This file is indexed.

/usr/share/julia/base/dsp.jl is in julia 0.2.1+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
module DSP

importall Base.FFTW
import Base.FFTW.normalization

export FFTW, filt, deconv, conv, conv2, xcorr, fftshift, ifftshift,
       dct, idct, dct!, idct!, plan_dct, plan_idct, plan_dct!, plan_idct!,
       # the rest are defined imported from FFTW:
       fft, bfft, ifft, rfft, brfft, irfft,
       plan_fft, plan_bfft, plan_ifft, plan_rfft, plan_brfft, plan_irfft,
       fft!, bfft!, ifft!, plan_fft!, plan_bfft!, plan_ifft!

function filt{T<:Number}(b::Union(AbstractVector{T}, T),a::Union(AbstractVector{T}, T),x::AbstractVector{T})
    if isempty(b); error("filt: b is empty"); end
    if isempty(a); error("filt: a is empty"); end
    if a[1]==0; error("filt: a[1] must be nonzero"); end

    as = length(a)
    bs = length(b)
    sz = max(as, bs)

    if sz == 1
        return (b[1]/a[1]).*x
    end

    if bs<sz
        newb = zeros(T,sz)
        newb[1:bs] = b
        b = newb
    end

    xs = size(x,1)
    y = Array(T, xs)
    silen = sz-1
    si = zeros(T, silen)

    if a[1] != 1
        norml = a[1]
        a ./= norml
        b ./= norml
    end

    if as > 1
        if as<sz
            newa = zeros(T,sz)
            newa[1:as] = a
            a = newa
        end

        for i=1:xs
            y[i] = si[1] + b[1]*x[i]
            for j=1:(silen-1)
                si[j] = si[j+1] + b[j+1]*x[i] - a[j+1]*y[i]
            end
            si[silen] = b[silen+1]*x[i] - a[silen+1]*y[i]
        end
    else
        for i=1:xs
            y[i] = si[1] + b[1]*x[i]
            for j=1:(silen-1)
                si[j] = si[j+1] + b[j+1]*x[i]
            end
            si[silen] = b[silen+1]*x[i]
        end
    end
    return y
end

function deconv{T}(b::StridedVector{T}, a::StridedVector{T})
    lb = size(b,1)
    la = size(a,1)
    if lb < la
        return [zero(T)]
    end
    lx = lb-la+1
    x = zeros(T, lx)
    x[1] = 1
    filt(b, a, x)
end

function conv{T<:Base.LinAlg.BlasFloat}(u::StridedVector{T}, v::StridedVector{T})
    nu = length(u)
    nv = length(v)
    n = nu + nv - 1
    np2 = n > 1024 ? nextprod([2,3,5], n) : nextpow2(n)
    upad = [u, zeros(T, np2 - nu)]
    vpad = [v, zeros(T, np2 - nv)]
    if T <: Real
        p = plan_rfft(upad)
        y = irfft(p(upad).*p(vpad), np2)
    else
        p = plan_fft!(upad)
        y = ifft!(p(upad).*p(vpad))
    end
    return y[1:n]
end
conv{T<:Integer}(u::StridedVector{T}, v::StridedVector{T}) = conv(float(u), float(v))
conv{T<:Integer, S<:Base.LinAlg.BlasFloat}(u::StridedVector{T}, v::StridedVector{S}) = conv(float(u), v)
conv{T<:Integer, S<:Base.LinAlg.BlasFloat}(u::StridedVector{S}, v::StridedVector{T}) = conv(u, float(v))

function conv2{T}(u::StridedVector{T}, v::StridedVector{T}, A::StridedMatrix{T})
    m = length(u)+size(A,1)-1
    n = length(v)+size(A,2)-1
    B = zeros(T, m, n)
    B[1:size(A,1),1:size(A,2)] = A
    u = fft([u;zeros(T,m-length(u))])
    v = fft([v;zeros(T,n-length(v))])
    C = ifft(fft(B) .* (u * v.'))
    if T <: Real
        return real(C)
    end
    return C
end

function conv2{T}(A::StridedMatrix{T}, B::StridedMatrix{T})
    sa, sb = size(A), size(B)
    At = zeros(T, sa[1]+sb[1]-1, sa[2]+sb[2]-1)
    Bt = zeros(T, sa[1]+sb[1]-1, sa[2]+sb[2]-1)
    At[1:sa[1], 1:sa[2]] = A
    Bt[1:sb[1], 1:sb[2]] = B
    p = plan_fft(At)
    C = ifft(p(At).*p(Bt))
    if T <: Real
        return real(C)
    end
    return C
end

function xcorr(u, v)
    su = size(u,1); sv = size(v,1)
    if su < sv
        u = [u;zeros(eltype(u),sv-su)]
    elseif sv < su
        v = [v;zeros(eltype(v),su-sv)]
    end
    flipud(conv(flipud(u), v))
end

fftshift(x) = circshift(x, div([size(x)...],2))

function fftshift(x,dim)
    s = zeros(Int,ndims(x))
    s[dim] = div(size(x,dim),2)
    circshift(x, s)
end

ifftshift(x) = circshift(x, div([size(x)...],-2))

function ifftshift(x,dim)
    s = zeros(Int,ndims(x))
    s[dim] = -div(size(x,dim),2)
    circshift(x, s)
end

# Discrete cosine and sine transforms via FFTW's r2r transforms;
# we follow the Matlab convention and adopt a unitary normalization here.
# Unlike Matlab we compute the multidimensional transform by default,
# similar to the Julia fft functions.

fftwcopy{T<:fftwNumber}(X::StridedArray{T}) = copy(X)
fftwcopy{T<:Real}(X::StridedArray{T}) = float(X)
fftwcopy{T<:Complex}(X::StridedArray{T}) = complex128(X)

for (f, fr2r, Y, Tx) in ((:dct, :r2r, :Y, :Number), 
                         (:dct!, :r2r!, :X, :fftwNumber))
    plan_f = symbol(string("plan_",f))
    plan_fr2r = symbol(string("plan_",fr2r))
    fi = symbol(string("i",f))
    plan_fi = symbol(string("plan_",fi))
    Ycopy = Y == :X ? 0 : :(Y = fftwcopy(X))
    @eval begin
        function $f{T<:$Tx}(X::StridedArray{T}, region)
            $Y = $fr2r(X, REDFT10, region)
            scale!($Y, sqrt(0.5^length(region) * normalization(X,region)))
            sqrthalf = sqrt(0.5)
            r = map(n -> 1:n, [size(X)...])
            for d in region
                r[d] = 1:1
                $Y[r...] *= sqrthalf
                r[d] = 1:size(X,d)
            end
            return $Y
        end

        function $plan_f{T<:$Tx}(X::StridedArray{T}, region,
                                 flags::Unsigned, timelimit::Real)
            p = $plan_fr2r(X, REDFT10, region, flags, timelimit)
            sqrthalf = sqrt(0.5)
            r = map(n -> 1:n, [size(X)...])
            nrm = sqrt(0.5^length(region) * normalization(X,region))
            return X::StridedArray{T} -> begin
                $Y = p(X)
                scale!($Y, nrm)
                for d in region
                    r[d] = 1:1
                    $Y[r...] *= sqrthalf
                    r[d] = 1:size(X,d)
                end
                return $Y
            end
        end

        function $fi{T<:$Tx}(X::StridedArray{T}, region)
            $Ycopy
            scale!($Y, sqrt(0.5^length(region) * normalization(X, region)))
            sqrt2 = sqrt(2)
            r = map(n -> 1:n, [size(X)...])
            for d in region
                r[d] = 1:1
                $Y[r...] *= sqrt2
                r[d] = 1:size(X,d)
            end
            return r2r!($Y, REDFT01, region)
        end

        function $plan_fi{T<:$Tx}(X::StridedArray{T}, region,
                                 flags::Unsigned, timelimit::Real)
            p = $plan_fr2r(X, REDFT01, region, flags, timelimit)
            sqrt2 = sqrt(2)
            r = map(n -> 1:n, [size(X)...])
            nrm = sqrt(0.5^length(region) * normalization(X,region))
            return X::StridedArray{T} -> begin
                $Ycopy
                scale!($Y, nrm)
                for d in region
                    r[d] = 1:1
                    $Y[r...] *= sqrt2
                    r[d] = 1:size(X,d)
                end
                return p($Y)
            end
        end

    end
    for (g,plan_g) in ((f,plan_f), (fi, plan_fi))
        @eval begin
            $g{T<:$Tx}(X::StridedArray{T}) = $g(X, 1:ndims(X))
            
            $plan_g(X, region, flags::Unsigned) =
              $plan_g(X, region, flags, NO_TIMELIMIT)
            $plan_g(X, region) =
              $plan_g(X, region, ESTIMATE, NO_TIMELIMIT)
            $plan_g{T<:$Tx}(X::StridedArray{T}) =
              $plan_g(X, 1:ndims(X), ESTIMATE, NO_TIMELIMIT)
        end
    end
end

# DCT of scalar is just the identity:
dct(x::Number, dims) = length(dims) == 0 || dims[1] == 1 ? x : throw(BoundsError())x
idct(x::Number, dims) = dct(x, dims)
dct(x::Number) = x
idct(x::Number) = x
plan_dct(x::Number, dims, flags, tlim) = length(dims) == 0 || dims[1] == 1 ? y::Number -> y : throw(BoundsError())
plan_idct(x::Number, dims, flags, tlim) = plan_dct(x, dims)
plan_dct(x::Number) = y::Number -> y
plan_idct(x::Number) = y::Number -> y

end # module