/usr/share/julia/base/math.jl is in julia 0.2.1+dfsg-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 | module Math
export sin, cos, tan, sinh, cosh, tanh, asin, acos, atan,
asinh, acosh, atanh, sec, csc, cot, asec, acsc, acot,
sech, csch, coth, asech, acsch, acoth,
sinpi, cospi, sinc, cosc,
cosd, cotd, cscd, secd, sind, tand,
acosd, acotd, acscd, asecd, asind, atand, atan2,
radians2degrees, degrees2radians,
log, log2, log10, log1p, exponent, exp, exp2, exp10, expm1,
cbrt, sqrt, erf, erfc, erfcx, erfi, dawson,
ceil, floor, trunc, round, significand,
lgamma, hypot, gamma, lfact, max, min, ldexp, frexp,
clamp, modf, ^,
airy, airyai, airyprime, airyaiprime, airybi, airybiprime,
besselj0, besselj1, besselj, bessely0, bessely1, bessely,
hankelh1, hankelh2, besseli, besselk, besselh,
beta, lbeta, eta, zeta, polygamma, invdigamma, digamma, trigamma,
erfinv, erfcinv
import Base: log, exp, sin, cos, tan, sinh, cosh, tanh, asin,
acos, atan, asinh, acosh, atanh, sqrt, log2, log10,
max, min, ceil, floor, trunc, round, ^, exp2, exp10
import Core.Intrinsics.nan_dom_err
# non-type specific math functions
clamp(x::Real, lo::Real, hi::Real) = (x > hi ? hi : (x < lo ? lo : x))
clamp{T<:Real}(x::AbstractArray{T,1}, lo::Real, hi::Real) = [clamp(xx, lo, hi) for xx in x]
clamp{T<:Real}(x::AbstractArray{T,2}, lo::Real, hi::Real) =
[clamp(x[i,j], lo, hi) for i in 1:size(x,1), j in 1:size(x,2)]
clamp{T<:Real}(x::AbstractArray{T}, lo::Real, hi::Real) =
reshape([clamp(xx, lo, hi) for xx in x], size(x))
function sinpi(x::Real)
if isinf(x)
return throw(DomainError())
elseif isnan(x)
return nan(x)
end
rx = float(rem(x,2))
arx = abs(rx)
if arx == 0.0
# return -0.0 iff x == -0.0
return x == 0.0 ? x : arx
elseif arx < 0.25
return sin(pi*rx)
elseif arx <= 0.75
arx = 0.5 - arx
return copysign(cos(pi*arx),rx)
elseif arx < 1.25
rx = copysign(1.0,rx) - rx
return sin(pi*rx)
elseif arx <= 1.75
arx = 1.5 - arx
return -copysign(cos(pi*arx),rx)
else
rx = rx - copysign(2.0,rx)
return sin(pi*rx)
end
end
function cospi(x::Real)
if isinf(x)
return throw(DomainError())
elseif isnan(x)
return nan(x)
end
rx = abs(float(rem(x,2)))
if rx <= 0.25
return cos(pi*rx)
elseif rx < 0.75
rx = 0.5 - rx
return sin(pi*rx)
elseif rx <= 1.25
rx = 1.0 - rx
return -cos(pi*rx)
elseif rx < 1.75
rx = rx - 1.5
return sin(pi*rx)
else
rx = 2.0 - rx
return cos(pi*rx)
end
end
sinpi(x::Integer) = zero(x)
cospi(x::Integer) = isodd(x) ? -one(x) : one(x)
function sinpi(z::Complex)
zr, zi = reim(z)
if !isfinite(zi) && zr == 0 return complex(zr, zi) end
if isnan(zr) && !isfinite(zi) return complex(zr, zi) end
if !isfinite(zr) && zi == 0 return complex(oftype(zr, NaN), zi) end
if !isfinite(zr) && isfinite(zi) return complex(oftype(zr, NaN), oftype(zi, NaN)) end
if !isfinite(zr) && !isfinite(zi) return complex(zr, oftype(zi, NaN)) end
pizi = pi*zi
complex(sinpi(zr)*cosh(pizi), cospi(zr)*sinh(pizi))
end
function cospi(z::Complex)
zr, zi = reim(z)
if !isfinite(zi) && zr == 0
return complex(isnan(zi) ? zi : oftype(zi, Inf),
isnan(zi) ? zr : zr*-sign(zi))
end
if !isfinite(zr) && isinf(zi)
return complex(oftype(zr, Inf), oftype(zi, NaN))
end
if isinf(zr)
return complex(oftype(zr, NaN), zi==0 ? -copysign(zi, zr) : oftype(zi, NaN))
end
if isnan(zr) && zi==0 return complex(zr, abs(zi)) end
pizi = pi*zi
complex(cospi(zr)*cosh(pizi), -sinpi(zr)*sinh(pizi))
end
@vectorize_1arg Number sinpi
@vectorize_1arg Number cospi
sinc(x::Number) = x==0 ? one(x) : oftype(x,sinpi(x)/(pi*x))
sinc(x::Integer) = x==0 ? one(x) : zero(x)
sinc{T<:Integer}(x::Complex{T}) = sinc(float(x))
@vectorize_1arg Number sinc
cosc(x::Number) = x==0 ? zero(x) : oftype(x,(cospi(x)-sinpi(x)/(pi*x))/x)
cosc(x::Integer) = cosc(float(x))
cosc{T<:Integer}(x::Complex{T}) = cosc(float(x))
@vectorize_1arg Number cosc
radians2degrees(z::Real) = oftype(z, 57.29577951308232*z)
degrees2radians(z::Real) = oftype(z, 0.017453292519943295*z)
radians2degrees(z::Integer) = radians2degrees(float(z))
degrees2radians(z::Integer) = degrees2radians(float(z))
@vectorize_1arg Real radians2degrees
@vectorize_1arg Real degrees2radians
for (finv, f) in ((:sec, :cos), (:csc, :sin), (:cot, :tan),
(:sech, :cosh), (:csch, :sinh), (:coth, :tanh),
(:secd, :cosd), (:cscd, :sind), (:cotd, :tand))
@eval begin
($finv)(z) = 1 ./ (($f)(z))
end
end
for (fa, fainv) in ((:asec, :acos), (:acsc, :asin), (:acot, :atan),
(:asech, :acosh), (:acsch, :asinh), (:acoth, :atanh))
@eval begin
($fa)(y) = ($fainv)(1 ./ y)
end
end
function sind(x::Real)
if isinf(x)
return throw(DomainError())
elseif isnan(x)
return nan(x)
end
rx = rem(x,360.0)
arx = abs(rx)
if arx == 0.0
# return -0.0 iff x == -0.0
return x == 0.0 ? x : arx
elseif arx < 45.0
return sin(degrees2radians(rx))
elseif arx <= 135.0
arx = 90.0 - arx
return copysign(cos(degrees2radians(arx)),rx)
elseif arx < 225.0
rx = copysign(180.0,rx) - rx
return sin(degrees2radians(rx))
elseif arx <= 315.0
arx = 270.0 - arx
return -copysign(cos(degrees2radians(arx)),rx)
else
rx = rx - copysign(360.0,rx)
return sin(degrees2radians(rx))
end
end
@vectorize_1arg Real sind
function cosd(x::Real)
if isinf(x)
return throw(DomainError())
elseif isnan(x)
return nan(x)
end
rx = abs(rem(x,360.0))
if rx <= 45.0
return cos(degrees2radians(rx))
elseif rx < 135.0
rx = 90.0 - rx
return sin(degrees2radians(rx))
elseif rx <= 225.0
rx = 180.0 - rx
return -cos(degrees2radians(rx))
elseif rx < 315.0
rx = rx - 270.0
return sin(degrees2radians(rx))
else
rx = 360.0 - rx
return cos(degrees2radians(rx))
end
end
@vectorize_1arg Real cosd
tand(x::Real) = sind(x) / cosd(x)
@vectorize_1arg Real tand
for (fd, f) in ((:sind, :sin), (:cosd, :cos), (:tand, :tan))
@eval begin
($fd)(z) = ($f)(degrees2radians(z))
end
end
for (fd, f) in ((:asind, :asin), (:acosd, :acos), (:atand, :atan),
(:asecd, :asec), (:acscd, :acsc), (:acotd, :acot))
@eval begin
($fd)(y) = radians2degrees(($f)(y))
@vectorize_1arg Real $fd
end
end
log(b,x) = log(x)/log(b)
hypot(x::Real, y::Real) = hypot(promote(x,y)...)
function hypot{T<:Real}(x::T, y::T)
x = abs(x)
y = abs(y)
if x < y
x, y = y, x
end
if x == 0
r = y/one(x)
else
r = y/x
end
x * sqrt(one(r)+r*r)
end
# type specific math functions
const libm = Base.libm_name
const openlibm_extras = "libopenlibm-extras"
# functions with no domain error
for f in (:cbrt, :sinh, :cosh, :tanh, :atan, :asinh, :exp, :erf, :erfc, :exp2, :expm1)
@eval begin
($f)(x::Float64) = ccall(($(string(f)),libm), Float64, (Float64,), x)
($f)(x::Float32) = ccall(($(string(f,"f")),libm), Float32, (Float32,), x)
($f)(x::Real) = ($f)(float(x))
@vectorize_1arg Number $f
end
end
# fallback definitions to prevent infinite loop from $f(x::Real) def above
cbrt(x::FloatingPoint) = x^(1//3)
exp2(x::FloatingPoint) = 2^x
for f in (:sinh, :cosh, :tanh, :atan, :asinh, :exp, :erf, :erfc, :expm1)
@eval ($f)(x::FloatingPoint) = error("not implemented for ", typeof(x))
end
# TODO: GNU libc has exp10 as an extension; should openlibm?
exp10(x::Float64) = 10.0^x
exp10(x::Float32) = 10.0f0^x
exp10(x::Integer) = exp10(float(x))
@vectorize_1arg Number exp10
# functions that return NaN on non-NaN argument for domain error
for f in (:sin, :cos, :tan, :asin, :acos, :acosh, :atanh, :log, :log2, :log10,
:lgamma, :sqrt, :log1p)
@eval begin
($f)(x::Float64) = nan_dom_err(ccall(($(string(f)),libm), Float64, (Float64,), x), x)
($f)(x::Float32) = nan_dom_err(ccall(($(string(f,"f")),libm), Float32, (Float32,), x), x)
($f)(x::Real) = ($f)(float(x))
@vectorize_1arg Number $f
end
end
for f in (:ceil, :trunc, :significand) # :rint, :nearbyint
@eval begin
($f)(x::Float64) = ccall(($(string(f)),libm), Float64, (Float64,), x)
($f)(x::Float32) = ccall(($(string(f,"f")),libm), Float32, (Float32,), x)
@vectorize_1arg Real $f
end
end
round(x::Float32) = ccall((:roundf, libm), Float32, (Float32,), x)
@vectorize_1arg Real round
floor(x::Float32) = ccall((:floorf, libm), Float32, (Float32,), x)
@vectorize_1arg Real floor
atan2(x::Real, y::Real) = atan2(promote(float(x),float(y))...)
atan2{T<:FloatingPoint}(x::T, y::T) = Base.no_op_err("atan2", T)
for f in (:atan2, :hypot)
@eval begin
($f)(x::Float64, y::Float64) = ccall(($(string(f)),libm), Float64, (Float64, Float64,), x, y)
($f)(x::Float32, y::Float32) = ccall(($(string(f,"f")),libm), Float32, (Float32, Float32), x, y)
@vectorize_2arg Number $f
end
end
gamma(x::Float64) = nan_dom_err(ccall((:tgamma,libm), Float64, (Float64,), x), x)
gamma(x::Float32) = nan_dom_err(ccall((:tgammaf,libm), Float32, (Float32,), x), x)
gamma(x::Real) = gamma(float(x))
@vectorize_1arg Number gamma
function lgamma_r(x::Float64)
signp = Array(Int32, 1)
y = ccall((:lgamma_r,libm), Float64, (Float64, Ptr{Int32}), x, signp)
return y, signp[1]
end
function lgamma_r(x::Float32)
signp = Array(Int32, 1)
y = ccall((:lgamma_r,libm), Float32, (Float32, Ptr{Int32}), x, signp)
return y, signp[1]
end
lgamma_r(x::Real) = lgamma_r(float(x))
lfact(x::Real) = (x<=1 ? zero(float(x)) : lgamma(x+one(x)))
@vectorize_1arg Number lfact
max(x::Float64, y::Float64) = ccall((:fmax,libm), Float64, (Float64,Float64), x, y)
max(x::Float32, y::Float32) = ccall((:fmaxf,libm), Float32, (Float32,Float32), x, y)
@vectorize_2arg Real max
min(x::Float64, y::Float64) = ccall((:fmin,libm), Float64, (Float64,Float64), x, y)
min(x::Float32, y::Float32) = ccall((:fminf,libm), Float32, (Float32,Float32), x, y)
@vectorize_2arg Real min
function exponent(x::Float64)
if x==0 || !isfinite(x)
throw(DomainError())
end
int(ccall((:ilogb,libm), Int32, (Float64,), x))
end
function exponent(x::Float32)
if x==0 || !isfinite(x)
throw(DomainError())
end
int(ccall((:ilogbf,libm), Int32, (Float32,), x))
end
@vectorize_1arg Real exponent
ldexp(x::Float64,e::Int) = ccall((:scalbn,libm), Float64, (Float64,Int32), x, int32(e))
ldexp(x::Float32,e::Int) = ccall((:scalbnf,libm), Float32, (Float32,Int32), x, int32(e))
# TODO: vectorize ldexp
begin
local exp::Array{Int32,1} = zeros(Int32,1)
global frexp
function frexp(x::Float64)
s = ccall((:frexp,libm), Float64, (Float64, Ptr{Int32}), x, exp)
(s, int(exp[1]))
end
function frexp(x::Float32)
s = ccall((:frexpf,libm), Float32, (Float32, Ptr{Int32}), x, exp)
(s, int(exp[1]))
end
function frexp(A::Array{Float64})
f = similar(A)
e = Array(Int, size(A))
for i = 1:length(A)
f[i] = ccall((:frexp,libm), Float64, (Float64, Ptr{Int32}), A[i], exp)
e[i] = exp[1]
end
return (f, e)
end
function frexp(A::Array{Float32})
f = similar(A)
e = Array(Int, size(A))
for i = 1:length(A)
f[i] = ccall((:frexpf,libm), Float32, (Float32, Ptr{Int32}), A[i], exp)
e[i] = exp[1]
end
return (f, e)
end
end
modf(x) = rem(x,one(x)), trunc(x)
^(x::Float64, y::Float64) = ccall((:pow,libm), Float64, (Float64,Float64), x, y)
^(x::Float32, y::Float32) = ccall((:powf,libm), Float32, (Float32,Float32), x, y)
^(x::Float64, y::Integer) = x^float64(y)
^(x::Float32, y::Integer) = x^float32(y)
# special functions
for jy in ("j","y"), nu in (0,1)
jynu = Expr(:quote, symbol(string(jy,nu)))
jynuf = Expr(:quote, symbol(string(jy,nu,"f")))
bjynu = symbol(string("bessel",jy,nu))
if jy == "y"
@eval begin
$bjynu(x::Float64) = nan_dom_err(ccall(($jynu,libm), Float64, (Float64,), x), x)
$bjynu(x::Float32) = nan_dom_err(ccall(($jynuf,libm), Float32, (Float32,), x), x)
end
else
@eval begin
$bjynu(x::Float64) = ccall(($jynu,libm), Float64, (Float64,), x)
$bjynu(x::Float32) = ccall(($jynuf,libm), Float32, (Float32,), x)
end
end
@eval begin
$bjynu(x::Real) = $bjynu(float(x))
$bjynu(x::Complex) = $(symbol(string("bessel",jy)))($nu,x)
@vectorize_1arg Number $bjynu
end
end
let
const ai::Array{Float64,1} = Array(Float64,2)
const ae::Array{Int32,1} = Array(Int32,2)
global airy
function airy(k::Int, z::Complex128)
id = int32(k==1 || k==3)
if k == 0 || k == 1
ccall((:zairy_,openlibm_extras), Void,
(Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32},
Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32}),
&real(z), &imag(z),
&id, &1,
pointer(ai,1), pointer(ai,2),
pointer(ae,1), pointer(ae,2))
return complex(ai[1],ai[2])
elseif k == 2 || k == 3
ccall((:zbiry_,openlibm_extras), Void,
(Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32},
Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32}),
&real(z), &imag(z),
&id, &1,
pointer(ai,1), pointer(ai,2),
pointer(ae,1), pointer(ae,2))
return complex(ai[1],ai[2])
else
error("airy: invalid argument")
end
end
end
airy(z) = airy(0,z)
@vectorize_1arg Number airy
airyprime(z) = airy(1,z)
@vectorize_1arg Number airyprime
airyai(z) = airy(0,z)
@vectorize_1arg Number airyai
airyaiprime(z) = airy(1,z)
@vectorize_1arg Number airyaiprime
airybi(z) = airy(2,z)
@vectorize_1arg Number airybi
airybiprime(z) = airy(3,z)
@vectorize_1arg Number airybiprime
airy(k::Number, x::FloatingPoint) = oftype(x, real(airy(k, complex(x))))
airy(k::Number, x::Real) = airy(k, float(x))
airy(k::Number, z::Complex64) = complex64(airy(k, complex128(z)))
airy(k::Number, z::Complex) = airy(convert(Int,k), complex128(z))
@vectorize_2arg Number airy
const cy = Array(Float64,2)
const ae = Array(Int32,2)
const wrk = Array(Float64,2)
function _besselh(nu::Float64, k::Integer, z::Complex128)
ccall((:zbesh_,openlibm_extras), Void,
(Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32},
Ptr{Int32}, Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32}),
&real(z), &imag(z), &nu, &1, &k, &1,
pointer(cy,1), pointer(cy,2),
pointer(ae,1), pointer(ae,2))
return complex(cy[1],cy[2])
end
function _besseli(nu::Float64, z::Complex128)
ccall((:zbesi_,openlibm_extras), Void,
(Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32},
Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32}),
&real(z), &imag(z), &nu, &1, &1,
pointer(cy,1), pointer(cy,2),
pointer(ae,1), pointer(ae,2))
return complex(cy[1],cy[2])
end
function _besselj(nu::Float64, z::Complex128)
ccall((:zbesj_,openlibm_extras), Void,
(Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32},
Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32}),
&real(z), &imag(z), &nu, &1, &1,
pointer(cy,1), pointer(cy,2),
pointer(ae,1), pointer(ae,2))
return complex(cy[1],cy[2])
end
function _besselk(nu::Float64, z::Complex128)
ccall((:zbesk_,openlibm_extras), Void,
(Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32},
Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32}),
&real(z), &imag(z), &nu, &1, &1,
pointer(cy,1), pointer(cy,2),
pointer(ae,1), pointer(ae,2))
return complex(cy[1],cy[2])
end
function _bessely(nu::Float64, z::Complex128)
ccall((:zbesy_,openlibm_extras), Void,
(Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Int32},
Ptr{Int32}, Ptr{Float64}, Ptr{Float64}, Ptr{Int32},
Ptr{Float64}, Ptr{Float64}, Ptr{Int32}),
&real(z), &imag(z), &nu, &1, &1,
pointer(cy,1), pointer(cy,2),
pointer(ae,1), pointer(wrk,1),
pointer(wrk,2), pointer(ae,2))
return complex(cy[1],cy[2])
end
function besselh(nu::Float64, k::Integer, z::Complex128)
if nu < 0
s = (k == 1) ? 1 : -1
return _besselh(-nu, k, z) * complex(cospi(nu),-s*sinpi(nu))
end
return _besselh(nu, k, z)
end
function besseli(nu::Float64, z::Complex128)
if nu < 0
return _besseli(-nu,z) - 2_besselk(-nu,z)*sinpi(nu)/pi
else
return _besseli(nu, z)
end
end
function besselj(nu::Float64, z::Complex128)
if nu < 0
return _besselj(-nu,z)cos(pi*nu) + _bessely(-nu,z)*sinpi(nu)
else
return _besselj(nu, z)
end
end
function besselj(nu::Integer, x::FloatingPoint)
return oftype(x, ccall((:jn, libm), Float64, (Cint, Float64), nu, x))
end
function besselj(nu::Integer, x::Float32)
return ccall((:jnf, libm), Float32, (Cint, Float32), nu, x)
end
besselk(nu::Float64, z::Complex128) = _besselk(abs(nu), z)
function bessely(nu::Float64, z::Complex128)
if nu < 0
return _bessely(-nu,z)*cospi(nu) - _besselj(-nu,z)*sinpi(nu)
else
return _bessely(nu, z)
end
end
besselh(nu, z) = besselh(nu, 1, z)
besselh(nu::Real, k::Integer, z::Complex64) = complex64(besselh(float64(nu), k, complex128(z)))
besselh(nu::Real, k::Integer, z::Complex) = besselh(float64(nu), k, complex128(z))
besselh(nu::Real, k::Integer, x::Real) = besselh(float64(nu), k, complex128(x))
@vectorize_2arg Number besselh
besseli(nu::Real, z::Complex64) = complex64(bessely(float64(nu), complex128(z)))
besseli(nu::Real, z::Complex) = besseli(float64(nu), complex128(z))
besseli(nu::Real, x::Integer) = besseli(nu, float64(x))
function besseli(nu::Real, x::FloatingPoint)
if x < 0 && !isinteger(nu)
throw(DomainError())
end
oftype(x, real(besseli(float64(nu), complex128(x))))
end
@vectorize_2arg Number besseli
function besselj(nu::FloatingPoint, x::FloatingPoint)
if isinteger(nu)
if typemin(Int32) <= nu <= typemax(Int32)
return besselj(int(nu), x)
end
elseif x < 0
throw(DomainError())
end
oftype(x, real(besselj(float64(nu), complex128(x))))
end
besselj(nu::Real, z::Complex64) = complex64(besselj(float64(nu), complex128(z)))
besselj(nu::Real, z::Complex) = besselj(float64(nu), complex128(z))
besselj(nu::Real, x::Integer) = besselj(nu, float(x))
@vectorize_2arg Number besselj
besselk(nu::Real, z::Complex64) = complex64(besselk(float64(nu), complex128(z)))
besselk(nu::Real, z::Complex) = besselk(float64(nu), complex128(z))
besselk(nu::Real, x::Integer) = besselk(nu, float64(x))
function besselk(nu::Real, x::FloatingPoint)
if x < 0
throw(DomainError())
end
oftype(x, real(besselk(float64(nu), complex128(x))))
end
@vectorize_2arg Number besselk
bessely(nu::Real, z::Complex64) = complex64(bessely(float64(nu), complex128(z)))
bessely(nu::Real, z::Complex) = bessely(float64(nu), complex128(z))
bessely(nu::Real, x::Integer) = bessely(nu, float64(x))
function bessely(nu::Real, x::FloatingPoint)
if x < 0
throw(DomainError())
end
if isinteger(nu) && typemin(Int32) <= nu <= typemax(Int32)
return bessely(int(nu), x)
end
oftype(x, real(bessely(float64(nu), complex128(x))))
end
function bessely(nu::Integer, x::FloatingPoint)
if x < 0
throw(DomainError())
end
return oftype(x, ccall((:yn, libm), Float64, (Cint, Float64), nu, x))
end
function bessely(nu::Integer, x::Float32)
if x < 0
throw(DomainError())
end
return ccall((:ynf, libm), Float32, (Cint, Float32), nu, x)
end
@vectorize_2arg Number bessely
hankelh1(nu, z) = besselh(nu, 1, z)
@vectorize_2arg Number hankelh1
hankelh2(nu, z) = besselh(nu, 2, z)
@vectorize_2arg Number hankelh2
function angle_restrict_symm(theta)
P1 = 4 * 7.8539812564849853515625e-01
P2 = 4 * 3.7748947079307981766760e-08
P3 = 4 * 2.6951514290790594840552e-15
y = 2*floor(theta/(2*pi))
r = ((theta - y*P1) - y*P2) - y*P3
if (r > pi)
r -= (2*pi)
end
return r
end
const clg_coeff = [76.18009172947146,
-86.50532032941677,
24.01409824083091,
-1.231739572450155,
0.1208650973866179e-2,
-0.5395239384953e-5]
function clgamma_lanczos(z)
sqrt2pi = 2.5066282746310005
y = x = z
temp = x + 5.5
zz = log(temp)
zz = zz * (x+0.5)
temp -= zz
ser = complex(1.000000000190015, 0)
for j=1:6
y += 1.0
zz = clg_coeff[j]/y
ser += zz
end
zz = sqrt2pi*ser / x
return log(zz) - temp
end
function lgamma(z::Complex)
if real(z) <= 0.5
a = clgamma_lanczos(1-z)
b = log(sinpi(z))
logpi = 1.14472988584940017
z = logpi - b - a
else
z = clgamma_lanczos(z)
end
complex(real(z), angle_restrict_symm(imag(z)))
end
gamma(z::Complex) = exp(lgamma(z))
# Derivatives of the digamma function
function psifn(x::Float64, n::Int, kode::Int, m::Int)
# Translated from http://www.netlib.org/slatec/src/dpsifn.f
# Note: Underflow handling at 380 in original is skipped
const nmax = 100
ans = Array(Float64, m)
#-----------------------------------------------------------------------
# bernoulli numbers
#-----------------------------------------------------------------------
const b = [1.00000000000000000e+00,
-5.00000000000000000e-01,1.66666666666666667e-01,
-3.33333333333333333e-02,2.38095238095238095e-02,
-3.33333333333333333e-02,7.57575757575757576e-02,
-2.53113553113553114e-01,1.16666666666666667e+00,
-7.09215686274509804e+00,5.49711779448621554e+01,
-5.29124242424242424e+02,6.19212318840579710e+03,
-8.65802531135531136e+04,1.42551716666666667e+06,
-2.72982310678160920e+07,6.01580873900642368e+08,
-1.51163157670921569e+10,4.29614643061166667e+11,
-1.37116552050883328e+13,4.88332318973593167e+14,
-1.92965793419400681e+16]
trm = Array(Float64, 22)
trmr = Array(Float64, 100)
#***first executable statement dpsifn
if x <= 0.0 throw(DomainError()) end
if n < 0 error("n must be non-negative") end
if kode < 1 | kode > 2 error("kode must be one or two") end
if m < 1 error("m must be larger than one") end
mm = m
const nx = min(-exponent(realmin(Float64)) + 1, exponent(realmax(Float64)))
const r1m5 = log10(2)
const r1m4 = Base.eps(Float64) * 0.5
const wdtol = max(r1m4, 0.5e-18)
#-----------------------------------------------------------------------
# elim = approximate exponential over and underflow limit
#-----------------------------------------------------------------------
const elim = 2.302*(nx*r1m5 - 3.0)
xln = log(x)
nn = n + mm - 1
fn = nn
t = (fn + 1)*xln
#-----------------------------------------------------------------------
# overflow and underflow test for small and large x
#-----------------------------------------------------------------------
if abs(t) > elim
if t <= 0.0 error("n too large") end
error("Overflow, x too small or n+m-1 too large or both")
end
if x < wdtol
ans[1] = x^(-n - 1)
if mm != 1
k = 1
for i = 2:mm
ans[k + 1] = ans[k]/x
k += 1
end
end
if n != 0 return ans end
if kode == 2 ans[1] = ans[1] + xln end
return ans
end
#-----------------------------------------------------------------------
# compute xmin and the number of terms of the series, fln+1
#-----------------------------------------------------------------------
rln = r1m5 * precision(x)
rln = min(rln, 18.06)
fln = max(rln, 3.0) - 3.0
yint = 3.50 + 0.40*fln
slope = 0.21 + fln*(0.0006038*fln + 0.008677)
xm = yint + slope*fn
mx = itrunc(xm) + 1
xmin = mx
if n != 0
xm = -2.302*rln - min(0.0,xln)
arg = xm/n
arg = min(0.0,arg)
eps = exp(arg)
xm = 1.0 - eps
if abs(arg) < 1.0e-3 xm = -arg end
fln = x*xm/eps
xm = xmin - x
if (xm > 7.0) & (fln < 15.0)
nn = itrunc(fln) + 1
np = n + 1
t1 = (n + 1)*xln
t = exp(-t1)
s = t
den = x
for i = 1:nn
den += 1.0
trm[i] = den^(-np)
s += trm[i]
end
ans[1] = s
if n == 0
if kode == 2 ans[1] = s + xln end
end
if mm == 1 return ans end
#-----------------------------------------------------------------------
# generate higher derivatives, j.gt.n
#-----------------------------------------------------------------------
tol = wdtol/5.0
for j = 2:mm
t = t/x
s = t
tols = t*tol
den = x
for i = 1:nn
den += 1.0
trm[i] = trm[i]/den
s += trm[i]
if trm[i] < tols break end
end
ans[j] = s
end
return ans
end
end
xdmy = x
xdmln = xln
xinc = 0.0
if x < xmin
nx = itrunc(x)
xinc = xmin - nx
xdmy = x + xinc
xdmln = log(xdmy)
end
#-----------------------------------------------------------------------
# generate w(n+mm-1,x) by the asymptotic expansion
#-----------------------------------------------------------------------
t = fn*xdmln
t1 = xdmln + xdmln
t2 = t + xdmln
tk = max(abs(t), abs(t1), abs(t2))
if tk > elim error("Underflow") end
tss = exp(-t)
tt = 0.5/xdmy
t1 = tt
tst = wdtol*tt
if nn != 0 t1 = tt + 1.0/fn end
rxsq = 1.0/(xdmy*xdmy)
ta = 0.5*rxsq
t = (fn + 1)*ta
s = t*b[3]
if abs(s) >= tst
tk = 2.0
for k = 4:22
t = t*((tk + fn + 1)/(tk + 1.0))*((tk + fn)/(tk + 2.0))*rxsq
trm[k] = t*b[k]
if abs(trm[k]) < tst break end
s += trm[k]
tk += 2.0
end
end
s = (s + t1)*tss
while true
if xinc != 0.0
#-----------------------------------------------------------------------
# backward recur from xdmy to x
#-----------------------------------------------------------------------
nx = itrunc(xinc)
np = nn + 1
if nx > nmax error("n too large") end
if nn == 0 break end
xm = xinc - 1.0
fx = x + xm
#-----------------------------------------------------------------------
# this loop should not be changed. fx is accurate when x is small
#-----------------------------------------------------------------------
for i = 1:nx
trmr[i] = fx^(-np)
s += trmr[i]
xm -= 1.0
fx = x + xm
end
end
ans[mm] = s
if fn == 0
if kode != 2
ans[1] = s - xdmln
return ans
end
if xdmy == x return ans end
xq = xdmy/x
ans[1] = s - log(xq)
return ans
end
#-----------------------------------------------------------------------
# generate lower derivatives, j.lt.n+mm-1
#-----------------------------------------------------------------------
if mm == 1 return ans end
for j = 2:mm
fn -= 1
tss *= xdmy
t1 = tt
if fn != 0 t1 = tt + 1.0/fn end
t = (fn + 1)*ta
s = t*b[3]
if abs(s) >= tst
tk = 4 + fn
for k = 4:22 #110
trm[k] = trm[k]*(fn + 1)/tk
if abs(trm[k]) < tst break end
s += trm[k]
tk += 2.0
end
end
s = (s + t1)*tss
if xinc != 0.0
if fn == 0 break end
xm = xinc - 1.0
fx = x + xm
for i = 1:nx
trmr[i] = trmr[i]*fx
s += trmr[i]
xm -= 1.0
fx = x + xm
end
end
mx = mm - j + 1
ans[mx] = s
if fn == 0
if kode != 2
ans[1] = s - xdmln
return ans
end
if xdmy == x return ans end
xq = xdmy/x
ans[1] = s - log(xq)
return ans
end
end
if fn == 0 break end
return ans
end
#-----------------------------------------------------------------------
# recursion for n = 0
#-----------------------------------------------------------------------
for i = 1:nx
s += 1.0/(x + nx - i)
end
if kode != 2
ans[1] = s - xdmln
return ans
end
if xdmy == x return ans end
xq = xdmy/x
ans[1] = s - log(xq)
return ans
end
polygamma(k::Int, x::Float64) = (2rem(k,2) - 1)*psifn(x, k, 1, 1)[1]/gamma(k + 1)
polygamma(k::Int, x::Float32) = float32(polygamma(k, float64(x)))
polygamma(k::Int, x::Real) = polygamma(k, float64(x))
digamma(x::Real) = polygamma(0, x)
@vectorize_1arg Real digamma
trigamma(x::Real) = polygamma(1, x)
@vectorize_1arg Real trigamma
# Inverse digamma function
#
# Implementation of fixed point algorithm described in
# "Estimating a Dirichlet distribution" by Thomas P. Minka, 2000
function invdigamma(y::Float64)
# Closed form initial estimates
if y >= -2.22
x_old = exp(y) + 0.5
x_new = x_old
else
x_old = -1.0 / (y - digamma(1.0))
x_new = x_old
end
# Fixed point algorithm
delta = Inf
iteration = 0
while delta > 1e-12 && iteration < 25
iteration += 1
x_new = x_old - (digamma(x_old) - y) / trigamma(x_old)
delta = abs(x_new - x_old)
x_old = x_new
end
return x_new
end
invdigamma(x::Float32) = float32(invdigamma(float64(x)))
invdigamma(x::Real) = invdigamma(float64(x))
@vectorize_1arg Real invdigamma
function beta(x::Number, w::Number)
yx, sx = lgamma_r(x)
yw, sw = lgamma_r(w)
yxw, sxw = lgamma_r(x+w)
return copysign(exp(yx + yw - yxw), sx*sw*sxw)
end
lbeta(x::Number, w::Number) = lgamma(x)+lgamma(w)-lgamma(x+w)
@vectorize_2arg Number beta
@vectorize_2arg Number lbeta
const eta_coeffs =
[.99999999999999999997,
-.99999999999999999821,
.99999999999999994183,
-.99999999999999875788,
.99999999999998040668,
-.99999999999975652196,
.99999999999751767484,
-.99999999997864739190,
.99999999984183784058,
-.99999999897537734890,
.99999999412319859549,
-.99999996986230482845,
.99999986068828287678,
-.99999941559419338151,
.99999776238757525623,
-.99999214148507363026,
.99997457616475604912,
-.99992394671207596228,
.99978893483826239739,
-.99945495809777621055,
.99868681159465798081,
-.99704078337369034566,
.99374872693175507536,
-.98759401271422391785,
.97682326283354439220,
-.95915923302922997013,
.93198380256105393618,
-.89273040299591077603,
.83945793215750220154,
-.77148960729470505477,
.68992761745934847866,
-.59784149990330073143,
.50000000000000000000,
-.40215850009669926857,
.31007238254065152134,
-.22851039270529494523,
.16054206784249779846,
-.10726959700408922397,
.68016197438946063823e-1,
-.40840766970770029873e-1,
.23176737166455607805e-1,
-.12405987285776082154e-1,
.62512730682449246388e-2,
-.29592166263096543401e-2,
.13131884053420191908e-2,
-.54504190222378945440e-3,
.21106516173760261250e-3,
-.76053287924037718971e-4,
.25423835243950883896e-4,
-.78585149263697370338e-5,
.22376124247437700378e-5,
-.58440580661848562719e-6,
.13931171712321674741e-6,
-.30137695171547022183e-7,
.58768014045093054654e-8,
-.10246226511017621219e-8,
.15816215942184366772e-9,
-.21352608103961806529e-10,
.24823251635643084345e-11,
-.24347803504257137241e-12,
.19593322190397666205e-13,
-.12421162189080181548e-14,
.58167446553847312884e-16,
-.17889335846010823161e-17,
.27105054312137610850e-19]
function eta(z::Union(Float64,Complex128))
if z == 0
return oftype(z, 0.5)
end
re, im = reim(z)
if im==0 && re < 0 && re==round(re/2)*2
return zero(z)
end
reflect = false
if re < 0.5
z = 1-z
reflect = true
end
s = zero(z)
for n = length(eta_coeffs):-1:1
c = eta_coeffs[n]
p = n^-z
s += c * p
end
if reflect
z2 = 2.0^z
b = 2.0 - (2.0*z2)
f = z2 - 2
piz = pi^z
b = b/f/piz
return s * gamma(z) * b * cospi(z/2)
end
return s
end
eta(x::Integer) = eta(float64(x))
eta(x::Real) = oftype(x,eta(float64(x)))
eta(z::Complex) = oftype(z,eta(complex128(z)))
@vectorize_1arg Number eta
function zeta(z::Number)
zz = 2^z
eta(z) * zz/(zz-2)
end
@vectorize_1arg Number zeta
@unix_only if WORD_SIZE == 64
# TODO: complex return only on 64-bit for now
for f in (:erf, :erfc, :erfcx, :erfi, :Dawson)
fname = (f === :Dawson) ? :dawson : f
@eval begin
($fname)(z::Complex128) = complex128(ccall(($(string("Faddeeva_",f)),openlibm_extras), Complex{Float64}, (Complex{Float64}, Float64), z, zero(Float64)))
($fname)(z::Complex64) = complex64(ccall(($(string("Faddeeva_",f)),openlibm_extras), Complex{Float64}, (Complex{Float64}, Float64), complex128(z), float64(eps(Float32))))
($fname)(z::Complex) = ($fname)(complex128(z))
end
end
end
for f in (:erfcx, :erfi, :Dawson)
fname = (f === :Dawson) ? :dawson : f
@eval begin
($fname)(x::Float64) = ccall(($(string("Faddeeva_",f,"_re")),openlibm_extras), Float64, (Float64,), x)
($fname)(x::Float32) = float32(ccall(($(string("Faddeeva_",f,"_re")),openlibm_extras), Float64, (Float64,), float64(x)))
($fname)(x::Integer) = ($fname)(float(x))
@vectorize_1arg Number $fname
end
end
# evaluate p[1] + x * (p[2] + x * (....)), i.e. a polynomial via Horner's rule
macro horner(x, p...)
ex = esc(p[end])
for i = length(p)-1:-1:1
ex = :($(esc(p[i])) + $(esc(x)) * $ex)
end
ex
end
# Compute the inverse of the error function: erf(erfinv(x)) == x,
# using the rational approximants tabulated in:
# J. M. Blair, C. A. Edwards, and J. H. Johnson, "Rational Chebyshev
# approximations for the inverse of the error function," Math. Comp. 30,
# pp. 827--830 (1976).
# http://dx.doi.org/10.1090/S0025-5718-1976-0421040-7
# http://www.jstor.org/stable/2005402
function erfinv(x::Float64)
a = abs(x)
if a >= 1.0
if x == 1.0
return inf(Float64)
elseif x == -1.0
return -inf(Float64)
end
throw(DomainError())
elseif a <= 0.75 # Table 17 in Blair et al.
t = x*x - 0.5625
return x * @horner(t, 0.16030_49558_44066_229311e2,
-0.90784_95926_29603_26650e2,
0.18644_91486_16209_87391e3,
-0.16900_14273_46423_82420e3,
0.65454_66284_79448_7048e2,
-0.86421_30115_87247_794e1,
0.17605_87821_39059_0) /
@horner(t, 0.14780_64707_15138_316110e2,
-0.91374_16702_42603_13936e2,
0.21015_79048_62053_17714e3,
-0.22210_25412_18551_32366e3,
0.10760_45391_60551_23830e3,
-0.20601_07303_28265_443e2,
0.1e1)
elseif a <= 0.9375 # Table 37 in Blair et al.
t = x*x - 0.87890625
return x * @horner(t, -0.15238_92634_40726_128e-1,
0.34445_56924_13612_5216,
-0.29344_39867_25424_78687e1,
0.11763_50570_52178_27302e2,
-0.22655_29282_31011_04193e2,
0.19121_33439_65803_30163e2,
-0.54789_27619_59831_8769e1,
0.23751_66890_24448) /
@horner(t, -0.10846_51696_02059_954e-1,
0.26106_28885_84307_8511,
-0.24068_31810_43937_57995e1,
0.10695_12997_33870_14469e2,
-0.23716_71552_15965_81025e2,
0.24640_15894_39172_84883e2,
-0.10014_37634_97830_70835e2,
0.1e1)
else # Table 57 in Blair et al.
t = 1.0 / sqrt(-log(1.0 - a))
return @horner(t, 0.10501_31152_37334_38116e-3,
0.10532_61131_42333_38164_25e-1,
0.26987_80273_62432_83544_516,
0.23268_69578_89196_90806_414e1,
0.71678_54794_91079_96810_001e1,
0.85475_61182_21678_27825_185e1,
0.68738_08807_35438_39802_913e1,
0.36270_02483_09587_08930_02e1,
0.88606_27392_96515_46814_9) /
(copysign(t, x) *
@horner(t, 0.10501_26668_70303_37690e-3,
0.10532_86230_09333_27531_11e-1,
0.27019_86237_37515_54845_553,
0.23501_43639_79702_53259_123e1,
0.76078_02878_58012_77064_351e1,
0.11181_58610_40569_07827_3451e2,
0.11948_78791_84353_96667_8438e2,
0.81922_40974_72699_07893_913e1,
0.40993_87907_63680_15361_45e1,
0.1e1))
end
end
function erfinv(x::Float32)
a = abs(x)
if a >= 1.0f0
if x == 1.0f0
return inf(Float32)
elseif x == -1.0f0
return -inf(Float32)
end
throw(DomainError())
elseif a <= 0.75f0 # Table 10 in Blair et al.
t = x*x - 0.5625f0
return x * @horner(t, -0.13095_99674_22f2,
0.26785_22576_0f2,
-0.92890_57365f1) /
@horner(t, -0.12074_94262_97f2,
0.30960_61452_9f2,
-0.17149_97799_1f2,
0.1f1)
elseif a <= 0.9375f0 # Table 29 in Blair et al.
t = x*x - 0.87890625f0
return x * @horner(t, -0.12402_56522_1f0,
0.10688_05957_4f1,
-0.19594_55607_8f1,
0.42305_81357f0) /
@horner(t, -0.88276_97997f-1,
0.89007_43359f0,
-0.21757_03119_6f1,
0.1f1)
else # Table 50 in Blair et al.
t = 1.0f0 / sqrt(-log(1.0f0 - a))
return @horner(t, 0.15504_70003_116f0,
0.13827_19649_631f1,
0.69096_93488_87f0,
-0.11280_81391_617f1,
0.68054_42468_25f0,
-0.16444_15679_1f0) /
(copysign(t, x) *
@horner(t, 0.15502_48498_22f0,
0.13852_28141_995f1,
0.1f1))
end
end
erfinv(x::Integer) = erfinv(float(x))
@vectorize_1arg Real erfinv
# Inverse complementary error function: use Blair tables for y = 1-x,
# exploiting the greater accuracy of y (vs. x) when y is small.
function erfcinv(y::Float64)
if y > 0.0625
return erfinv(1.0 - y)
elseif y <= 0.0
if y == 0.0
return inf(Float64)
end
throw(DomainError())
elseif y >= 1e-100 # Table 57 in Blair et al.
t = 1.0 / sqrt(-log(y))
return @horner(t, 0.10501_31152_37334_38116e-3,
0.10532_61131_42333_38164_25e-1,
0.26987_80273_62432_83544_516,
0.23268_69578_89196_90806_414e1,
0.71678_54794_91079_96810_001e1,
0.85475_61182_21678_27825_185e1,
0.68738_08807_35438_39802_913e1,
0.36270_02483_09587_08930_02e1,
0.88606_27392_96515_46814_9) /
(t *
@horner(t, 0.10501_26668_70303_37690e-3,
0.10532_86230_09333_27531_11e-1,
0.27019_86237_37515_54845_553,
0.23501_43639_79702_53259_123e1,
0.76078_02878_58012_77064_351e1,
0.11181_58610_40569_07827_3451e2,
0.11948_78791_84353_96667_8438e2,
0.81922_40974_72699_07893_913e1,
0.40993_87907_63680_15361_45e1,
0.1e1))
else # Table 80 in Blair et al.
t = 1.0 / sqrt(-log(y))
return @horner(t, 0.34654_29858_80863_50177e-9,
0.25084_67920_24075_70520_55e-6,
0.47378_13196_37286_02986_534e-4,
0.31312_60375_97786_96408_3388e-2,
0.77948_76454_41435_36994_854e-1,
0.70045_68123_35816_43868_271e0,
0.18710_42034_21679_31668_683e1,
0.71452_54774_31351_45428_3e0) /
(t * @horner(t, 0.34654_29567_31595_11156e-9,
0.25084_69079_75880_27114_87e-6,
0.47379_53129_59749_13536_339e-4,
0.31320_63536_46177_68848_0813e-2,
0.78073_48906_27648_97214_733e-1,
0.70715_04479_95337_58619_993e0,
0.19998_51543_49112_15105_214e1,
0.15072_90269_27316_80008_56e1,
0.1e1))
end
end
function erfcinv(y::Float32)
if y > 0.0625f0
return erfinv(1.0f0 - y)
elseif y <= 0.0f0
if y == 0.0f0
return inf(Float32)
end
throw(DomainError())
else # Table 50 in Blair et al.
t = 1.0f0 / sqrt(-log(y))
return @horner(t, 0.15504_70003_116f0,
0.13827_19649_631f1,
0.69096_93488_87f0,
-0.11280_81391_617f1,
0.68054_42468_25f0,
-0.16444_15679_1f0) /
(t *
@horner(t, 0.15502_48498_22f0,
0.13852_28141_995f1,
0.1f1))
end
end
erfcinv(x::Integer) = erfcinv(float(x))
@vectorize_1arg Real erfcinv
end # module
|