/usr/include/OverlayUnidraw/algebra3.h is in ivtools-dev 1.2.11a1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 | /****************************************************************
* *
* C++ Vector and Matrix Algebra routines *
* Author: Jean-Francois DOUE *
* Version 3.1 --- October 1993 *
* *
****************************************************************/
//
// From "Graphics Gems IV / Edited by Paul S. Heckbert
// Academic Press, 1994, ISBN 0-12-336156-9
// "You are free to use and modify this code in any way
// you like." (p. xv)
//
// Modified by J. Nagle, March 1997
// - All functions are inline.
// - All functions are const-correct.
// - All checking is via the standard "assert" macro.
// - Stream I/O is disabled for portability, but can be
// re-enabled by defining ALGEBRA3IOSTREAMS.
//
// Modified by J. Gautier April 1997 to compile with GCC in a
// Linux/InterViews environment, also removed warnings by adding
// inline declarations to some member functions.
//
#ifndef ALGEBRA3H
#define ALGEBRA3H
#include <stdlib.h>
#include <assert.h>
//#include <yvals.h>
#include <math.h>
#include <ctype.h>
// this line defines a new type: pointer to a function which returns a
// double and takes as argument a double
typedef double (*V_FCT_PTR)(double);
// min-max macros
#define MIN(A,B) ((A) < (B) ? (A) : (B))
#define MAX(A,B) ((A) > (B) ? (A) : (B))
// InterViews already defines these, so change the function names
#if 0
#undef min // allow as function names
#undef max
#endif
// error handling macro
#define ALGEBRA_ERROR(E) { assert(false); }
class vec2;
class vec3;
class vec4;
class mat3;
class mat4;
enum {VX, VY, VZ, VW}; // axes
enum {PA, PB, PC, PD}; // planes
enum {RED, GREEN, BLUE}; // colors
enum {KA, KD, KS, ES}; // phong coefficients
//
// PI
//
#ifndef M_PI
const double M_PI = 3.14159265358979323846; // per CRC handbook, 14th. ed.
#endif
#ifndef M_PI_2
const double M_PI_2 = (M_PI/2.0); // PI/2
#endif
#ifndef M2_PI
const double M2_PI = (M_PI*2.0); // PI*2
#endif
/****************************************************************
* *
* 2D Vector *
* *
****************************************************************/
class vec2
{
protected:
double n[2];
public:
// Constructors
vec2();
vec2(const double x, const double y);
vec2(const double d);
vec2(const vec2& v); // copy constructor
vec2(const vec3& v); // cast v3 to v2
vec2(const vec3& v, int dropAxis); // cast v3 to v2
// Assignment operators
vec2& operator = ( const vec2& v ); // assignment of a vec2
vec2& operator += ( const vec2& v ); // incrementation by a vec2
vec2& operator -= ( const vec2& v ); // decrementation by a vec2
vec2& operator *= ( const double d ); // multiplication by a constant
vec2& operator /= ( const double d ); // division by a constant
double& operator [] ( int i); // indexing
double vec2::operator [] ( int i) const;// read-only indexing
// special functions
double length() const; // length of a vec2
inline double length2() const; // squared length of a vec2
vec2& normalize() ; // normalize a vec2 in place
vec2& apply(V_FCT_PTR fct); // apply a func. to each component
// friends
friend vec2 operator - (const vec2& v); // -v1
friend vec2 operator + (const vec2& a, const vec2& b); // v1 + v2
friend vec2 operator - (const vec2& a, const vec2& b); // v1 - v2
friend vec2 operator * (const vec2& a, const double d); // v1 * 3.0
friend vec2 operator * (const double d, const vec2& a); // 3.0 * v1
friend vec2 operator * (const mat3& a, const vec2& v); // M . v
friend vec2 operator * (const vec2& v, const mat3& a); // v . M
friend double operator * (const vec2& a, const vec2& b); // dot product
friend vec2 operator / (const vec2& a, const double d); // v1 / 3.0
friend vec3 operator ^ (const vec2& a, const vec2& b); // cross product
friend int operator == (const vec2& a, const vec2& b); // v1 == v2 ?
friend int operator != (const vec2& a, const vec2& b); // v1 != v2 ?
#ifdef ALGEBRA3IOSTREAMS
friend ostream& operator << (ostream& s, const vec2& v); // output to stream
friend istream& operator >> (istream& s, vec2& v); // input from strm.
#endif ALGEBRA3IOSTREAMS
friend void swap(vec2& a, vec2& b); // swap v1 & v2
friend vec2 vec2min(const vec2& a, const vec2& b); // min(v1, v2)
friend vec2 vec2max(const vec2& a, const vec2& b); // max(v1, v2)
friend vec2 prod(const vec2& a, const vec2& b); // term by term *
// necessary friend declarations
friend class vec3;
};
/****************************************************************
* *
* 3D Vector *
* *
****************************************************************/
class vec3
{
protected:
double n[3];
public:
// Constructors
inline vec3();
inline vec3(const double x, const double y, const double z);
vec3(const double d);
vec3(const vec3& v); // copy constructor
vec3(const vec2& v); // cast v2 to v3
vec3(const vec2& v, double d); // cast v2 to v3
vec3(const vec4& v); // cast v4 to v3
vec3(const vec4& v, int dropAxis); // cast v4 to v3
// Assignment operators
vec3& operator = ( const vec3& v ); // assignment of a vec3
vec3& operator += ( const vec3& v ); // incrementation by a vec3
vec3& operator -= ( const vec3& v ); // decrementation by a vec3
vec3& operator *= ( const double d ); // multiplication by a constant
vec3& operator /= ( const double d ); // division by a constant
double& operator [] ( int i); // indexing
double operator[] (int i) const; // read-only indexing
// special functions
double length() const; // length of a vec3
inline double length2() const; // squared length of a vec3
vec3& normalize(); // normalize a vec3 in place
vec3& apply(V_FCT_PTR fct); // apply a func. to each component
// friends
friend vec3 operator - (const vec3& v); // -v1
friend vec3 operator + (const vec3& a, const vec3& b); // v1 + v2
friend vec3 operator - (const vec3& a, const vec3& b); // v1 - v2
friend vec3 operator * (const vec3& a, const double d); // v1 * 3.0
friend vec3 operator * (const double d, const vec3& a); // 3.0 * v1
friend vec3 operator * (const mat4& a, const vec3& v); // M . v
friend vec3 operator * (const vec3& v, const mat4& a); // v . M
friend double operator * (const vec3& a, const vec3& b); // dot product
friend vec3 operator / (const vec3& a, const double d); // v1 / 3.0
friend vec3 operator ^ (const vec3& a, const vec3& b); // cross product
friend int operator == (const vec3& a, const vec3& b); // v1 == v2 ?
friend int operator != (const vec3& a, const vec3& b); // v1 != v2 ?
#ifdef ALGEBRA3IOSTREAMS
friend ostream& operator << (ostream& s, const vec3& v); // output to stream
friend istream& operator >> (istream& s, vec3& v); // input from strm.
#endif // ALGEBRA3IOSTREAMS
friend void swap(vec3& a, vec3& b); // swap v1 & v2
friend vec3 vec3min(const vec3& a, const vec3& b); // min(v1, v2)
friend vec3 vec3max(const vec3& a, const vec3& b); // max(v1, v2)
friend vec3 prod(const vec3& a, const vec3& b); // term by term *
// necessary friend declarations
friend class vec2;
friend class vec4;
friend class mat3;
friend vec2 operator * (const mat3& a, const vec2& v); // linear transform
friend mat3 operator * (const mat3& a, const mat3& b); // matrix 3 product
};
/****************************************************************
* *
* 4D Vector *
* *
****************************************************************/
class vec4
{
protected:
double n[4];
public:
// Constructors
vec4();
vec4(const double x, const double y, const double z, const double w);
vec4(const double d);
vec4(const vec4& v); // copy constructor
inline vec4(const vec3& v); // cast vec3 to vec4
vec4(const vec3& v, const double d); // cast vec3 to vec4
// Assignment operators
vec4& operator = ( const vec4& v ); // assignment of a vec4
vec4& operator += ( const vec4& v ); // incrementation by a vec4
vec4& operator -= ( const vec4& v ); // decrementation by a vec4
vec4& operator *= ( const double d ); // multiplication by a constant
vec4& operator /= ( const double d ); // division by a constant
double& operator [] ( int i); // indexing
double operator[] (int i) const; // read-only indexing
// special functions
double length() const; // length of a vec4
inline double length2() const; // squared length of a vec4
vec4& normalize(); // normalize a vec4 in place
vec4& apply(V_FCT_PTR fct); // apply a func. to each component
// friends
friend vec4 operator - (const vec4& v); // -v1
friend vec4 operator + (const vec4& a, const vec4& b); // v1 + v2
friend vec4 operator - (const vec4& a, const vec4& b); // v1 - v2
friend vec4 operator * (const vec4& a, const double d); // v1 * 3.0
friend vec4 operator * (const double d, const vec4& a); // 3.0 * v1
friend vec4 operator * (const mat4& a, const vec4& v); // M . v
friend vec4 operator * (const vec4& v, const mat4& a); // v . M
friend double operator * (const vec4& a, const vec4& b); // dot product
friend vec4 operator / (const vec4& a, const double d); // v1 / 3.0
friend int operator == (const vec4& a, const vec4& b); // v1 == v2 ?
friend int operator != (const vec4& a, const vec4& b); // v1 != v2 ?
#ifdef ALGEBRA3IOSTREAMS
friend ostream& operator << (ostream& s, const vec4& v); // output to stream
friend istream& operator >> (istream& s, vec4& v); // input from strm.
#endif // ALGEBRA3IOSTREAMS
friend void swap(vec4& a, vec4& b); // swap v1 & v2
friend vec4 vec4min(const vec4& a, const vec4& b); // min(v1, v2)
friend vec4 vec4max(const vec4& a, const vec4& b); // max(v1, v2)
friend vec4 prod(const vec4& a, const vec4& b); // term by term *
// necessary friend declarations
friend class vec3;
friend class mat4;
friend vec3 operator * (const mat4& a, const vec3& v); // linear transform
friend mat4 operator * (const mat4& a, const mat4& b); // matrix 4 product
};
/****************************************************************
* *
* 3x3 Matrix *
* *
****************************************************************/
class mat3
{
protected:
vec3 v[3];
public:
// Constructors
mat3();
mat3(const vec3& v0, const vec3& v1, const vec3& v2);
mat3(const double d);
mat3(const mat3& m);
// Assignment operators
mat3& operator = ( const mat3& m ); // assignment of a mat3
mat3& operator += ( const mat3& m ); // incrementation by a mat3
mat3& operator -= ( const mat3& m ); // decrementation by a mat3
mat3& operator *= ( const double d ); // multiplication by a constant
mat3& operator /= ( const double d ); // division by a constant
vec3& operator [] ( int i); // indexing
const vec3& operator [] ( int i) const; // read-only indexing
// special functions
inline mat3 transpose() const; // transpose
mat3 inverse() const; // inverse
mat3& apply(V_FCT_PTR fct); // apply a func. to each element
// friends
friend mat3 operator - (const mat3& a); // -m1
friend mat3 operator + (const mat3& a, const mat3& b); // m1 + m2
friend mat3 operator - (const mat3& a, const mat3& b); // m1 - m2
friend mat3 operator * (const mat3& a, const mat3& b); // m1 * m2
friend mat3 operator * (const mat3& a, const double d); // m1 * 3.0
friend mat3 operator * (const double d, const mat3& a); // 3.0 * m1
friend mat3 operator / (const mat3& a, const double d); // m1 / 3.0
friend int operator == (const mat3& a, const mat3& b); // m1 == m2 ?
friend int operator != (const mat3& a, const mat3& b); // m1 != m2 ?
#ifdef ALGEBRA3IOSTREAMS
friend ostream& operator << (ostream& s, const mat3& m); // output to stream
friend istream& operator >> (istream& s, mat3& m); // input from strm.
#endif // ALGEBRA3IOSTREAMS
friend void swap(mat3& a, mat3& b); // swap m1 & m2
// necessary friend declarations
friend vec3 operator * (const mat3& a, const vec3& v); // linear transform
friend vec2 operator * (const mat3& a, const vec2& v); // linear transform
};
/****************************************************************
* *
* 4x4 Matrix *
* *
****************************************************************/
class mat4
{
protected:
vec4 v[4];
public:
// Constructors
mat4();
mat4(const vec4& v0, const vec4& v1, const vec4& v2, const vec4& v3);
mat4(const double d);
mat4(const mat4& m);
// Assignment operators
mat4& operator = ( const mat4& m ); // assignment of a mat4
mat4& operator += ( const mat4& m ); // incrementation by a mat4
mat4& operator -= ( const mat4& m ); // decrementation by a mat4
mat4& operator *= ( const double d ); // multiplication by a constant
mat4& operator /= ( const double d ); // division by a constant
vec4& operator [] ( int i); // indexing
const vec4& operator [] ( int i) const; // read-only indexing
// special functions
inline mat4 transpose() const; // transpose
mat4 inverse() const; // inverse
mat4& apply(V_FCT_PTR fct); // apply a func. to each element
// friends
friend mat4 operator - (const mat4& a); // -m1
friend mat4 operator + (const mat4& a, const mat4& b); // m1 + m2
friend mat4 operator - (const mat4& a, const mat4& b); // m1 - m2
friend mat4 operator * (const mat4& a, const mat4& b); // m1 * m2
friend mat4 operator * (const mat4& a, const double d); // m1 * 4.0
friend mat4 operator * (const double d, const mat4& a); // 4.0 * m1
friend mat4 operator / (const mat4& a, const double d); // m1 / 3.0
friend int operator == (const mat4& a, const mat4& b); // m1 == m2 ?
friend int operator != (const mat4& a, const mat4& b); // m1 != m2 ?
#ifdef ALGEBRA3IOSTREAMS
friend ostream& operator << (ostream& s, const mat4& m); // output to stream
friend istream& operator >> (istream& s, mat4& m); // input from strm.
#endif // ALGEBRA3IOSTREAMS
friend void swap(mat4& a, mat4& b); // swap m1 & m2
// necessary friend declarations
inline friend vec4 operator * (const mat4& a, const vec4& v); // linear transform
friend vec3 operator * (const mat4& a, const vec3& v); // linear transform
};
/****************************************************************
* *
* 2D functions and 3D functions *
* *
****************************************************************/
inline mat3 identity2D(); // identity 2D
mat3 translation2D(const vec2& v); // translation 2D
mat3 rotation2D(const vec2& Center, const double angleDeg); // rotation 2D
mat3 scaling2D(const vec2& scaleVector); // scaling 2D
inline mat4 identity3D(); // identity 3D
mat4 translation3D(const vec3& v); // translation 3D
mat4 rotation3D(vec3 Axis, const double angleDeg);// rotation 3D
mat4 scaling3D(const vec3& scaleVector); // scaling 3D
mat4 perspective3D(const double d); // perspective 3D
//
// Implementation
//
/****************************************************************
* *
* vec2 Member functions *
* *
****************************************************************/
// CONSTRUCTORS
inline vec2::vec2() {}
inline vec2::vec2(const double x, const double y)
{ n[VX] = x; n[VY] = y; }
inline vec2::vec2(const double d)
{ n[VX] = n[VY] = d; }
inline vec2::vec2(const vec2& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; }
inline vec2::vec2(const vec3& v) // it is up to caller to avoid divide-by-zero
{ n[VX] = v.n[VX]/v.n[VZ]; n[VY] = v.n[VY]/v.n[VZ]; };
inline vec2::vec2(const vec3& v, int dropAxis) {
switch (dropAxis) {
case VX: n[VX] = v.n[VY]; n[VY] = v.n[VZ]; break;
case VY: n[VX] = v.n[VX]; n[VY] = v.n[VZ]; break;
default: n[VX] = v.n[VX]; n[VY] = v.n[VY]; break;
}
}
// ASSIGNMENT OPERATORS
inline vec2& vec2::operator = (const vec2& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; return *this; }
inline vec2& vec2::operator += ( const vec2& v )
{ n[VX] += v.n[VX]; n[VY] += v.n[VY]; return *this; }
inline vec2& vec2::operator -= ( const vec2& v )
{ n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; return *this; }
inline vec2& vec2::operator *= ( const double d )
{ n[VX] *= d; n[VY] *= d; return *this; }
inline vec2& vec2::operator /= ( const double d )
{ double d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; return *this; }
inline double& vec2::operator [] ( int i) {
assert(!(i < VX || i > VY)); // subscript check
return n[i];
}
inline double vec2::operator [] ( int i) const {
assert(!(i < VX || i > VY));
return n[i];
}
// SPECIAL FUNCTIONS
inline double vec2::length() const
{ return sqrt(length2()); }
inline double vec2::length2() const
{ return n[VX]*n[VX] + n[VY]*n[VY]; }
inline vec2& vec2::normalize() // it is up to caller to avoid divide-by-zero
{ *this /= length(); return *this; }
inline vec2& vec2::apply(V_FCT_PTR fct)
{ n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); return *this; }
// FRIENDS
inline vec2 operator - (const vec2& a)
{ return vec2(-a.n[VX],-a.n[VY]); }
inline vec2 operator + (const vec2& a, const vec2& b)
{ return vec2(a.n[VX]+ b.n[VX], a.n[VY] + b.n[VY]); }
inline vec2 operator - (const vec2& a, const vec2& b)
{ return vec2(a.n[VX]-b.n[VX], a.n[VY]-b.n[VY]); }
inline vec2 operator * (const vec2& a, const double d)
{ return vec2(d*a.n[VX], d*a.n[VY]); }
inline vec2 operator * (const double d, const vec2& a)
{ return a*d; }
inline vec2 operator * (const mat3& a, const vec2& v) {
vec3 av;
av.n[VX] = a.v[0].n[VX]*v.n[VX] + a.v[0].n[VY]*v.n[VY] + a.v[0].n[VZ];
av.n[VY] = a.v[1].n[VX]*v.n[VX] + a.v[1].n[VY]*v.n[VY] + a.v[1].n[VZ];
av.n[VZ] = a.v[2].n[VX]*v.n[VX] + a.v[2].n[VY]*v.n[VY] + a.v[2].n[VZ];
return av;
}
inline vec2 operator * (const vec2& v, const mat3& a)
{ return a.transpose() * v; }
inline double operator * (const vec2& a, const vec2& b)
{ return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY]); }
inline vec2 operator / (const vec2& a, const double d)
{ double d_inv = 1./d; return vec2(a.n[VX]*d_inv, a.n[VY]*d_inv); }
inline vec3 operator ^ (const vec2& a, const vec2& b)
{ return vec3(0.0, 0.0, a.n[VX] * b.n[VY] - b.n[VX] * a.n[VY]); }
inline int operator == (const vec2& a, const vec2& b)
{ return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]); }
inline int operator != (const vec2& a, const vec2& b)
{ return !(a == b); }
#ifdef ALGEBRA3IOSTREAMS
inline ostream& operator << (ostream& s, const vec2& v)
{ return s << "| " << v.n[VX] << ' ' << v.n[VY] << " |"; }
inline istream& operator >> (istream& s, vec2& v) {
vec2 v_tmp;
char c = ' ';
while (isspace(c))
s >> c;
// The vectors can be formatted either as x y or | x y |
if (c == '|') {
s >> v_tmp[VX] >> v_tmp[VY];
while (s >> c && isspace(c)) ;
if (c != '|')
s.set(_bad);
}
else {
s.putback(c);
s >> v_tmp[VX] >> v_tmp[VY];
}
if (s)
v = v_tmp;
return s;
}
#endif // ALGEBRA3IOSTREAMS
inline void swap(vec2& a, vec2& b)
{ vec2 tmp(a); a = b; b = tmp; }
inline vec2 vec2min(const vec2& a, const vec2& b)
{ return vec2(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY])); }
inline vec2 vec2max(const vec2& a, const vec2& b)
{ return vec2(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY])); }
inline vec2 prod(const vec2& a, const vec2& b)
{ return vec2(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY]); }
/****************************************************************
* *
* vec3 Member functions *
* *
****************************************************************/
// CONSTRUCTORS
inline vec3::vec3() {}
inline vec3::vec3(const double x, const double y, const double z)
{ n[VX] = x; n[VY] = y; n[VZ] = z; }
inline vec3::vec3(const double d)
{ n[VX] = n[VY] = n[VZ] = d; }
inline vec3::vec3(const vec3& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; }
inline vec3::vec3(const vec2& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = 1.0; }
inline vec3::vec3(const vec2& v, double d)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = d; }
inline vec3::vec3(const vec4& v) // it is up to caller to avoid divide-by-zero
{ n[VX] = v.n[VX] / v.n[VW]; n[VY] = v.n[VY] / v.n[VW];
n[VZ] = v.n[VZ] / v.n[VW]; }
inline vec3::vec3(const vec4& v, int dropAxis) {
switch (dropAxis) {
case VX: n[VX] = v.n[VY]; n[VY] = v.n[VZ]; n[VZ] = v.n[VW]; break;
case VY: n[VX] = v.n[VX]; n[VY] = v.n[VZ]; n[VZ] = v.n[VW]; break;
case VZ: n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VW]; break;
default: n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; break;
}
}
// ASSIGNMENT OPERATORS
inline vec3& vec3::operator = (const vec3& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; return *this; }
inline vec3& vec3::operator += ( const vec3& v )
{ n[VX] += v.n[VX]; n[VY] += v.n[VY]; n[VZ] += v.n[VZ]; return *this; }
inline vec3& vec3::operator -= ( const vec3& v )
{ n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; n[VZ] -= v.n[VZ]; return *this; }
inline vec3& vec3::operator *= ( const double d )
{ n[VX] *= d; n[VY] *= d; n[VZ] *= d; return *this; }
inline vec3& vec3::operator /= ( const double d )
{ double d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; n[VZ] *= d_inv;
return *this; }
inline double& vec3::operator [] ( int i) {
assert(! (i < VX || i > VZ));
return n[i];
}
inline double vec3::operator [] ( int i) const {
assert(! (i < VX || i > VZ));
return n[i];
}
// SPECIAL FUNCTIONS
inline double vec3::length() const
{ return sqrt(length2()); }
inline double vec3::length2() const
{ return n[VX]*n[VX] + n[VY]*n[VY] + n[VZ]*n[VZ]; }
inline vec3& vec3::normalize() // it is up to caller to avoid divide-by-zero
{ *this /= length(); return *this; }
inline vec3& vec3::apply(V_FCT_PTR fct)
{ n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); n[VZ] = (*fct)(n[VZ]);
return *this; }
// FRIENDS
inline vec3 operator - (const vec3& a)
{ return vec3(-a.n[VX],-a.n[VY],-a.n[VZ]); }
inline vec3 operator + (const vec3& a, const vec3& b)
{ return vec3(a.n[VX]+ b.n[VX], a.n[VY] + b.n[VY], a.n[VZ] + b.n[VZ]); }
inline vec3 operator - (const vec3& a, const vec3& b)
{ return vec3(a.n[VX]-b.n[VX], a.n[VY]-b.n[VY], a.n[VZ]-b.n[VZ]); }
inline vec3 operator * (const vec3& a, const double d)
{ return vec3(d*a.n[VX], d*a.n[VY], d*a.n[VZ]); }
inline vec3 operator * (const double d, const vec3& a)
{ return a*d; }
inline vec3 operator * (const mat4& a, const vec3& v)
{ return a * vec4(v); }
inline vec3 operator * (const vec3& v, const mat4& a)
{ return a.transpose() * v; }
inline double operator * (const vec3& a, const vec3& b)
{ return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY] + a.n[VZ]*b.n[VZ]); }
inline vec3 operator / (const vec3& a, const double d)
{ double d_inv = 1./d; return vec3(a.n[VX]*d_inv, a.n[VY]*d_inv,
a.n[VZ]*d_inv); }
inline vec3 operator ^ (const vec3& a, const vec3& b) {
return vec3(a.n[VY]*b.n[VZ] - a.n[VZ]*b.n[VY],
a.n[VZ]*b.n[VX] - a.n[VX]*b.n[VZ],
a.n[VX]*b.n[VY] - a.n[VY]*b.n[VX]);
}
inline int operator == (const vec3& a, const vec3& b)
{ return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]) && (a.n[VZ] == b.n[VZ]);
}
inline int operator != (const vec3& a, const vec3& b)
{ return !(a == b); }
#ifdef ALGEBRA3IOSTREAMS
inline ostream& operator << (ostream& s, const vec3& v)
{ return s << "| " << v.n[VX] << ' ' << v.n[VY] << ' ' << v.n[VZ] << " |"; }
inline istream& operator >> (istream& s, vec3& v) {
vec3 v_tmp;
char c = ' ';
while (isspace(c))
s >> c;
// The vectors can be formatted either as x y z or | x y z |
if (c == '|') {
s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ];
while (s >> c && isspace(c)) ;
if (c != '|')
s.set(_bad);
}
else {
s.putback(c);
s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ];
}
if (s)
v = v_tmp;
return s;
}
#endif // ALGEBRA3IOSTREAMS
inline void swap(vec3& a, vec3& b)
{ vec3 tmp(a); a = b; b = tmp; }
inline vec3 vec3min(const vec3& a, const vec3& b)
{ return vec3(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY]), MIN(a.n[VZ],
b.n[VZ])); }
inline vec3 vec3max(const vec3& a, const vec3& b)
{ return vec3(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY]), MAX(a.n[VZ],
b.n[VZ])); }
inline vec3 prod(const vec3& a, const vec3& b)
{ return vec3(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY], a.n[VZ] * b.n[VZ]); }
/****************************************************************
* *
* vec4 Member functions *
* *
****************************************************************/
// CONSTRUCTORS
inline vec4::vec4() {}
inline vec4::vec4(const double x, const double y, const double z, const double w)
{ n[VX] = x; n[VY] = y; n[VZ] = z; n[VW] = w; }
inline vec4::vec4(const double d)
{ n[VX] = n[VY] = n[VZ] = n[VW] = d; }
inline vec4::vec4(const vec4& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = v.n[VW]; }
inline vec4::vec4(const vec3& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = 1.0; }
inline vec4::vec4(const vec3& v, const double d)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = d; }
// ASSIGNMENT OPERATORS
inline vec4& vec4::operator = (const vec4& v)
{ n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = v.n[VW];
return *this; }
inline vec4& vec4::operator += ( const vec4& v )
{ n[VX] += v.n[VX]; n[VY] += v.n[VY]; n[VZ] += v.n[VZ]; n[VW] += v.n[VW];
return *this; }
inline vec4& vec4::operator -= ( const vec4& v )
{ n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; n[VZ] -= v.n[VZ]; n[VW] -= v.n[VW];
return *this; }
inline vec4& vec4::operator *= ( const double d )
{ n[VX] *= d; n[VY] *= d; n[VZ] *= d; n[VW] *= d; return *this; }
inline vec4& vec4::operator /= ( const double d )
{ double d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; n[VZ] *= d_inv;
n[VW] *= d_inv; return *this; }
inline double& vec4::operator [] ( int i) {
assert(! (i < VX || i > VW));
return n[i];
}
inline double vec4::operator [] ( int i) const {
assert(! (i < VX || i > VW));
return n[i];
}
// SPECIAL FUNCTIONS
inline double vec4::length() const
{ return sqrt(length2()); }
inline double vec4::length2() const
{ return n[VX]*n[VX] + n[VY]*n[VY] + n[VZ]*n[VZ] + n[VW]*n[VW]; }
inline vec4& vec4::normalize() // it is up to caller to avoid divide-by-zero
{ *this /= length(); return *this; }
inline vec4& vec4::apply(V_FCT_PTR fct)
{ n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); n[VZ] = (*fct)(n[VZ]);
n[VW] = (*fct)(n[VW]); return *this; }
// FRIENDS
inline vec4 operator - (const vec4& a)
{ return vec4(-a.n[VX],-a.n[VY],-a.n[VZ],-a.n[VW]); }
inline vec4 operator + (const vec4& a, const vec4& b)
{ return vec4(a.n[VX] + b.n[VX], a.n[VY] + b.n[VY], a.n[VZ] + b.n[VZ],
a.n[VW] + b.n[VW]); }
inline vec4 operator - (const vec4& a, const vec4& b)
{ return vec4(a.n[VX] - b.n[VX], a.n[VY] - b.n[VY], a.n[VZ] - b.n[VZ],
a.n[VW] - b.n[VW]); }
inline vec4 operator * (const vec4& a, const double d)
{ return vec4(d*a.n[VX], d*a.n[VY], d*a.n[VZ], d*a.n[VW] ); }
inline vec4 operator * (const double d, const vec4& a)
{ return a*d; }
inline vec4 operator * (const mat4& a, const vec4& v) {
#define ROWCOL(i) a.v[i].n[0]*v.n[VX] + a.v[i].n[1]*v.n[VY] \
+ a.v[i].n[2]*v.n[VZ] + a.v[i].n[3]*v.n[VW]
return vec4(ROWCOL(0), ROWCOL(1), ROWCOL(2), ROWCOL(3));
#undef ROWCOL // (i)
}
inline vec4 operator * (const vec4& v, const mat4& a)
{ return a.transpose() * v; }
inline double operator * (const vec4& a, const vec4& b)
{ return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY] + a.n[VZ]*b.n[VZ] +
a.n[VW]*b.n[VW]); }
inline vec4 operator / (const vec4& a, const double d)
{ double d_inv = 1./d; return vec4(a.n[VX]*d_inv, a.n[VY]*d_inv, a.n[VZ]*d_inv,
a.n[VW]*d_inv); }
inline int operator == (const vec4& a, const vec4& b)
{ return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]) && (a.n[VZ] == b.n[VZ])
&& (a.n[VW] == b.n[VW]); }
inline int operator != (const vec4& a, const vec4& b)
{ return !(a == b); }
#ifdef ALGEBRA3IOSTREAMS
inline ostream& operator << (ostream& s, const vec4& v)
{ return s << "| " << v.n[VX] << ' ' << v.n[VY] << ' ' << v.n[VZ] << ' '
<< v.n[VW] << " |"; }
inline stream& operator >> (istream& s, vec4& v) {
vec4 v_tmp;
char c = ' ';
while (isspace(c))
s >> c;
// The vectors can be formatted either as x y z w or | x y z w |
if (c == '|') {
s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ] >> v_tmp[VW];
while (s >> c && isspace(c)) ;
if (c != '|')
s.set(_bad);
}
else {
s.putback(c);
s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ] >> v_tmp[VW];
}
if (s)
v = v_tmp;
return s;
}
#endif // ALGEBRA3IOSTREAMS
inline void swap(vec4& a, vec4& b)
{ vec4 tmp(a); a = b; b = tmp; }
inline vec4 vec4min(const vec4& a, const vec4& b)
{ return vec4(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY]), MIN(a.n[VZ],
b.n[VZ]), MIN(a.n[VW], b.n[VW])); }
inline vec4 vec4max(const vec4& a, const vec4& b)
{ return vec4(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY]), MAX(a.n[VZ],
b.n[VZ]), MAX(a.n[VW], b.n[VW])); }
inline vec4 prod(const vec4& a, const vec4& b)
{ return vec4(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY], a.n[VZ] * b.n[VZ],
a.n[VW] * b.n[VW]); }
/****************************************************************
* *
* mat3 member functions *
* *
****************************************************************/
// CONSTRUCTORS
inline mat3::mat3() {}
inline mat3::mat3(const vec3& v0, const vec3& v1, const vec3& v2)
{ v[0] = v0; v[1] = v1; v[2] = v2; }
inline mat3::mat3(const double d)
{ v[0] = v[1] = v[2] = vec3(d); }
inline mat3::mat3(const mat3& m)
{ v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; }
// ASSIGNMENT OPERATORS
inline mat3& mat3::operator = ( const mat3& m )
{ v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; return *this; }
inline mat3& mat3::operator += ( const mat3& m )
{ v[0] += m.v[0]; v[1] += m.v[1]; v[2] += m.v[2]; return *this; }
inline mat3& mat3::operator -= ( const mat3& m )
{ v[0] -= m.v[0]; v[1] -= m.v[1]; v[2] -= m.v[2]; return *this; }
inline mat3& mat3::operator *= ( const double d )
{ v[0] *= d; v[1] *= d; v[2] *= d; return *this; }
inline mat3& mat3::operator /= ( const double d )
{ v[0] /= d; v[1] /= d; v[2] /= d; return *this; }
inline vec3& mat3::operator [] ( int i) {
assert(! (i < VX || i > VZ));
return v[i];
}
inline const vec3& mat3::operator [] ( int i) const {
assert(!(i < VX || i > VZ));
return v[i];
}
// SPECIAL FUNCTIONS
inline mat3 mat3::transpose() const {
return mat3(vec3(v[0][0], v[1][0], v[2][0]),
vec3(v[0][1], v[1][1], v[2][1]),
vec3(v[0][2], v[1][2], v[2][2]));
}
inline mat3 mat3::inverse() const // Gauss-Jordan elimination with partial pivoting
{
mat3 a(*this), // As a evolves from original mat into identity
b(identity2D()); // b evolves from identity into inverse(a)
int i, j, i1;
// Loop over cols of a from left to right, eliminating above and below diag
for (j=0; j<3; j++) { // Find largest pivot in column j among rows j..2
i1 = j; // Row with largest pivot candidate
for (i=j+1; i<3; i++)
if (fabs(a.v[i].n[j]) > fabs(a.v[i1].n[j]))
i1 = i;
// Swap rows i1 and j in a and b to put pivot on diagonal
swap(a.v[i1], a.v[j]);
swap(b.v[i1], b.v[j]);
// Scale row j to have a unit diagonal
if (a.v[j].n[j]==0.)
ALGEBRA_ERROR("mat3::inverse: singular matrix; can't invert\n")
b.v[j] /= a.v[j].n[j];
a.v[j] /= a.v[j].n[j];
// Eliminate off-diagonal elems in col j of a, doing identical ops to b
for (i=0; i<3; i++)
if (i!=j) {
b.v[i] -= a.v[i].n[j]*b.v[j];
a.v[i] -= a.v[i].n[j]*a.v[j];
}
}
return b;
}
inline mat3& mat3::apply(V_FCT_PTR fct) {
v[VX].apply(fct);
v[VY].apply(fct);
v[VZ].apply(fct);
return *this;
}
// FRIENDS
inline mat3 operator - (const mat3& a)
{ return mat3(-a.v[0], -a.v[1], -a.v[2]); }
inline mat3 operator + (const mat3& a, const mat3& b)
{ return mat3(a.v[0] + b.v[0], a.v[1] + b.v[1], a.v[2] + b.v[2]); }
inline mat3 operator - (const mat3& a, const mat3& b)
{ return mat3(a.v[0] - b.v[0], a.v[1] - b.v[1], a.v[2] - b.v[2]); }
inline mat3 operator * (const mat3& a, const mat3& b) {
#define ROWCOL(i, j) \
a.v[i].n[0]*b.v[0][j] + a.v[i].n[1]*b.v[1][j] + a.v[i].n[2]*b.v[2][j]
return mat3(vec3(ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2)),
vec3(ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2)),
vec3(ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2)));
#undef ROWCOL // (i, j)
}
inline mat3 operator * (const mat3& a, const double d)
{ return mat3(a.v[0] * d, a.v[1] * d, a.v[2] * d); }
inline mat3 operator * (const double d, const mat3& a)
{ return a*d; }
inline mat3 operator / (const mat3& a, const double d)
{ return mat3(a.v[0] / d, a.v[1] / d, a.v[2] / d); }
inline int operator == (const mat3& a, const mat3& b)
{ return (a.v[0] == b.v[0]) && (a.v[1] == b.v[1]) && (a.v[2] == b.v[2]); }
inline int operator != (const mat3& a, const mat3& b)
{ return !(a == b); }
#ifdef ALGEBRA3IOSTREAMS
inline ostream& operator << (ostream& s, const mat3& m)
{ return s << m.v[VX] << '\n' << m.v[VY] << '\n' << m.v[VZ]; }
inline stream& operator >> (istream& s, mat3& m) {
mat3 m_tmp;
s >> m_tmp[VX] >> m_tmp[VY] >> m_tmp[VZ];
if (s)
m = m_tmp;
return s;
}
#endif // ALGEBRA3IOSTREAMS
inline void swap(mat3& a, mat3& b)
{ mat3 tmp(a); a = b; b = tmp; }
/****************************************************************
* *
* mat4 member functions *
* *
****************************************************************/
// CONSTRUCTORS
inline mat4::mat4() {}
inline mat4::mat4(const vec4& v0, const vec4& v1, const vec4& v2, const vec4& v3)
{ v[0] = v0; v[1] = v1; v[2] = v2; v[3] = v3; }
inline mat4::mat4(const double d)
{ v[0] = v[1] = v[2] = v[3] = vec4(d); }
inline mat4::mat4(const mat4& m)
{ v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; v[3] = m.v[3]; }
// ASSIGNMENT OPERATORS
inline mat4& mat4::operator = ( const mat4& m )
{ v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; v[3] = m.v[3];
return *this; }
inline mat4& mat4::operator += ( const mat4& m )
{ v[0] += m.v[0]; v[1] += m.v[1]; v[2] += m.v[2]; v[3] += m.v[3];
return *this; }
inline mat4& mat4::operator -= ( const mat4& m )
{ v[0] -= m.v[0]; v[1] -= m.v[1]; v[2] -= m.v[2]; v[3] -= m.v[3];
return *this; }
inline mat4& mat4::operator *= ( const double d )
{ v[0] *= d; v[1] *= d; v[2] *= d; v[3] *= d; return *this; }
inline mat4& mat4::operator /= ( const double d )
{ v[0] /= d; v[1] /= d; v[2] /= d; v[3] /= d; return *this; }
inline vec4& mat4::operator [] ( int i) {
assert(! (i < VX || i > VW));
return v[i];
}
inline const vec4& mat4::operator [] ( int i) const {
assert(! (i < VX || i > VW));
return v[i];
}
// SPECIAL FUNCTIONS;
inline mat4 mat4::transpose() const{
return mat4(vec4(v[0][0], v[1][0], v[2][0], v[3][0]),
vec4(v[0][1], v[1][1], v[2][1], v[3][1]),
vec4(v[0][2], v[1][2], v[2][2], v[3][2]),
vec4(v[0][3], v[1][3], v[2][3], v[3][3]));
}
inline mat4 mat4::inverse() const // Gauss-Jordan elimination with partial pivoting
{
mat4 a(*this), // As a evolves from original mat into identity
b(identity3D()); // b evolves from identity into inverse(a)
int i, j, i1;
// Loop over cols of a from left to right, eliminating above and below diag
for (j=0; j<4; j++) { // Find largest pivot in column j among rows j..3
i1 = j; // Row with largest pivot candidate
for (i=j+1; i<4; i++)
if (fabs(a.v[i].n[j]) > fabs(a.v[i1].n[j]))
i1 = i;
// Swap rows i1 and j in a and b to put pivot on diagonal
swap(a.v[i1], a.v[j]);
swap(b.v[i1], b.v[j]);
// Scale row j to have a unit diagonal
if (a.v[j].n[j]==0.)
ALGEBRA_ERROR("mat4::inverse: singular matrix; can't invert\n");
b.v[j] /= a.v[j].n[j];
a.v[j] /= a.v[j].n[j];
// Eliminate off-diagonal elems in col j of a, doing identical ops to b
for (i=0; i<4; i++)
if (i!=j) {
b.v[i] -= a.v[i].n[j]*b.v[j];
a.v[i] -= a.v[i].n[j]*a.v[j];
}
}
return b;
}
inline mat4& mat4::apply(V_FCT_PTR fct)
{ v[VX].apply(fct); v[VY].apply(fct); v[VZ].apply(fct); v[VW].apply(fct);
return *this; }
// FRIENDS
inline mat4 operator - (const mat4& a)
{ return mat4(-a.v[0], -a.v[1], -a.v[2], -a.v[3]); }
inline mat4 operator + (const mat4& a, const mat4& b)
{ return mat4(a.v[0] + b.v[0], a.v[1] + b.v[1], a.v[2] + b.v[2],
a.v[3] + b.v[3]);
}
inline mat4 operator - (const mat4& a, const mat4& b)
{ return mat4(a.v[0] - b.v[0], a.v[1] - b.v[1], a.v[2] - b.v[2], a.v[3] - b.v[3]); }
inline mat4 operator * (const mat4& a, const mat4& b) {
#define ROWCOL(i, j) a.v[i].n[0]*b.v[0][j] + a.v[i].n[1]*b.v[1][j] + \
a.v[i].n[2]*b.v[2][j] + a.v[i].n[3]*b.v[3][j]
return mat4(
vec4(ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2), ROWCOL(0,3)),
vec4(ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2), ROWCOL(1,3)),
vec4(ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2), ROWCOL(2,3)),
vec4(ROWCOL(3,0), ROWCOL(3,1), ROWCOL(3,2), ROWCOL(3,3))
);
}
inline mat4 operator * (const mat4& a, const double d)
{ return mat4(a.v[0] * d, a.v[1] * d, a.v[2] * d, a.v[3] * d); }
inline mat4 operator * (const double d, const mat4& a)
{ return a*d; }
inline mat4 operator / (const mat4& a, const double d)
{ return mat4(a.v[0] / d, a.v[1] / d, a.v[2] / d, a.v[3] / d); }
inline int operator == (const mat4& a, const mat4& b)
{ return ((a.v[0] == b.v[0]) && (a.v[1] == b.v[1]) && (a.v[2] == b.v[2]) &&
(a.v[3] == b.v[3])); }
inline int operator != (const mat4& a, const mat4& b)
{ return !(a == b); }
#ifdef ALGEBRA3IOSTREAMS
inline ostream& operator << (ostream& s, const mat4& m)
{ return s << m.v[VX] << '\n' << m.v[VY] << '\n' << m.v[VZ] << '\n' << m.v[VW]; }
inline istream& operator >> (istream& s, mat4& m)
{
mat4 m_tmp;
s >> m_tmp[VX] >> m_tmp[VY] >> m_tmp[VZ] >> m_tmp[VW];
if (s)
m = m_tmp;
return s;
}
#endif // ALGEBRA3IOSTREAMS
inline void swap(mat4& a, mat4& b)
{ mat4 tmp(a); a = b; b = tmp; }
/****************************************************************
* *
* 2D functions and 3D functions *
* *
****************************************************************/
inline mat3 identity2D()
{ return mat3(vec3(1.0, 0.0, 0.0),
vec3(0.0, 1.0, 0.0),
vec3(0.0, 0.0, 1.0)); }
inline mat3 translation2D(const vec2& v)
{ return mat3(vec3(1.0, 0.0, v[VX]),
vec3(0.0, 1.0, v[VY]),
vec3(0.0, 0.0, 1.0)); }
inline mat3 rotation2D(const vec2& Center, const double angleDeg) {
double angleRad = radians(angleDeg),
c = cos(angleRad),
s = sin(angleRad);
return mat3(vec3(c, -s, Center[VX] * (1.0-c) + Center[VY] * s),
vec3(s, c, Center[VY] * (1.0-c) - Center[VX] * s),
vec3(0.0, 0.0, 1.0));
}
inline mat3 scaling2D(const vec2& scaleVector)
{ return mat3(vec3(scaleVector[VX], 0.0, 0.0),
vec3(0.0, scaleVector[VY], 0.0),
vec3(0.0, 0.0, 1.0)); }
inline mat4 identity3D()
{ return mat4(vec4(1.0, 0.0, 0.0, 0.0),
vec4(0.0, 1.0, 0.0, 0.0),
vec4(0.0, 0.0, 1.0, 0.0),
vec4(0.0, 0.0, 0.0, 1.0)); }
inline mat4 translation3D(const vec3& v)
{ return mat4(vec4(1.0, 0.0, 0.0, v[VX]),
vec4(0.0, 1.0, 0.0, v[VY]),
vec4(0.0, 0.0, 1.0, v[VZ]),
vec4(0.0, 0.0, 0.0, 1.0)); }
inline mat4 rotation3D(vec3 Axis, const double angleDeg) {
double angleRad = radians(angleDeg),
c = cos(angleRad),
s = sin(angleRad),
t = 1.0 - c;
Axis.normalize();
return mat4(vec4(t * Axis[VX] * Axis[VX] + c,
t * Axis[VX] * Axis[VY] - s * Axis[VZ],
t * Axis[VX] * Axis[VZ] + s * Axis[VY],
0.0),
vec4(t * Axis[VX] * Axis[VY] + s * Axis[VZ],
t * Axis[VY] * Axis[VY] + c,
t * Axis[VY] * Axis[VZ] - s * Axis[VX],
0.0),
vec4(t * Axis[VX] * Axis[VZ] - s * Axis[VY],
t * Axis[VY] * Axis[VZ] + s * Axis[VX],
t * Axis[VZ] * Axis[VZ] + c,
0.0),
vec4(0.0, 0.0, 0.0, 1.0));
}
inline mat4 scaling3D(const vec3& scaleVector)
{ return mat4(vec4(scaleVector[VX], 0.0, 0.0, 0.0),
vec4(0.0, scaleVector[VY], 0.0, 0.0),
vec4(0.0, 0.0, scaleVector[VZ], 0.0),
vec4(0.0, 0.0, 0.0, 1.0)); }
inline mat4 perspective3D(const double d)
{ return mat4(vec4(1.0, 0.0, 0.0, 0.0),
vec4(0.0, 1.0, 0.0, 0.0),
vec4(0.0, 0.0, 1.0, 0.0),
vec4(0.0, 0.0, 1.0/d, 0.0)); }
#endif // ALGEBRA3H
|