/usr/share/julia/base/dsp.jl is in julia 0.2.1+dfsg-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 | module DSP
importall Base.FFTW
import Base.FFTW.normalization
export FFTW, filt, deconv, conv, conv2, xcorr, fftshift, ifftshift,
dct, idct, dct!, idct!, plan_dct, plan_idct, plan_dct!, plan_idct!,
# the rest are defined imported from FFTW:
fft, bfft, ifft, rfft, brfft, irfft,
plan_fft, plan_bfft, plan_ifft, plan_rfft, plan_brfft, plan_irfft,
fft!, bfft!, ifft!, plan_fft!, plan_bfft!, plan_ifft!
function filt{T<:Number}(b::Union(AbstractVector{T}, T),a::Union(AbstractVector{T}, T),x::AbstractVector{T})
if isempty(b); error("filt: b is empty"); end
if isempty(a); error("filt: a is empty"); end
if a[1]==0; error("filt: a[1] must be nonzero"); end
as = length(a)
bs = length(b)
sz = max(as, bs)
if sz == 1
return (b[1]/a[1]).*x
end
if bs<sz
newb = zeros(T,sz)
newb[1:bs] = b
b = newb
end
xs = size(x,1)
y = Array(T, xs)
silen = sz-1
si = zeros(T, silen)
if a[1] != 1
norml = a[1]
a ./= norml
b ./= norml
end
if as > 1
if as<sz
newa = zeros(T,sz)
newa[1:as] = a
a = newa
end
for i=1:xs
y[i] = si[1] + b[1]*x[i]
for j=1:(silen-1)
si[j] = si[j+1] + b[j+1]*x[i] - a[j+1]*y[i]
end
si[silen] = b[silen+1]*x[i] - a[silen+1]*y[i]
end
else
for i=1:xs
y[i] = si[1] + b[1]*x[i]
for j=1:(silen-1)
si[j] = si[j+1] + b[j+1]*x[i]
end
si[silen] = b[silen+1]*x[i]
end
end
return y
end
function deconv{T}(b::StridedVector{T}, a::StridedVector{T})
lb = size(b,1)
la = size(a,1)
if lb < la
return [zero(T)]
end
lx = lb-la+1
x = zeros(T, lx)
x[1] = 1
filt(b, a, x)
end
function conv{T<:Base.LinAlg.BlasFloat}(u::StridedVector{T}, v::StridedVector{T})
nu = length(u)
nv = length(v)
n = nu + nv - 1
np2 = n > 1024 ? nextprod([2,3,5], n) : nextpow2(n)
upad = [u, zeros(T, np2 - nu)]
vpad = [v, zeros(T, np2 - nv)]
if T <: Real
p = plan_rfft(upad)
y = irfft(p(upad).*p(vpad), np2)
else
p = plan_fft!(upad)
y = ifft!(p(upad).*p(vpad))
end
return y[1:n]
end
conv{T<:Integer}(u::StridedVector{T}, v::StridedVector{T}) = conv(float(u), float(v))
conv{T<:Integer, S<:Base.LinAlg.BlasFloat}(u::StridedVector{T}, v::StridedVector{S}) = conv(float(u), v)
conv{T<:Integer, S<:Base.LinAlg.BlasFloat}(u::StridedVector{S}, v::StridedVector{T}) = conv(u, float(v))
function conv2{T}(u::StridedVector{T}, v::StridedVector{T}, A::StridedMatrix{T})
m = length(u)+size(A,1)-1
n = length(v)+size(A,2)-1
B = zeros(T, m, n)
B[1:size(A,1),1:size(A,2)] = A
u = fft([u;zeros(T,m-length(u))])
v = fft([v;zeros(T,n-length(v))])
C = ifft(fft(B) .* (u * v.'))
if T <: Real
return real(C)
end
return C
end
function conv2{T}(A::StridedMatrix{T}, B::StridedMatrix{T})
sa, sb = size(A), size(B)
At = zeros(T, sa[1]+sb[1]-1, sa[2]+sb[2]-1)
Bt = zeros(T, sa[1]+sb[1]-1, sa[2]+sb[2]-1)
At[1:sa[1], 1:sa[2]] = A
Bt[1:sb[1], 1:sb[2]] = B
p = plan_fft(At)
C = ifft(p(At).*p(Bt))
if T <: Real
return real(C)
end
return C
end
function xcorr(u, v)
su = size(u,1); sv = size(v,1)
if su < sv
u = [u;zeros(eltype(u),sv-su)]
elseif sv < su
v = [v;zeros(eltype(v),su-sv)]
end
flipud(conv(flipud(u), v))
end
fftshift(x) = circshift(x, div([size(x)...],2))
function fftshift(x,dim)
s = zeros(Int,ndims(x))
s[dim] = div(size(x,dim),2)
circshift(x, s)
end
ifftshift(x) = circshift(x, div([size(x)...],-2))
function ifftshift(x,dim)
s = zeros(Int,ndims(x))
s[dim] = -div(size(x,dim),2)
circshift(x, s)
end
# Discrete cosine and sine transforms via FFTW's r2r transforms;
# we follow the Matlab convention and adopt a unitary normalization here.
# Unlike Matlab we compute the multidimensional transform by default,
# similar to the Julia fft functions.
fftwcopy{T<:fftwNumber}(X::StridedArray{T}) = copy(X)
fftwcopy{T<:Real}(X::StridedArray{T}) = float(X)
fftwcopy{T<:Complex}(X::StridedArray{T}) = complex128(X)
for (f, fr2r, Y, Tx) in ((:dct, :r2r, :Y, :Number),
(:dct!, :r2r!, :X, :fftwNumber))
plan_f = symbol(string("plan_",f))
plan_fr2r = symbol(string("plan_",fr2r))
fi = symbol(string("i",f))
plan_fi = symbol(string("plan_",fi))
Ycopy = Y == :X ? 0 : :(Y = fftwcopy(X))
@eval begin
function $f{T<:$Tx}(X::StridedArray{T}, region)
$Y = $fr2r(X, REDFT10, region)
scale!($Y, sqrt(0.5^length(region) * normalization(X,region)))
sqrthalf = sqrt(0.5)
r = map(n -> 1:n, [size(X)...])
for d in region
r[d] = 1:1
$Y[r...] *= sqrthalf
r[d] = 1:size(X,d)
end
return $Y
end
function $plan_f{T<:$Tx}(X::StridedArray{T}, region,
flags::Unsigned, timelimit::Real)
p = $plan_fr2r(X, REDFT10, region, flags, timelimit)
sqrthalf = sqrt(0.5)
r = map(n -> 1:n, [size(X)...])
nrm = sqrt(0.5^length(region) * normalization(X,region))
return X::StridedArray{T} -> begin
$Y = p(X)
scale!($Y, nrm)
for d in region
r[d] = 1:1
$Y[r...] *= sqrthalf
r[d] = 1:size(X,d)
end
return $Y
end
end
function $fi{T<:$Tx}(X::StridedArray{T}, region)
$Ycopy
scale!($Y, sqrt(0.5^length(region) * normalization(X, region)))
sqrt2 = sqrt(2)
r = map(n -> 1:n, [size(X)...])
for d in region
r[d] = 1:1
$Y[r...] *= sqrt2
r[d] = 1:size(X,d)
end
return r2r!($Y, REDFT01, region)
end
function $plan_fi{T<:$Tx}(X::StridedArray{T}, region,
flags::Unsigned, timelimit::Real)
p = $plan_fr2r(X, REDFT01, region, flags, timelimit)
sqrt2 = sqrt(2)
r = map(n -> 1:n, [size(X)...])
nrm = sqrt(0.5^length(region) * normalization(X,region))
return X::StridedArray{T} -> begin
$Ycopy
scale!($Y, nrm)
for d in region
r[d] = 1:1
$Y[r...] *= sqrt2
r[d] = 1:size(X,d)
end
return p($Y)
end
end
end
for (g,plan_g) in ((f,plan_f), (fi, plan_fi))
@eval begin
$g{T<:$Tx}(X::StridedArray{T}) = $g(X, 1:ndims(X))
$plan_g(X, region, flags::Unsigned) =
$plan_g(X, region, flags, NO_TIMELIMIT)
$plan_g(X, region) =
$plan_g(X, region, ESTIMATE, NO_TIMELIMIT)
$plan_g{T<:$Tx}(X::StridedArray{T}) =
$plan_g(X, 1:ndims(X), ESTIMATE, NO_TIMELIMIT)
end
end
end
# DCT of scalar is just the identity:
dct(x::Number, dims) = length(dims) == 0 || dims[1] == 1 ? x : throw(BoundsError())x
idct(x::Number, dims) = dct(x, dims)
dct(x::Number) = x
idct(x::Number) = x
plan_dct(x::Number, dims, flags, tlim) = length(dims) == 0 || dims[1] == 1 ? y::Number -> y : throw(BoundsError())
plan_idct(x::Number, dims, flags, tlim) = plan_dct(x, dims)
plan_dct(x::Number) = y::Number -> y
plan_idct(x::Number) = y::Number -> y
end # module
|