/usr/bin/last-dotplot is in last-align 393-1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 | #! /usr/bin/env python
# Read pair-wise alignments in MAF or LAST tabular format: write an
# "Oxford grid", a.k.a. dotplot.
# TODO: Currently, pixels with zero aligned nt-pairs are white, and
# pixels with one or more aligned nt-pairs are black. This can look
# too crowded for large genome alignments. I tried shading each pixel
# according to the number of aligned nt-pairs within it, but the
# result is too faint. How can this be done better?
import sys, os, re, itertools, optparse
import Image, ImageDraw, ImageFont, ImageColor
my_name = os.path.basename(sys.argv[0])
usage = """
%prog --help
%prog [options] last-tabular-output dotplot.png
%prog [options] last-tabular-output dotplot.gif
etc."""
parser = optparse.OptionParser(usage=usage)
# Replace "width" & "height" with a single "length" option?
parser.add_option("-x", "--width", type="int", dest="width", default=1000,
help="maximum width in pixels (default: %default)")
parser.add_option("-y", "--height", type="int", dest="height", default=1000,
help="maximum height in pixels (default: %default)")
parser.add_option("-f", "--fontfile", dest="fontfile",
help="TrueType or OpenType font file")
parser.add_option("-s", "--fontsize", type="int", dest="fontsize", default=11,
help="TrueType or OpenType font size (default: %default)")
parser.add_option("-c", "--forwardcolor", dest="forwardcolor", default="red",
help="Color for forward alignments (default: %default)")
parser.add_option("-r", "--reversecolor", dest="reversecolor", default="blue",
help="Color for reverse alignments (default: %default)")
(opts, args) = parser.parse_args()
if len(args) != 2: parser.error("2 arguments needed")
if opts.fontfile: font = ImageFont.truetype(opts.fontfile, opts.fontsize)
else: font = ImageFont.load_default()
# Make these options too?
text_color = "black"
background_color = "white"
pix_tween_seqs = 2 # number of border pixels between sequences
border_shade = 239, 239, 239 # the shade of grey to use for border pixels
label_space = 5 # minimum number of pixels between axis labels
image_mode = 'RGB'
forward_color = ImageColor.getcolor(opts.forwardcolor, image_mode)
reverse_color = ImageColor.getcolor(opts.reversecolor, image_mode)
overlap_color = tuple([(i+j)//2 for i, j in zip(forward_color, reverse_color)])
def isGapless(alignmentColumn):
return "-" not in alignmentColumn
def matchAndInsertLengths(alignmentColumns):
for k, v in itertools.groupby(alignmentColumns, isGapless):
if k:
matchLength = sum(1 for i in v)
yield str(matchLength)
else:
blockRows = itertools.izip(*v)
insertLengths = (len(i) - i.count("-") for i in blockRows)
yield ":".join(map(str, insertLengths))
def alignmentInput(lines): # read alignments in either tabular or MAF format
for line in lines:
w = line.split()
if line[0].isdigit(): # tabular format
yield w
elif line[0] == "a": # MAF format
sLines = []
elif line[0] == "s": # MAF format
sLines.append(w)
if len(sLines) == 2:
alignmentRows = (i[6] for i in sLines)
alignmentColumns = itertools.izip(*alignmentRows)
blocks = ",".join(matchAndInsertLengths(alignmentColumns))
yield sLines[0][0:6] + sLines[1][1:6] + [blocks]
seq_size_dic1 = {} # sizes of the first set of sequences
seq_size_dic2 = {} # sizes of the second set of sequences
alignments = []
f = open(args[0])
sys.stderr.write(my_name + ": reading alignments...\n")
for w in alignmentInput(f):
seq1, pos1, strand1, size1 = w[1], int(w[2]), w[4], int(w[5])
seq2, pos2, strand2, size2 = w[6], int(w[7]), w[9], int(w[10])
blocks = w[11]
seq_size_dic1[seq1] = size1
seq_size_dic2[seq2] = size2
aln = seq1, seq2, pos1, pos2, strand1, strand2, blocks
alignments.append(aln)
sys.stderr.write(my_name + ": done\n")
f.close()
if not alignments:
sys.exit(my_name + ": there are no alignments")
def natural_sort_key(my_string):
'''Return a sort key for "natural" ordering, e.g. chr9 < chr10.'''
parts = re.split(r'(\d+)', my_string)
parts[1::2] = map(int, parts[1::2])
return parts
def get_text_sizes(my_strings):
'''Get widths & heights, in pixels, of some strings.'''
if opts.fontsize == 0: return [(0, 0) for i in my_strings]
image_size = 1, 1
im = Image.new(image_mode, image_size)
draw = ImageDraw.Draw(im)
return [draw.textsize(i, font=font) for i in my_strings]
def get_seq_info(seq_size_dic):
'''Return miscellaneous information about the sequences.'''
seq_names = seq_size_dic.keys()
seq_names.sort(key=natural_sort_key)
seq_sizes = [seq_size_dic[i] for i in seq_names]
name_sizes = get_text_sizes(seq_names)
margin = max(zip(*name_sizes)[1]) # maximum text height
return seq_names, seq_sizes, name_sizes, margin
seq_names1, seq_sizes1, name_sizes1, margin1 = get_seq_info(seq_size_dic1)
seq_names2, seq_sizes2, name_sizes2, margin2 = get_seq_info(seq_size_dic2)
def div_ceil(x, y):
'''Return x / y rounded up.'''
q, r = divmod(x, y)
return q + (r != 0)
def tot_seq_pix(seq_sizes, bp_per_pix):
'''Return the total pixels needed for sequences of the given sizes.'''
return sum([div_ceil(i, bp_per_pix) for i in seq_sizes])
def get_bp_per_pix(seq_sizes, pix_limit):
'''Get the minimum bp-per-pixel that fits in the size limit.'''
seq_num = len(seq_sizes)
seq_pix_limit = pix_limit - pix_tween_seqs * (seq_num - 1)
if seq_pix_limit < seq_num:
sys.exit(my_name + ": can't fit the image: too many sequences?")
lower_bound = div_ceil(sum(seq_sizes), seq_pix_limit)
for bp_per_pix in itertools.count(lower_bound): # slow linear search
if tot_seq_pix(seq_sizes, bp_per_pix) <= seq_pix_limit: break
return bp_per_pix
sys.stderr.write(my_name + ": choosing bp per pixel...\n")
bp_per_pix1 = get_bp_per_pix(seq_sizes1, opts.width - margin1)
bp_per_pix2 = get_bp_per_pix(seq_sizes2, opts.height - margin2)
bp_per_pix = max(bp_per_pix1, bp_per_pix2)
sys.stderr.write(my_name + ": bp per pixel = " + str(bp_per_pix) + "\n")
def get_seq_starts(seq_pix, pix_tween_seqs, margin):
'''Get the start pixel for each sequence.'''
seq_starts = []
pix_tot = margin - pix_tween_seqs
for i in seq_pix:
pix_tot += pix_tween_seqs
seq_starts.append(pix_tot)
pix_tot += i
return seq_starts
def get_pix_info(seq_sizes, margin):
'''Return pixel information about the sequences.'''
seq_pix = [div_ceil(i, bp_per_pix) for i in seq_sizes]
seq_starts = get_seq_starts(seq_pix, pix_tween_seqs, margin)
tot_pix = seq_starts[-1] + seq_pix[-1]
return seq_pix, seq_starts, tot_pix
seq_pix1, seq_starts1, width = get_pix_info(seq_sizes1, margin1)
seq_pix2, seq_starts2, height = get_pix_info(seq_sizes2, margin2)
seq_start_dic1 = dict(zip(seq_names1, seq_starts1))
seq_start_dic2 = dict(zip(seq_names2, seq_starts2))
hits = [0] * (width * height) # the image data
sys.stderr.write(my_name + ": processing alignments...\n")
for aln in alignments:
seq1, seq2, pos1, pos2, strand1, strand2, blocks = aln
last1 = seq_size_dic1[seq1] - 1
last2 = seq_size_dic2[seq2] - 1
seq_start1 = seq_start_dic1[seq1]
seq_start2 = seq_start_dic2[seq2]
my_start = seq_start2 * width + seq_start1
if strand1 == strand2: store_value = 1
else: store_value = 2
for i in blocks.split(","):
if ":" in i: # it's a gap region: skip over it
insertLength1, insertLength2 = i.split(":")
pos1 += int(insertLength1)
pos2 += int(insertLength2)
else: # it's a match region: draw pixels for it
matchLength = int(i)
end1 = pos1 + matchLength
end2 = pos2 + matchLength
if strand1 == '+': j = xrange(pos1, end1)
else: j = xrange(last1 - pos1, last1 - end1, -1)
if strand2 == '+': k = xrange(pos2, end2)
else: k = xrange(last2 - pos2, last2 - end2, -1)
for real_pos1, real_pos2 in itertools.izip(j, k):
pix1 = real_pos1 // bp_per_pix
pix2 = real_pos2 // bp_per_pix
hits[my_start + pix2 * width + pix1] |= store_value
pos1 = end1
pos2 = end2
sys.stderr.write(my_name + ": done\n")
def make_label(text, text_size, range_start, range_size):
'''Return an axis label with endpoint & sort-order information.'''
text_width = text_size[0]
label_start = range_start + (range_size - text_width) // 2
label_end = label_start + text_width
sort_key = text_width - range_size
return sort_key, label_start, label_end, text
def get_nonoverlapping_labels(labels):
'''Get a subset of non-overlapping axis labels, greedily.'''
nonoverlapping_labels = []
for i in labels:
if True not in [i[1] < j[2] + label_space and j[1] < i[2] + label_space
for j in nonoverlapping_labels]:
nonoverlapping_labels.append(i)
return nonoverlapping_labels
def get_axis_image(seq_names, name_sizes, seq_starts, seq_pix):
'''Make an image of axis labels.'''
min_pos = seq_starts[0]
max_pos = seq_starts[-1] + seq_pix[-1]
height = max(zip(*name_sizes)[1])
labels = [make_label(i, j, k, l) for i, j, k, l in
zip(seq_names, name_sizes, seq_starts, seq_pix)]
labels = [i for i in labels if i[1] >= min_pos and i[2] <= max_pos]
labels.sort()
labels = get_nonoverlapping_labels(labels)
image_size = max_pos, height
im = Image.new(image_mode, image_size, border_shade)
draw = ImageDraw.Draw(im)
for i in labels:
position = i[1], 0
draw.text(position, i[3], font=font, fill=text_color)
return im
image_size = width, height
im = Image.new(image_mode, image_size, background_color)
for i in range(height):
for j in range(width):
store_value = hits[i * width + j]
xy = j, i
if store_value == 1: im.putpixel(xy, forward_color)
elif store_value == 2: im.putpixel(xy, reverse_color)
elif store_value == 3: im.putpixel(xy, overlap_color)
if opts.fontsize != 0:
axis1 = get_axis_image(seq_names1, name_sizes1, seq_starts1, seq_pix1)
axis2 = get_axis_image(seq_names2, name_sizes2, seq_starts2, seq_pix2)
axis2 = axis2.rotate(270)
im.paste(axis1, (0, 0))
im.paste(axis2, (0, 0))
for i in seq_starts1[1:]:
box = i - pix_tween_seqs, margin2, i, height
im.paste(border_shade, box)
for i in seq_starts2[1:]:
box = margin1, i - pix_tween_seqs, width, i
im.paste(border_shade, box)
im.save(args[1])
|