   */
  ACE_Bounded_Set (size_t size);

  /// Construct a Bounded_Set that is a copy of the provides Bounded_Set.
  /**
   * Initialize the Bounded_Set to be a copy of the Bounded_Set parameter.
   */
  ACE_Bounded_Set (const ACE_Bounded_Set<T> &);

  /// Assignment operator.
  /**
   * The assignment will make a deep copy of the Bounded_Set provided.  If the
   * rhs has more elements than the capacity of the lhs, then the lhs will be
   * deleted and reallocated to accomadate the larger number of elements.
   */
  void operator= (const ACE_Bounded_Set<T> &);

  /// Destructor
  /**
   * Clean up the underlying dynamically allocated memory that is used by
   * the Bounded_Set.
   */
  ~ACE_Bounded_Set (void);

  // = Check boundary conditions.

  /// Returns 1 if the container is empty, otherwise returns 0.
  /**
   * A constant time check is performed to determine if the Bounded_Set is
   * empty.
   */
  int is_empty (void) const;

  /// Returns 1 if the container is full, otherwise returns 0.
  /**
   * Performs a constant time check to determine if the Bounded_Set is at
   * capacity.
   */
  int is_full (void) const;

  // = Classic unordered set operations.

  ///Inserts a new element unique to the set.
  /**
   * Insert @a new_item into the set (doesn't allow duplicates) in linear
   * time.
   * Returns -1 if failures occur, 1 if item is already present, else
   * 0.
   */
  int insert (const T &new_item);

  ///Finds the specified element and removes it from the set.
  /**
   * Remove first occurrence of @a item from the set.  Returns 0 if it
   * removes the item, -1 if it can't find the item, and -1 if a
   * failure occurs.  The linear remove operation does not reclaim the
   * memory associated with the removed item.
   */
  int remove (const T &item);

  /// Finds if @a item occurs in the set.  Returns 0 if finds, else -1.
  /**
   * find preforms a linear search for {item} and returns 0 on successful
   * find and -1 otherwise.
   */
  int find (const T &item) const;

  /// Size of the set.
  /**
   * Returns a size_t representing the current size of the set.
   */
  size_t size (void) const;

  /// Dump the state of an object.
  void dump (void) const;

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;

private:
  struct Search_Structure
  {
    /// Item in the set.
    T item_;

    /// Keeps track of whether this item is in use or not.
    int is_free_;
  };

  /// Holds the contents of the set.
  Search_Structure *search_structure_;

  /// Current size of the set.
  size_t cur_size_;

  /// Maximum size of the set.
  size_t max_size_;
};

/**
 * @class ACE_Ordered_MultiSet_Iterator
 *
 * @brief Implement a bidirectional iterator over an ordered multiset.
 * This class template requires that < operator semantics be
 * defined for the parameterized type {T}, but does not impose
 * any restriction on how that ordering operator is implemented.
 */
template <class T>
class ACE_Ordered_MultiSet_Iterator
{
public:
  friend class ACE_Ordered_MultiSet<T>;

  // = Initialization method.
  ACE_Ordered_MultiSet_Iterator (ACE_Ordered_MultiSet<T> &s);

  // = Iteration methods.

  /// Pass back the {next_item} that hasn't been seen in the ordered multiset.
  /// Returns 0 when all items have been seen, else 1.
  int next (T *&next_item) const;

  /// Repositions the iterator at the first item in the ordered multiset
  /// Returns 0 if the list is empty else 1.
  int first (void);

  /// Repositions the iterator at the last item in the ordered multiset
  /// Returns 0 if the list is empty else 1.
  int last (void);

  /// Move forward by one element in the set.  Returns 0 when all the
  /// items in the set have been seen, else 1.
  int advance (void);

  /// Move backward by one element in the set.  Returns 0 when all the
  /// items in the set have been seen, else 1.
  int retreat (void);

  /// Returns 1 when all items have been seen, else 0.
  int done (void) const;

  /// Dump the state of an object.
  void dump (void) const;

  /// Returns a reference to the internal element {this} is pointing to.
  T& operator* (void);

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;

private:

  /// Pointer to the current node in the iteration.
  ACE_DNode<T> *current_;

  /// Pointer to the set we're iterating over.
  ACE_Ordered_MultiSet<T> &set_;
};


/**
 * @class ACE_Ordered_MultiSet
 *
 * @brief Implement a simple ordered multiset of {T} of unbounded size
 * that allows duplicates.  This class template requires that <
 * operator semantics be defined for the parameterized type {T}, but
 * does not impose any restriction on how that ordering operator is
 * implemented.  The set is implemented as a linked list.
 *
 *
 * <b> Requirements and Performance Characteristics</b>
 *   - Internal Structure
 *       Double linked list
 *   - Duplicates allowed?
 *       Yes
 *   - Random access allowed?
 *       No
 *   - Search speed
 *       Linear
 *   - Insert/replace speed
 *       Linear
 *   - Iterator still valid after change to container?
 *       Yes
 *   - Frees memory for removed elements?
 *       Yes
 *   - Items inserted by
 *       Value
 *   - Requirements for contained type
 *       -# Default constructor
 *       -# Copy constructor
 *       -# operator=
 *       -# operator==
 *       -# operator<
 *
 *
 */
template <class T>
class ACE_Ordered_MultiSet
{
public:
  friend class ACE_Ordered_MultiSet_Iterator<T>;

  // Trait definition.
  typedef ACE_Ordered_MultiSet_Iterator<T> ITERATOR;

  // = Initialization and termination methods.
  /// Constructor.  Use user specified allocation strategy
  /// if specified.
  /**
   * Initialize the set using the allocation strategy specified.  If none, use the
   * default strategy.
   */
  ACE_Ordered_MultiSet (ACE_Allocator *the_allocator = 0);

  /// Copy constructor.
  /**
   * Initialize the set to be a copy of the provided set.
   */
  ACE_Ordered_MultiSet (const ACE_Ordered_MultiSet<T> &);

  /// Destructor.
  /**
   * Delete the nodes of the set.
   */
  ~ACE_Ordered_MultiSet (void);

  /// Assignment operator.
  /**
   * Delete the nodes in lhs, and copy the nodes from the rhs.
   */
  void operator= (const ACE_Ordered_MultiSet<T> &);

  // = Check boundary conditions.

  /// Returns 1 if the container is empty, otherwise returns 0.
  /**
   * Constant time check to determine if the set is empty.
   */
  int is_empty (void) const;

  /// Size of the set.
  /**
   * Constant time check to determine the size of the set.
   */
  size_t size (void) const;

  // = Classic unordered set operations.

  /// Insert @a new_item into the ordered multiset.
  /// Returns -1 if failures occur, else 0.
  /**
   * Linear time, order preserving insert into the set beginning at the head.
   */
  int insert (const T &new_item);

  ///Linear time insert beginning at the point specified by the provided iterator.
  /**
   * Insert @a new_item into the ordered multiset, starting its search at
   * the node pointed to by the iterator, and if insertion was successful,
   * updates the iterator to point to the newly inserted node.
   * Returns -1 if failures occur, else 0.
   */
  int insert (const T &new_item, ITERATOR &iter);

  /// Remove first occurrence of @a item from the set.  Returns 0 if
  /// it removes the item, -1 if it can't find the item.
  /**
   * Linear time search operation which removes the item from the set if found .
   */
  int remove (const T &item);

  ///Linear find operation.
  /**
   * Finds first occurrence of @a item in the multiset, using the iterator's
   * current position as a hint to improve performance. If find succeeds,
   * it positions the iterator at that node and returns 0, or if it cannot
   * locate the node, it leaves the iterator alone and just returns -1.
   */
  int find (const T &item, ITERATOR &iter) const;

  /// Reset the ACE_Ordered_MultiSet to be empty.
  /**
   * Delete the nodes inside the set.
   */
  void reset (void);

  /// Dump the state of an object.
  void dump (void) const;

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;

private:

  /**
   * Insert @a item, starting its search at the position given,
   * and if successful updates the passed pointer to point to
   * the newly inserted item's node.
   */
  int insert_from (const T &item, ACE_DNode<T> *start_position,
                   ACE_DNode<T> **new_position);

  /**
   * Looks for first occurrence of @a item in the ordered set, using the
   * passed starting position as a hint: if there is such an instance, it
   * updates the new_position pointer to point to this node and returns 0;
   * if there is no such node, then if there is a node before where the
   * item would have been, it updates the new_position pointer to point
   * to this node and returns -1; if there is no such node, then if there
   * is a node after where the item would have been, it updates the
   * new_position pointer to point to this node (or 0 if there is no such
   * node) and returns 1;
   */
  int locate (const T &item, ACE_DNode<T> *start_position,
              ACE_DNode<T> *&new_position) const;

  /// Delete all the nodes in the Set.
  void delete_nodes (void);

  /// Copy nodes into this set.
  void copy_nodes (const ACE_Ordered_MultiSet<T> &);

  /// Head of the bilinked list of Nodes.
  ACE_DNode<T> *head_;

  /// Head of the bilinked list of Nodes.
  ACE_DNode<T> *tail_;

  /// Current size of the set.
  size_t cur_size_;

  /// Allocation strategy of the set.
  ACE_Allocator *allocator_;
};

// ****************************************************************

/**
 * @class ACE_Array
 *
 * @brief A dynamic array class.
 *
 * This class extends ACE_Array_Base, adding comparison operators.
 *
 * <b> Requirements and Performance Characteristics</b>
 *   - Internal Structure
 *       Dynamic array
 *   - Duplicates allowed?
 *       Yes
 *   - Random access allowed?
 *       Yes
 *   - Search speed
 *       N/A
 *   - Insert/replace speed
 *       O(1)
 *   - Iterator still valid after change to container?
 *       - In general, yes.
 *       - If array size is changed during iteration, no.
 *   - Frees memory for removed elements?
 *       No
 *   - Items inserted by
 *       Value
 *   - Requirements for contained type
 *       -# Default constructor
 *       -# Copy constructor
 *       -# operator=
 *       -# operator!=
 *
 * @sa ACE_Array_Base. This class inherits its operations and requirements.
 */
template <class T>
class ACE_Array : public ACE_Array_Base<T>
{
public:
  // Define a "trait"
  typedef T TYPE;
  typedef ACE_Array_Iterator<T> ITERATOR;

  /// Dynamically create an uninitialized array.
  /**
   * Initialize an empty array of the specified size using the provided
   * allocation strategy.
   */
  ACE_Array (size_t size = 0,
             ACE_Allocator* alloc = 0);

  /// Dynamically initialize the entire array to the {default_value}.
  /**
   * Initialize an array the given size placing the default_value in each index.
   */
  ACE_Array (size_t size,
             const T &default_value,
             ACE_Allocator* alloc = 0);

  ///Copy constructor.
  /**
   * The copy constructor performs initialization by making an exact
   * copy of the contents of parameter {s}, i.e., *this == s will
   * return true.
   */
  ACE_Array (const ACE_Array<T> &s);

  ///Assignment operator
  /**
   * Assignment operator performs an assignment by making an exact
   * copy of the contents of parameter {s}, i.e., *this == s will
   * return true.  Note that if the {max_size_} of {array_} is >= than
   * {s.max_size_} we can copy it without reallocating.  However, if
   * {max_size_} is < {s.max_size_} we must delete the {array_},
   * reallocate a new {array_}, and then copy the contents of {s}.
   */
  void operator= (const ACE_Array<T> &s);

  // = Compare operators

  ///Equality comparison operator.
  /**
   * Compare this array with {s} for equality.  Two arrays are equal
   * if their {size}'s are equal and all the elements from 0 .. {size}
   * are equal.
   */
  bool operator== (const ACE_Array<T> &s) const;

  ///Inequality comparison operator.
  /**
   * Compare this array with {s} for inequality such that {*this} !=
   * {s} is always the complement of the boolean return value of
   * {*this} == {s}.
   */
  bool operator!= (const ACE_Array<T> &s) const;
};

ACE_END_VERSIONED_NAMESPACE_DECL

#if defined (__ACE_INLINE__)
#include "ace/Containers_T.inl"
#endif /* __ACE_INLINE__ */

#if defined (ACE_TEMPLATES_REQUIRE_SOURCE)
#include "ace/Containers_T.cpp"
#endif /* ACE_TEMPLATES_REQUIRE_SOURCE */

#if defined (ACE_TEMPLATES_REQUIRE_PRAGMA)
#pragma implementation ("Containers_T.cpp")
#endif /* ACE_TEMPLATES_REQUIRE_PRAGMA */

#include /**/ "ace/post.h"

#endif /* ACE_CONTAINERS_T_H */